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By strongly driving a transmon-resonator system, the transmon qubit may eventually escape from its cosine-
shaped potential. This process is called transmon ionization (TI) and known to be detrimental to the qubit
coherence and operation. In this work we investigate the onset of TI in an irreversible, parametrically driven,
frequency conversion process in a system consisting of a superconducting three-dimensional cavity coupled
to a fixed-frequency transmon qubit. Above a critical pump power we find a sudden increase in the transmon
population. Using Rényi entropy, Floquet modes, and Husimi Q functions, we infer that this abrupt change can be
attributed to a quantum-to-classical phase transition. Furthermore, in the context of the single-photon detection,
we measure a TI-uncorrected detection efficiency of up to 86% and estimate a TI-corrected value of up to 78% by
exploiting the irreversible frequency conversion. Our numerical simulations suggest that increasing the detuning
between the pump and qubit frequencies and increasing the qubit anharmonicity can suppress the TI impact. Our
findings highlight the general importance of the TI process when operating coupled qubit-cavity systems.
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I. INTRODUCTION

In superconducting circuits and cavity quantum electro-
dynamics systems, Josephson junctions play a pivotal role.
Characterized by their strong nonlinearity and low losses,
these junctions are fundamental for various quantum in-
formation applications. Their crucial role is evident in the
realization of parametrically driven devices, including quan-
tum amplifiers [1–6], frequency converters [7–9], nonclassical
light generators [10,11], stabilizers [12,13], and microwave
single-photon detectors (SPDs) [14,15]. This is attributed to
three- or four-wave mixing processes enabled by a strong
microwave drive, denoted as the “pump.” Recently, SPDs
have attracted particular attention, as they can be applied
for many quantum protocols, such as quantum teleportation
[16], entanglement distillation [17], entanglement swapping
[18], quantum erasers [19], quantum repeaters [20], Gaussian
boson sampling [21], and quantum error correction [22]. We
note that many of the cited references refer to experiments
performed in the optical regime. However, their basic con-
cepts are completely analogous to those in the microwave
regime and inherently adaptable to the superconducting
circuits.

The development of SPDs in the microwave domain is
particularly challenging. Compared to devices operating in the
optical regime, this is primarily attributed to the lower pho-
ton energy [14,15,23–26] and the high-performance standards
demanded by applications in quantum information, quantum
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sensing, and quantum illumination [27–33]. Despite these
obstacles, various microwave SPD designs with quantum ef-
ficiencies exceeding 50% have been demonstrated in recent
years [14,15,23–26]. The strategic significance of microwave
SPDs becomes evident in applications such as dark matter
axion search [29], spin fluorescence detection [34,35], and
quantum radar [32,36]. For example, recently the application
of microwave SPDs in quantum radar systems demonstrated
an experimental quantum advantage in a target detection [32].
In the field of spin fluorescence detection, using microwave
SPDs allows one to surpass the signal-to-noise–ratio per-
formance of conventional electron-spin-resonance methods
[34,35]. Microwave SPDs are also expected to further advance
the rapidly growing fields of microwave quantum communi-
cation and sensing [11,33,37,38].

A common technique for detecting single photons by
microwave SPDs involves the use of transmon qubits, the
most common qubit type used in quantum computation
[14,15,25,26]. The transmon ionization (TI) emerges when
the qubit escapes from the Josephson potential by strong mi-
crowave driving, transferring the qubit into a complex regime
involving many quantum levels [39–42]. The phenomena oc-
curring in this regime are known under various names, such
as the quantum-to-classical phase transition [43–45], first-
order dissipative phase transition [46–49], chaotic dynamics
[42,50], and breakdown of photon blockades [45,46]. Various
tools and representations, such as the Rényi entropy, Floquet
theory, and Husimi Q functions, are employed to identify
potential phase transitions. Notably, within the framework of
the quantum Duffing oscillator, the Rényi entropy serves as
a quantifier of purity of the quantum system, P = Tr(ρ̂2),
while the Floquet theory provides insights into the temporal
evolution under periodic driving. Concurrently, the Husimi Q
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FIG. 1. (a) Principle of the microwave single-photon detection. A coherent incoming photon (green) is absorbed by a buffer mode, âb, and
is converted to a pair of qubit-waste excitations described with operators âq and âw , respectively, with the interaction strength g4ξp. Due to
the engineered fast dissipation of the waste mode, κw � |g4ξp|, the inverse process (â†

bâqâw ) is effectively suppressed. (b) Schematic of the
experimental setup. The transmon is mounted in one arm of the horseshoe-shaped 3D superconducting cavity and coupled to the cavity-waste or
buffer modes, represented by orange/green shaded areas depicting corresponding electric field distributions, respectively (see also Appendix A
for details.). The buffer (green), readout (orange), and strong pump pulses (purple) are shaped using an arbitrary waveform generator (AWG)
for the time-domain experiments. The frequencies of the buffer ωb, readout ωw , and pump tone ωp are set by external microwave generators.

function offers a phase-space representation, revealing signifi-
cant quantum fluctuations which arise from tunneling between
two metastable states. While this bistability is known to be
useful for high-fidelity readout schemes [41,51], its influence
on the SPD behavior is not well understood so far. Given
the importance of such devices in quantum applications, we
investigate its complex dynamics and quantify the impact of
the TI on the SPD performance.

In the present work we focus on the onset of TI in the
irreversible frequency conversion process in strongly driven
transmon-resonator systems applied for single-photon detec-
tion. The model and the detection principle of our device are
explained in Sec. II. In Sec. III we study the conversion of
the incoming photons to the transmon excitations and waste
resonator photons as a function of the pump power. Once
the pump power eventually approaches a critical threshold, it
triggers a sudden change in the slope of transmon population
as a function of the pump power, in response to the incoming
buffer photons. We study this process by using Rényi entropy,
Floquet theory, and the Husimi Q function. Our results indi-
cate that the abrupt change of the transmon response can be
attributed to a quantum-to-classical phase transition. Subse-
quently in Sec. IV we provide a comprehensive analysis of
the irreversible frequency conversion in our system, leading
to a single-photon detection efficiency of 86%. Then, we
consider the influence of TI on the detector performance and
estimate the TI-corrected detection efficiency to be notably
lower, around 78%. Concluding our study, we systematically
evaluate strategies to enhance the SPD detection efficiency
by properly adjusting the system parameters. In particular,
we find that increasing the detuning between the pump and
qubit frequencies and increasing the qubit anharmonicity are
the most promising steps for further increasing the detection
efficiency. Furthermore, our analysis suggests that the spectral
arrangement of the buffer and waste frequencies should be
implemented based on the sign of the qubit anharmonicity to

ensure that the pump drive and multiphoton qubit transitions
do not coincide in the frequency space.

