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Swapping Floquet time crystal
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We propose a Floquet period-doubling time-crystal model based on a disordered interacting long-range spin
chain where the periodic swapping of nearby spin couples is applied. This protocol can be applied to systems
with any local spin magnitude s and in principle also to systems with nonspin (fermionic or bosonic) local
Hilbert space. We explicitly consider the cases s = 1/2 and s = 1, using analytical and numerical methods to
show that the time-crystal behavior appears in a range of parameters. In particular, we study the persistence
of period-doubling oscillations in time and the time-crystal properties of the Floquet spectrum (quasienergy π -
spectral pairing and long-range correlations of the Floquet states), and introduce a quantity (the local imbalance)
to assess what initial states give rise to a period-doubling dynamics. We also consider the quasienergy average
level-spacing ratio, and find that the interval of parameters where the system dose not thermalize and persistent
period doubling is possible corresponds to the one where the Floquet spectrum shows time-crystal properties.
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I. INTRODUCTION

The experimental discovery [1,2] of time crystals a few
years after their theoretical prediction [3–5] has been a real
breakthrough. In analogy to ordinary crystals, time crystals
appear as a consequence of breaking time-translation sym-
metry in the system [6–10]. Following earlier attempts to
identify systems able to display time-translation symmetry
breaking, a no-go theorem showed that this is not possible
in the ground state or in thermal equilibrium of physical
Hamiltonians [11,12].

Among many possible nonequilibrium candidates, quan-
tum periodically driven (Floquet) systems have proven to
be the most promising realization. Here the discrete time-
translation symmetry is broken in the thermodynamic limit, by
the appearance of a response with a period multiple than the
one of the driving. Stimulated by the initial proposals [13,14],
a large body of theoretical work has been performed [15–30].
A common ingredient is the presence in the dynamics of
a sufficient number of constraints that introduce ergodicity-
breaking, thus preventing infinite-temperature thermalization,
for instance disorder that induces many-body localization
(MBL); see Ref. [31] for a review.

In this context, the properties of the Floquet states
[32,33]—the eigenstates of the periodically driven
dynamics—are crucial. In order for a period-doubling
Floquet time crystal to occur, all of the Floquet states
must be organized in doublets of cat states. Cat states are
superpositions of two macroscopically different classical spin
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configurations, and the time crystal appears as a form of
Rabi oscillation between these configurations, with frequency
provided by the splitting of the doublet. In the thermodynamic
limit, the oscillation frequencies of all the doublets become
synchronized, and this synchronization occurs at period
double than the driving (π -spectral pairing), resulting in
a time crystal. In the original proposal all the Floquet
spectrum was π -spectral paired, but there are also works
where only a fraction of the Floquet spectrum is paired, and
a period-doubling behavior for specific initial states can be
observed [34–36].

Following these results, we propose, to the best of our
knowledge, a new periodic-driving protocol, which is applied
to a disordered spin chain with long-range interactions, and
leads to a Floquet time crystal. The drive consists in peri-
odically swapping two neighboring spins, instead of flipping
each individual spin (see Fig. 1). As in the spin-flipping
case, this protocol can be implemented by periodically ap-
plying in sequence two different Hamiltonians and can be
applied to interacting chains of particles with arbitrary value
of the local spin magnitude s, rather than only to spin-1/2
systems. Moreover, the swap protocol has a straightforward
physical meaning in systems with fermionic or bosonic local
Hilbert space, since it conserves particle number. Therefore
it has a potential range of applicability that goes beyond spin
systems.

We find that a Floquet time crystal is realized in this case,
although in a slightly weaker sense than what has been found
for the spin-flip driving. While in Refs. [13,14] all the Floquet
spectrum is π -spectral paired, here a fraction of the quasiener-
gies does not have this property. Nevertheless, this fraction
tends exponentially to zero with the system size, and we can
observe persisting and robust period-doubling oscillations for
macroscopically many initial states.

The paper is organized as follows. In Sec. II we intro-
duce our model Hamiltonians—both for local spins with
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Swap

Flip

FIG. 1. Comparison between swap and flip protocol. In the flip
case, all spins with nonzero magnetization are affected. In the swap
case, all pairs of spins that are not aligned are affected.

magnitude 1/2 and for generic magnitudes—and study how
the period doubling appears in the solvable case, a special
point in the parameter space where analytical computations
can be made.

In Sec. III we introduce the local imbalance, a quantity that
allows characterizing the initial classical spin configurations
that give rise to a period-doubling dynamics. We find that
increasing the local spin magnitude, the distribution of the im-
balances on the spin configurations gets a larger average and
becomes narrower, marking that a period-doubling behavior
occurs more easily for a random initial spin configuration.

In Sec. IV we start with our numerical analysis, that we
perform for the models with local spin s = 1/2 (spin-1/2
case) and s = 1 (spin-1 case). The numerical analysis is im-
portant in order to assess if the period-doubling behavior is