II. DEMONSTRATION OF IRREVERSIBLE FREQUENCY
CONVERSION PROCESS

In our experiments we use a horseshoe-shaped aluminum
three-dimensional (3D) cavity containing a transmon qubit
chip (as schematically shown in Fig. 1(b)). Details of the
horseshoe resonator and its mode structure are given in Ap-
pendix A. We utilize two of the cavity modes: the waste
mode at ωw/2π = 7.609 GHz with a decay rate of κw/2π =
16.7 MHz, and the buffer mode at ωb/2π = 7.955 GHz with
a decay rate of κb/2π = 3.7 MHz. The qubit frequency is
ωq/2π = 5.664 GHz, with T1 = 28 µs and T2 = 16 µs, limited
by the Purcell effect. The qubit is coupled to the waste and
buffer modes with coupling strengths of gw/2π = 30 MHz
and gb/2π = 18 MHz, respectively. In a driven system, the
ac-Stark effect induces shifts in all three eigenfrequencies as
a function of the pump power. These shifted frequencies are
denoted by ω′

j for the jth mode, where j = {q, b,w}. The
Hamiltonian for the irreversible frequency conversion process
in the rotating frame of Ĥ0/h̄ = ω′

qâ†
qâq + ω′

wâ†
wâw + ω′

bâ†
bâb

is formulated as [39]

Ĥ4/h̄ ≈
Nt −1∑
k=2

χ (k)

k!
(â†

q)kâk
q + χqwâ†

qâqâ†
wâw

+ χqbâ†
qâqâ†

bâb + iεb(â†
b − âb)

+ g4(ξpâ†
qâ†

wâbei	qwbpt + ξ ∗
p âqâwâ†

be−i	qwbpt )

+ 2iεq cos(ωpt )(â†
qeiω′

qt − âqe−iω′
qt ), (1)

where âq, âw, and âb are the annihilation operators of the
qubit, waste, and buffer modes, respectively, and Nt is the
dimension of the transmon Hilbert space. The detuning
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FIG. 2. (a) Triple-tone pulsed spectroscopy of the coupled transmon-resonator system as explained in the main text. An inclined feature
(white dots) indicates the four-wave mixing process. (b) Reference two-tone pulsed spectroscopy of the coupled transmon-resonator system
without the buffer signal. (c) Phase shift of the transmon response 	ϕ normalized to the phase shift between the ground and first excited states
ϕge as a function of the steady-state buffer photon number nb. Different colors correspond to specific pump power values as indicated by the
color code. (d) Transmon phase response for three selected buffer photon numbers nb = 0.00, 0.16, 0.63 (red, orange, blue) as a function of
the pump power. The vertical black dashed line indicates the CPP at which the abrupt change of the qubit population can be observed. Solid
lines are the simulation results using Eq. (1) with nb = 0.00, 0.16, 0.63 (red, orange, blue). (e) The buffer and waste resonance frequencies as
a function of the pump power at ωp/2π = 5.1595 GHz. A distinct jump of the resonance frequencies can be observed in both resonators at the
CPP of −67 dBm.

involving all four frequencies is defined as 	qwbp = ω′
q +

ω′
w − ω′

b − ωp and the driving strength of the transmon and
buffer mode as εq,b, respectively. The term χ (k) corrects for
the kth eigenfrequency of the transmon, with χ (2) being its
anharmonicity. In addition, χqw and χqb are the cross-Kerr
interaction strengths of the waste and buffer modes, respec-
tively. Lastly, g4 is the strength of the four-wave mixing
interaction, and ξp is the pump amplitude at the pump fre-
quency ωp. Below the regime, where χ (2) � εq,b, κb,w, 1/T1,2,
the bosonic annihilation operator âq can be replaced by the
Pauli operator σ̂ . The irreversible frequency conversion pro-
cess is based on the dissipation-engineered four-wave mixing
process of a nonlinear Josephson junction element [15]. When
an incoming photon arrives at the buffer mode frequency, the
buffer photon is converted to the excited state of the qubit and
a waste photon by a strong pump pulse, corresponding to the
parametrically activated conversion process (âbσ̂

†â†
w ). How-

ever, under the conditions, κw � |g4ξp|, the waste resonator
state rapidly decays to the vacuum state, making the process
irreversible and prohibiting the inverse process (â†

bσ̂ âw ). As
a result, information of the incoming photon is stored in the
qubit state, as shown in Fig. 1(a).

By performing a triple-tone spectroscopy composed of the
pump and buffer pulses with identical duration of tb = 20 µs,
followed by a readout pulse at the waste-mode frequency
with a duration of tr = 2.5 µs (see Fig. 1), we observe the
conversion process of the buffer photons to the qubit ex-
cited state. As shown in Fig. 2(a), when the buffer pulse is
switched on, we observe the phase response of the transmon
in the pump frequency range of ωp/2π = 5.15−5.18 GHz.
This response disappears in the absence of the buffer signal
(see Fig. 2(b)).

III. ONSET OF TRANSMON IONIZATION

In this section we present a systematic study of the buffer
photon conversion into the transmon-waste excitations as a
function of the pump power. Our measurements reveal a
strong increase in the transmon population above a certain
critical pump power (CPP) of Pc = −67 dBm, as illustrated in
Figs. 2(c) and 2(d). To maximize the qubit population for each
pump power, we adjust our pump frequencies accordingly.
We further note that the phase shift of the transmon response
	ϕ is directly related to the transmon population based on
the dispersive readout technique [52,53]. In principle, as long
as the phase response scales about linearly as a function of
the photon number, i.e., not exceeding the readout bandwidth,
we can relate the higher excited states in the transmon as
nt ≈ 	ϕ/ϕge, even for 	ϕ > ϕge. In our case the linear ap-
proximation is valid due to χqw/κw = 0.15 � 1.

For the pump powers below the CPP, we observe a mono-
tonic increase in the transmon population with increasing the
steady-state buffer photon number. This result is in agreement
with theoretical predictions, which will be discussed in the
next section. Conversely, for pump powers above the CPP, we
again observe a monotonic increase in transmon population
but with a discontinuity in the transmon response at the CPP
(see Fig. 2(c)). In an independent measurement using a two-
tone spectroscopy approach, we also find a steplike change
of the buffer and waste resonance frequencies at a similar
pump power, where the pump power is varied at the fixed
pump frequency (see Fig. 2(e)). This observation is consis-
tent with previous studies [39,51] and numerical simulations
[40,41,54], suggesting that here the transmon is entering the
ionization region, where it eventually “escapes” from the
Josephson potential.
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FIG. 3. Rényi entropy, Floquet simulation, and Husimi Q distribution using the Hamiltonian in Eq. (1). We choose εb = 0 for the case
“without buffer drive.” The vertical black dashed line marks the CPP at Pc = −67 dBm. (a) Rényi entropy S2 obtained from the simulated
reduced transmon density matrix without (blue) and with (orange) the buffer drive as a function of the pump power. At the CPP, Pc = −67 dBm,
the Rényi entropy remains rather smooth in the absence of buffer photons, while its sudden increase is observed for finite buffer signal powers.
(b) The overlap between the transmon state |nq00〉 and the Floquet mode |410〉F as a function of pump power. At the CPP we find a drastic
increase of this overlap for transmon states characterized by different nq. (c) Probability of finding specific Floquet modes in the simulated
density matrix as a function of the pump power. A sudden increase of the probabilities can be observed. Insets show Husimi Q distributions of
the Floquet states |101〉F , |222〉F , and |410〉F at −66.2 dBm (vertical dash-dotted line). (d) Simulation of the transmon Husimi Q function in
the absence (top) and presence (bottom) of the buffer signal for various pump powers. In the absence of the buffer signal, minimal variation is
observed around the CPP. Conversely, in the presence of the buffer signal, the Husimi Q function spreads across the phase space, progressively
converging to a double-peak distribution for higher pump powers. The red dashed box highlights the transmon Husimi Q function at
the CPP.

We explore the system dynamics numerically by utiliz-
ing the Hamiltonian presented in Eq. (1). By relying on
experimentally determined parameters, we solve the Lind-
blad master equation given in Eq. (B1) and subsequently
validate the proposed Hamiltonian by comparing our results
with measurements shown in Fig. 2(d). During the simula-
tion, the Hilbert space dimensions of the transmon, waste,
and buffer modes are chosen to be 9, 3, and 3, respectively.
The eigenenergy calculations of the transmon with the exper-
imental parameters show that the first eight transmon states
are confined states, while the ninth lies above the Josephson
junction potential corresponding to the first ionized state.

To interpret the dynamics of our system, we utilize the
Rényi entropy, Floquet theory, and Husimi Q function, as
shown in Fig. 3. We begin by considering the Rényi en-
tropy. This quantity can offer valuable insights into the phase
transition of our tripartite system around the critical point

[47,55–57]. Mathematically, the Rényi entropy is defined as

Sα = − 1

1 − α
log2 Tr

(
ρ̂α

t

)
, (2)

with the so-called order parameter α. The reduced density
matrix of the transmon, ρ̂t , is obtained by tracing out both the
waste and buffer modes, i.e., ρ̂t = Trw,b(ρ̂). In this study we
choose α = 2, as this entropy serves as a key metric for quan-
tifying the purity, and thereby, the “classicality” of the associ-
ated density matrix. Intuitively, a system with higher entropy
is more mixed or less pure, and consequently, is more classical
in nature. This entropy allows us to observe the quantum-to-
classical phase transition. As illustrated in Fig. 3(a), a distinct
jump in entropy is evident at the CPP, a feature that is absent
without the buffer drive. This marked change offers a clear
indication of the transition of the system from a predominantly
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quantum state to a more classical one, thus supporting the
observed quantum-to-classical phase transition [39–42,48].

Furthermore, we apply the Floquet theory, which is partic-
ularly suited for examining strongly driven systems, making it
suitable for our quantum-to-classical phase-transition studies
[42,50]. We analyze the overlap between the transmon and
Floquet states as a function of the pump power. The Floquet
modes are designated as |nqnbnw〉F , aligning with |nqnbnw〉
at minimal pump levels, which are the eigenstates of Ĥ0.
As illustrated in Fig. 3(b), a distinct transition in the over-
lap of the Floquet state, |410〉F , is evident at the CPP, Pc =
−67 dBm. Comparable trends are noted for Floquet modes
|101〉F and |222〉F (not shown). We further investigate the
dynamical properties of probabilities corresponding to these
Floquet modes in the resulting density matrix, deduced from
the Lindblad master simulation. In line with the previous find-
ings, a sharp increase in these probabilities is observed at the
CPP, as shown in Fig. 3(c). Henceforth, after the CPP, these
Floquet states, |101〉F , |222〉F , and |410〉F , can be viewed as
predominant states characterizing the system for the increased
pump powers. The insets of Fig. 3(c) present the Husimi Q
distributions of these Floquet states at −66.2 dBm, slightly
above the CPP. They reveal extensive delocalization, where
the |101〉F and |222〉F states are further characterized by the
double-peak distributions. Here, the transmon Husimi Q func-
tion is defined as

Q = 〈αq|ρ̂t |αq〉/π,

where |αq〉 represents the coherent state with the complex
transmon field amplitude αq.

Lastly, we aim to affirm that this bimodal nature observed
in the Husimi Q function of the Floquet modes distinctly
manifests in the phase space of the transmon after the CPP.
In Fig. 3(d) we show the simulation results of the Husimi Q
representation of the transmon in scenarios with and without
the buffer signal. We employ the double peak of the Husimi
Q distribution in the phase space as an indicator of coex-
isting states. This characteristic bimodal structure of the Q
function is a recognized feature of dissipative quantum phase
transitions typically observed in quantum Duffing oscillators
[46,47,49,54,58]. Thus, the identification of such a structure
within our system suggests the occurrence of the first-order
dissipative phase transition in the transmon-resonator system.
As shown in the top panel of Fig. 3(d), the Gaussian-like dis-
tribution of the Husimi Q function remains largely unchanged
until around Pp = −61 dBm, if the buffer drive is switched
off. In other words, the delocalization does not appear even
after Pc = −67 dBm. This localized distribution complies
with the transmon population, predominantly occupying the
ground state (see Fig. 2(d)). Conversely, with the buffer drive
switched on, the system undergoes a delocalization in the
phase space around the CPP, progressively converging to a
double-peak formation at stronger pump powers, as illustrated
in the bottom panel of Fig. 3(d) at −57 dBm. This obser-
vation, along with prior simulation results, reveals that the
delocalization in phase space is influenced by the emergence
of double-peak distributions. These distributions are charac-
terized by the Floquet modes |101〉F , |222〉F , and |410〉F .
Importantly, the manifestation of this bimodal structure is

(a)

(c)

(b) (c)

(d) (e)

FIG. 4. (a) Detection efficiency as a function of the pump
frequency and power. (b) Qubit population as a function of the
steady-state buffer photon number nb. The red dots are the measured
data points, while the blue line is fitted by numerically solving the
quantum Lindblad master equation with tb = 0.55 µs (see Eq. (1)).
(c) Lorentzian fit of ηdet at Pp = −67 dBm and ωp/2π = 5.156 GHz.
(d) Single-photon detection efficiency ηdet as a function of the pump
power. The blue dots are the optimal detection efficiency extracted
from the Lorentzian fit (blue line in (c)). The solid line is the fit using
Eqs. (3) and (5). The dashed line shows the case for n∗ = 1. (e) The
qubit population of the state |nq = 3〉 as a function of nb for various
pump powers used in the simulation. The population is calculated as
〈3|â†

qâqρ̂t |3〉 = 3 × 〈3|ρ̂t |3〉 = 3 × Pq(nq = 3), where the probabil-
ity being in the state |nq = 3〉 is denoted as Pq(nq = 3) = 〈3|ρ̂t |3〉.

not a gradual transition but occurs abruptly at the CPP. This
phenomenon corresponds to the observed change in the slope
of transmon population versus pump power in the transmon
system, as depicted in Fig. 2(d).

IV. SINGLE-PHOTON DETECTION PERFORMANCE

We further investigate our device as a single-photon de-
tector. An important figure of merit of such a device is its
detection efficiency. We extract corresponding efficiencies for
various pump frequencies and powers up to the CPP at various
calibrated buffer signal powers (see Fig. 4). The performance
of the conversion process is characterized by a separate con-
version efficiency defined as [15]

ηc = 4
κnlκb

(κnl + κb)2 , (3)
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with κnl = 4|g4ξp|2/κw. Its relationship with the qubit popu-
lation nq = 〈σ̂ †σ̂ 〉 is

nq = n∗(1 − exp
(
ηc|bin|2tb

))
, (4)

where |bin|2 is the buffer photon flux and tb is the buffer pulse
length. Here, n∗ � 1 is the saturated qubit population, where
the detection efficiency is defined as

ηdet := n∗ηc. (5)

In actual experiments reduced detection efficiencies, ηdet < 1,
are attributed to factors such as a finite energy relaxation rate
and finite thermal waste photon numbers, which stem from
heating due to the elevated pump powers and microwave noise
from the input lines [59–61]. The detection efficiencies ηdet

are extracted using the Lindblad master equation simulations
of the Hamiltonian given in Eq. (1): We simulate the qubit
population nq for various values of g4ξp, |bin|2 and thermal
bath temperatures at a fixed buffer pulse length tb. We finally
choose ηdet such that the simulated nq(nb) fits all experimen-
tally measured curves (see Fig. 4(b)). For these simulations
the qubit driving term is neglected, i.e., εq = 0. Additionally,
the detuning parameter 	qwbp is set to zero, and the transmon
Hilbert space dimension is set to Nt = 3, i.e., we take the
second excited state into account. These fits are conducted
for every pump power and frequency, as shown in Fig. 4(a).
Figure 4(c) shows a Lorentzian fit to obtain the optimal de-
tection efficiencies at each pump power. Finally, we utilize
the pump power dependence of ηc such that n∗ and ηc are
determined by fitting the optimal detection efficiencies as
a function of the pump power using Eqs. (3) and (5), as
demonstrated in Fig. 4(d). In our studies the maximum conver-
sion and detection efficiencies are ηc = (96 ± 8)% and ηdet =
(86 ± 6)%, respectively. In other words, we have a detection
infidelity of 1 − ηdet = (14 ± 6)%. As derived in Appendix B,
by taking into account the qubit energy relaxation rate, the
saturated qubit population can be determined as

n∗
q = ηc|bin|2

ηc|bin|2 + γq
. (6)

In our case, for a buffer photon flux of |bin|2 = 1.22 MHz
corresponding to the steady-state photon number of nb = 0.25
we obtain n∗

q = 0.97. Notably, although the buffer photon flux
significantly surpasses the decoherence rate observed in our
measurements, we can reach a detection infidelity of only
a few percent. Inserting this value into Eq. (5), we find the
detection infidelity of 7%.

In the case of a nonzero waste photon number, the com-
bined quantum system can partially reverse the four-wave
mixing process. Given this scenario, the saturated qubit popu-
lation is quantified as

n∗
w = 1 − 6nth,w

1 − 4nth,w

, (7)

under the condition nth,w � 1 (see Appendix B for more
details). We employ the dark count probability of the qubit
to estimate nth,w. To achieve this we use the measurement
data taken for nb = 0, as shown in Fig. 2(d), and find the
dark count probability of (5.4 ± 8.3)%, corresponding to the
effective temperature of Teff = 98 mK. Using the formula

nth,w = [exp(h̄ωw/kBTeff ) − 1]−1, we obtain n∗
w = 0.94. This

result leads to the detection infidelity of 10%. Adding up both
infidelities, we obtain a total infidelity of 17%, which aligns
well with the measured detection infidelity of 14%.

The discussion so far has omitted effects of the TI process.
To address this we consider the impact of the higher-qubit-
level excitations, |nq � 3〉, which may additionally lead to an
overestimation of the detection efficiency. For that purpose we
extract the occupation probability of |nq � 3〉 as a function of
nb at the various pump powers and find that the occupation
probabilities of the states |nq � 4〉 are negligibly small. In
Fig. 4(e) the buffer photon number and pump power depen-
dence of the state |nq = 3〉 can be clearly observed. Crucially,
the dependence on the buffer photon number leads to an
overestimation of the detection efficiency. This effect arises
because the occupation of this state additionally contributes
to the qubit population. In order to estimate the TI influence
on the detection efficiency, we remove the contribution of
higher excited states, i.e.,

∑
nq�2〈nq|â†

qâqρ̂t |nq〉, and extract
its efficiency with the same method used in the experiments.
Upon this adjustment, we observe a reduction in the detection
efficiency by 10% with the optimal parameters. We assume
that the correction applied to the simulated data is also ap-
plicable to the experimental results. Under this assumption
the original detection efficiency of ηdet = 86% reduces to the
TI-corrected detection efficiency of η′

det = 78%. In the present
experiment, we do not utilize quantum-limited amplifiers. We
average the readout phase response over 5000 repetitions,
deferring a detailed analysis of the readout chain noise for
future work. Should quantum-limited amplifiers be employed
in the future, a significantly improved readout fidelity, varying
around 94%−99%, can be obtained [15,26,62–64].

Next, we conduct an extensive analysis to find out how
to enhance the detection efficiency and sensitivity of our
SPD. Furthermore, we also discuss how to suppress the in-
fluence of the TI process. Referring to Fig. 5, we present
the TI-uncorrected and TI-corrected detection efficiencies and
sensitivities across various parameters. The sensitivity is de-
fined as [65]

S = h̄ωb
√

rdc

ηdet
, S′ = h̄ωb

√
rdc

η′
det

, (8)

with the dark count rate rdc. We denote S as the TI-uncorrected
sensitivity and S′ as the TI-corrected one. We observe an early
rise of the detection efficiency ηdet (η′

det) for the higher dissi-
pation rate of the waste mode κw, as demonstrated in Fig. 5(a).
However, the increase of κw also leads to an enhancement
of the Purcell decay rate of the qubit. Thus εq increases for
the same pump power accelerating the onset of the TI, which
sets the upper bound of the conversion process. Consequently,
despite the early rise in detection efficiency, ηdet (η′

det) fails
to achieve higher values for larger κw. The early increase of
the probability Pq(nq = 3) supports the argument of this early
onset of the TI. Therefore, the optimal detection efficiency,
ηdet (η′

det), along with the sensitivity S (S′), is more favorably
achieved at lower κw. As shown in Fig. 5(b), an enhancement
in the coupling strength g4 improves both ηdet (η′

det) and S (S′).
Since the CPP does not change under g4 variation, we can
reach higher ηdet (η′

det) before reaching the CPP. Additionally,
when we tune the buffer frequency ωb to higher frequencies,
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(a) (c) (d)(b)
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FIG. 5. Detection efficiency, qubit population contribution of the state |nq = 3〉, and sensitivity as a function of the pump power for
different system parameters. TI-uncorrected efficiencies ηdet and sensitivities S are represented by solid lines, while TI-corrected efficiencies
η′

det and sensitivities S′ are represented by dashed lines. The qubit population of |nq = 3〉 is calculated as 〈3|â†
qâqρ̂t |3〉 = 3 × Pq(nq = 3), where

the probability being in the state |nq = 3〉 is denoted as Pq(nq = 3). (a) The impact of various dissipation rates of the waste mode κw/2π =
4.6, 8.6, 16.6, 30 MHz (blue, orange, green, red line). The green dots are the experimentally extracted values for κw/2π = 16.6 MHz. (b) The
impact of various four-wave interaction strengths g4/2π = 0.9, 1.8, 3.6, 7.2, 14.4 MHz (purple, red, green, orange, blue line). The green dots
represent the experimentally extracted values for g4/2π = 3.6 MHz. (c) The impact of various buffer frequencies ωb/2π = 9, 10, 11 GHz
(green, orange, blue line), and (d) anharmonicities χ (2)/2π = −490, 234, 672, 988 MHz (blue, orange, green, red line). For the simulation
with the positive anharmonicities, we consider typical flux qubit values as a reference. (a) and (b) are simulated at Teff = 98 mK, while (c) and
(d) are obtained in the zero-temperature limit, T = 0 K.

Fig. 5(c) predicts that Pq(nq = 3) decreases. This is attributed
to a large detuning between pump and qubit frequencies,
which reduces the TI impact. In other words, ηdet converges to
η′

det. Finally, we investigate the influence of the TI for differ-
ent anharmonicities χ (2). We observe that large |χ (2)| values
suppress the TI process, as expected from the previous stud-
ies [66–68]. Accordingly, ηdet asymptotically approaches η′

det.
Notably, the configuration of the buffer and waste frequencies
should be chosen considering a particular value of χ (2). In
general, the pump frequency can match a frequency of a
certain multiphoton process at a certain pump power due to the
power-dependent frequency shift of the qubit frequency. In the
regime of negative anharmonicity, this situation can occur if
ωw < ωb, such that ωp, ω0k/k < ω′

q, where ω0k/k is the mul-
tiphoton transition frequency. If the pump frequency is close
to such a transition frequency, the dark count rate increases,
which eventually degrades the SPD performance. For exam-
ple, for χ (2)/2π = −490 MHz, the SPD can reach ηdet ≈ 0.5,
until the pump collides with the two-photon process in the
spectral domain. In simulations with positive anharmonicity
values, we use a flux qubit configuration [68] and achieve
detection efficiencies up to 95%. Importantly, for the flux
qubit, multiphoton processes become relevant at frequencies

exceeding the qubit frequency, and given that ωp < ω′
q for

ωw < ωb, such processes are effectively far-detuned, resulting
in a reduction of dark counts (Fig. 5(d)).

Lastly, we compare the sensitivity between the cases with
Teff = 98 mK (Figs. 5(a) and 5(b)) and T = 0 K (Figs. 5(c)
and 5(d)). Although the sensitivity for an ideal environment
(T = 0 K) generally improves, it does not reach the present
state-of-the-art value of S = 10−22 W/

√
Hz [65]. This is at-

tributed to the filtering effect of our cavity, which requires
stronger pump powers to reach the same detection efficiency
and hence results in a higher dark count probability due to
the pump heating. In our case, the dark count rate gives
26 ± 4 kHz at the pump power of Pp = −67 dBm, at which we
measure the maximum ηdet (η′

det). Despite the cavity filtering
effect, the dark count rate reported here is comparable to the
values reported in the previous studies [24–26].

V. CONCLUSION

In this work we have presented an experimental and nu-
merical study of the TI onset and the SPD performance of
a transmon qubit coupled to a multimode 3D cavity. We have
investigated the dependence of the transmon population on the
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buffer photon number nb and pump power, and observed that
the transmon is highly sensitive to nb within the region close
to critical pump powers (CPP). Through a comprehensive
analysis employing the Rényi entropy, Floquet theory, and
Husimi Q function, we have elaborated an occurrence of a
quantum-to-classical phase transition around the CPP. Our
numerical simulations align well with experimental observa-
tions, emphasizing the accuracy of our chosen methodologies.

We have also investigated the device as a single-photon de-
tector and extracted its detection efficiencies for various pump
frequencies and powers up to the CPP. Our measurements
show that a maximum TI-uncorrected detection efficiency of
86% can be achieved, while we estimate the TI-corrected
detection efficiency to be 78%. The conversion efficiency ηc

between the buffer and the qubit-waste subsystems is limited
by the TI, while the reduction of the saturated qubit population
n∗ can be attributed to a finite thermal waste photon number
and the qubit energy relaxation rate. Finally, increasing the
frequency detuning between the pump and qubit frequencies
and the qubit anharmonicity is expected to strongly suppress
the influence of the TI process and leads to a distinct improve-
ment of the TI-corrected detection efficiency and sensitivity.
The spectral positioning of the buffer and waste frequencies
has to be determined based on the sign of the qubit anhar-
monicity to ensure that the pump and multiphoton processes
do not overlap.

In conclusion, our systematic studies reveal the specific
advantages inherent to the onset of TI, suggesting its prospec-
tive extension to high-efficiency microwave SPDs compatible
with 3D cavity architectures. Moreover, our study emphasizes
the necessity for a careful analysis of the efficiency extrac-
tion, particularly given the impact of the TI process. These
insights bear significant implications for the development of
parametric device applications, which are essential in advanc-
ing quantum information processing and communication with
superconducting circuits.
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APPENDIX A: EXPERIMENTAL TECHNIQUES

1. Microwave single-photon detector sample

As outlined in Sec. II, our single-photon detection device is
comprised of two primary components: a horseshoe cavity and
a transmon qubit chip. The cavity, constructed from aluminum
(Al) with a high purity level of 99.99%, has been fabricated
by the workshop at the Walther-Meißner-Institut. To address
the relatively low thermal conductance of superconducting
aluminum, we mount a gold-plated copper plate, 1.5 mm in
thickness, onto the cavity. This plate significantly enhances

the thermal conductance of the system, ensuring more effi-
cient heat removal.

The transmon qubit, central to our detection mechanism,
is fabricated on a silicon chip with spatial dimension of
3.5 mm × 10 mm. For the fabrication of the transmon qubit,
a standard lift-off technique is used. We evaporate aluminum
through a PMMA/CSAR resist mask written in an electron-
beam lithography step. The antenna of the qubit has a size
of 890 µm×330 µm, ensuring a sufficient dipole interaction
strength with the cavity. Additionally, the Josephson junctions
have an area of 240×240 nm2.

A visual representation of the assembly, showing the in-
tegration of the open horseshoe cavity with the embedded
transmon qubit chip, can be found in Fig. 6. Furthermore, the
electric field distribution of the waste and buffer modes is cal-
culated by the simulation software, CST MICROWAVE STUDIO,
as depicted in Fig. 7.

2. Cryogenic setup

The cryogenic arrangement utilized for our experimental
measurements is illustrated in Fig. 8. For the generation of
arbitrary waveforms, we employ the HDAWG from Zurich
Instruments. Additionally, the setup incorporates three mi-
crowave sources (R&S SGS 100A). To integrate these three
pulsed drives, we utilize two power combiners. Initially, the
pump and buffer pulses are merged, followed by their sub-
sequent combination with the readout pulse. This combined
signal is then directed to the cryostat, facilitating both the
frequency conversion process and the qubit readout (see also
Fig. 1 in the main text).

The combined signals travel through a series of attenuators
mounted at various cooling stages within the cryostat, fol-
lowed by a low-pass filter to suppress high-frequency noise.
Upon reaching the mixing chamber stage, the signal is de-
livered to the cavity-qubit system. The Al horseshoe cavity,
housing the transmon qubit chip, is shielded from external
magnetic fields by a cryoperm shield. The single-port design
of the cavity is coupled with a circulator to separate the output
signal from the incoming signal.

The output path includes a low-pass filter followed by
passage through two isolators. Amplification is achieved via a
high-electron-mobility transistor (HEMT) amplifier located at
the 4-K stage, and subsequently, through a room-temperature
amplifier.

APPENDIX B: SATURATED QUBIT POPULATION

In this section we derive the influence of the qubit decoher-
ence and residual-waste photon number on the saturated qubit
population. For that purpose we briefly review the derivation
of the nonlinear decay by tracing out the waste modes with
adiabatic elimination [15]. After canceling out the ac-Stark
terms, neglecting the driving terms and restricting the Hilbert
space of the qubit mode to a two-level system (âq → σ̂ ) in
Eq. (1), we arrive at

Ĥ′′
4 = Ĥw + Ĥqb

Ĥw/h̄ = (	w − χqwσ̂ †σ̂ )â†
wâw + g4ξpâbâ†

wσ̂ † + H.c.

Ĥqb/h̄ = χqbσ̂
†σ̂ â†

bâb,
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100 µm

20 µm

20 mm

FIG. 6. Picture of the device. (top) Optical image of the Joseph-
son junction. (center) Optical image of the transmon qubit with its
antenna pads. (bottom) Photograph of two halves of the Al horseshoe
cavity with the transmon qubit chip inside.

the dynamics of which is described by the Lindblad master
equation,

d

dt
ρ̂ = −i[Ĥw, ρ̂] + Lqb[ρ̂] + κw(nth,w + 1)D[âw]ρ̂

+ κwnth,wD[â†
w]ρ̂, (B1)

where nth,w = [exp(h̄ωw/kBTeff ) − 1]−1 and

Lqb[ρ̂] = −i[Ĥqb, ρ̂] + κbD[âb]ρ̂ + γqD[σ̂ ]ρ̂.

FIG. 7. Simulated electric field distribution of the (a) waste and
(b) buffer modes for the horseshoe cavity including the chip. The
arrow indicates the placement of the chip. The color scale represents
the field strength in arbitrary logarithmic units. The red line high-
lights the position of the input and output ports.

For the adiabatic elimination of the waste mode, we assume∣∣∣∣g4ξp

κw

∣∣∣∣,
∣∣∣∣χ j j′

κw

∣∣∣∣ ∼ δ � 1,

and nth,w = 0, such that the waste mode is dominantly in
the vacuum state due to the fast decay rate κw. Hence, we
can reduce the Hilbert space of the waste mode to Hw =
span(|0w〉, |1w〉). In particular, for the density matrix ρ̂ ∈
Hq ⊗ Hb ⊗ Hw, the reduced density matrices acting on the
qubit and buffer Hilbert space have the following relations:

〈0w|ρ̂|0w〉 = ρ̂00, 〈0w|ρ̂|1w〉 = δρ̂01,

〈1w|ρ̂|1w〉 = δ2ρ̂11, 〈0w|ρ̂|2w〉 = δ2ρ̂02,

with | jw〉, | j′w〉 being the Fock basis of the waste mode.
Note that ρ̂00 ∈ Hq ⊗ Hb. By projecting Eq. (B1) with
〈0w|...|0w〉, 〈0w|...|1w〉, 〈1w|...|1w〉, respectively, we obtain

d

dt
ρ̂00 = −iδ[g4ξ

∗
p â†

bσ̂ ρ̂10 − g4ξpρ̂01âbσ̂
†] + δ2κwρ̂11

+ Lqb[ρ̂00] + O(δ3), (B2)

δ
d

dt
ρ̂01 = iρ̂00[g4ξ

∗
p â†

bσ̂ ] + iδρ̂01[	w − χqwσ̂ †σ̂ ]

− δ
κw

2
ρ̂01 + δLqb[ρ̂01] + O(δ3), (B3)

δ2 d

dt
ρ̂11 = −iδ[g4ξpâbσ̂

†ρ̂01 − g4ξ
∗
p ρ̂10â†

bσ̂ ]

+ iδ2[	bwq − χqwσ̂ †σ̂ , ρ̂11]

− δ2κwρ̂11 + δ2Lqb[ρ̂11] + O(δ3). (B4)
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FIG. 8. Schematic drawing of dry dilution refrigerator embedding Al horseshoe cavity with the transmon qubit chip inside.

Focusing on the relevant dynamics, we find that Eqs. (B3) and
(B4) include a damping term of order δ0, while all terms in
Eq. (B2) are of order δ2. Hence, this allows us to treat ρ̂01 and
ρ̂11 as a steady state (adiabatic approximation), which leads to

ρ̂01 ≈ρ̂00
ig4ξ

∗
p/δ

κw

2 − i(	w − χqw )
â†

bσ̂ , (B5)

where we have used â†
bσ̂ σ̂ †σ̂ = â†

bσ . As for the steady-state
solution for ρ̂11, we get

ρ̂11 = 1(
κw

2

)2 + (	w − χqw )2

|g4ξp|2
δ2

âbσ̂
†ρ̂00â†

bσ̂ . (B6)

Inserting the steady-state solutions into Eq. (B2), we obtain

d

dt
ρ̂00 =

[
i|g4ξp|2(	w − χqw )(
κw

2

)2 + (	w − χqw )2
â†

bâbσ̂ σ̂ †, ρ̂00

]

+ κnlD[âbσ̂
†]ρ̂00 + Lqb[ρ̂00], (B7)

with the nonlinear decay rates L̂nl = √
κnlâbσ̂

†,

κnl ≡ |g4ξp|2(
κw

2

)2 + (	w − χqw )2
κw

	w=χqw= 4|g4ξp|2
κw

. (B8)

1. Influence of qubit decoherence

Here we delve into the impact of qubit decoherence on its
dynamics. Notably, it becomes evident that the qubit popu-
lation never reaches unity. This is a direct implication of the
fact that qubit decoherence inherently reduces the detection
efficiency in single-photon detection scenarios.

The qubit decoherence term and the buffer driving term
iε′

b(âb − â†
b) are added to the Lindblad master equation in

Eq. (B7) such that we obtain

d

dt
ρ̂00 = κnlD[âbσ̂

†]ρ̂00 + κbD[âb]ρ̂00

+ ε′
b[âb − â†

b, ρ̂00] + γqD[σ̂ ]ρ̂00. (B9)

Since the time evolution of the buffer mode is dependent
on the qubit state, we first consider ρ̂g ≡ 〈g|ρ̂00|g〉 and ρ̂e ≡
〈e|ρ̂00|e〉 as follows:

d

dt
ρ̂g = −1

2
κnl(ρ̂gâbâ†

b + âbâ†
bρ̂g) + κbD[âb]ρ̂g

+ ε′
b[âb − â†

b, ρ̂g] + γqρ̂e, (B10a)

d

dt
ρ̂e = κnlâbρ̂gâ†

b + κbD[âb]ρ̂e + ε′
b[âb − â†

b, ρ̂e] − γqρ̂e.

(B10b)
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In our case, since the applied buffer tone is a coherent tone, we can safely assume that the buffer is in a coherent state |β〉
with the dimensionless amplitude β = −2ε′

b/(κnl + κb). That is, ρ̂g/e ∝ |β〉〈β|. We can now calculate the qubit ground- and
excited-state probability by tracing them, pg/e = Tr(ρ̂g/e). This leads us to formulate the differential equation as

d

dt

[
pg

pe

]
=

[
−ηc|bin|2 γq

ηc|bin|2 −γq

][
pg

pe

]
, (B11)

the solution of which gives

[
pg(t )

pe(t )

]
=

⎡
⎢⎣

ηc|bin|2
ηc|bin|2+γq

e−ηc|bin|2t−γqt + γq

ηc|bin|2+γq

γq

ηc|bin|2+γq
(1 − e−ηc|bin|2t−γqt )

ηc|bin|2
ηc|bin|2+γq

(1 − e−ηc|bin|2t−γqt ) ηc|bin|2
ηc|bin|2+γq

+ γq

ηc|bin|2+γq
e−ηc|bin|2t−γqt

⎤
⎥⎦

[
pg(0)

pe(0)

]
. (B12)

We find the excitation probability of the transmon qubit for
sufficiently long time t is

pe(t → ∞) = ηc|bin|2
ηc|bin|2 + γq

< 1. (B13)

It is noteworthy that the saturation level of the qubit pop-
ulation shows a relative dependency on the qubit energy
relaxation rate γq and the “effective buffer photon conversion
rate” ηc|bin|2. Particularly, the impact of the energy relaxation
rate becomes significant when the value of ηc|bin|2 is com-
parably small. This observation underscores an interplay or a
steady-state dynamics between the information gain from the
incoming buffer photon and its subsequent loss.

2. Influence of residual-waste photon number

In our prior discussions, we assumed that our quantum sys-
tem experienced only vacuum noise, excluding the influence
of the coherent drive. This is a standard assumption, primarily
justified by the extremely low temperatures of dilution refrig-
erators, typically in the range of 10–50 mK. Nevertheless,
when it comes to parametric devices, strong system pumping
can induce an effective temperature increase for the quantum
apparatus. This is particularly relevant in our case: the pres-
ence of a residual-waste photon number can reduce detection
efficiency. This is attributed to the fact that a partial reversal
process (â†

bâwσ̂ ) is allowed. Given this potential complication,
it is imperative to thoroughly examine how the residual-waste
photon number affects the qubit’s temporal evolution.

We model the residual-waste photon number as arising
from a thermal bath. Hence, Eqs. (B2), (B3), and (B4) are
modified to

d

dt
ρ̂00 = −iδ[g4ξ

∗
p â†

bσ̂ ρ̂10 − g4ξpρ̂01âbσ̂
†]

+ δ2κw(1 + nth,w )ρ̂11 − κwnth,wρ̂00

+ Lqb[ρ̂00] + O(δ3), (B14)

δ
d

dt
ρ̂01 = iρ̂00[g4ξ

∗
p â†

bσ̂ ] − δ
κw(1 + 4nth,w )

2
ρ̂01

+ δLqb[ρ̂01] + O(δ3), (B15)

δ2 d

dt
ρ̂11 = −iδ[g4ξpâbσ̂

†ρ̂01 − g4ξ
∗
p ρ̂10â†

bσ̂ ]

− δ2κw(1 + 3nth,w )ρ̂11 + nth,wρ̂00

+ δ2Lqb[ρ̂11] + O(δ3). (B16)

Here we set 	w = χqw for simplicity. With the same argu-
ment, we can find the steady-state solutions for ρ̂01 and ρ̂11,

ρ̂01 ≈ ρ̂00
2ig4ξ

∗
p

δκw(1 + 4nth,w )
â†

bσ̂

ρ̂11 ≈ 1

δ2κw(1 + 3nth,w )

4|g4ξp|2
κw(1 + 4nth,w )

âbσ̂
†ρ̂00â†

bσ̂

+ 1

δ2κw(1 + 3nth,w )
κwnth,wρ̂00,

and insert them into

d

dt
ρ̂00 ≈ κnl(1 − 4nth,w )D[âbσ̂

†]ρ̂00

− 2κnlnth,wâbσ̂
†ρ̂00â†

bσ̂ + Lqb[ρ̂00]

+ O
(
δ3, n2

th,w

)
. (B17)

The Lindblad master equation therefore is read with the buffer
driving term iε′

b(âb − â†
b) as

d

dt
ρ̂00 = κnl(1 − 4nth,w )D[âbσ̂

†]ρ̂00

− 2κnlnth,wâbσ̂
†ρ̂00â†

bσ̂ + κbD[âb]ρ̂00

+ ε′
b[âb − â†

b, ρ̂00]. (B18)

After following the same procedure as outlined previously, the
differential equation is formulated as

d

dt
pg = −κnl(1 − 4nth,w )

∣∣β ′∣∣2
pg, (B19a)

d

dt
pe = κnl(1 − 6nth,w )

∣∣β ′∣∣2
pg, (B19b)

with

β ′ = − 2ε′
b

κnl(1 − 4nth,w ) + κb
.

Finally, we obtain the qubit evolution

pe(t ) = 1 − 6nth,w

1 − 4nth,w

[1 − exp(−η′
c|bin|2t )] (B20)

with the modified conversion efficiency

η′
c := 4κbκnl(1 − 4nth,w )

[κnl(1 − 4nth,w ) + κb]2
. (B21)

We clearly see that the qubit population is limited by the waste
photon number nth,w and can never reach unity.
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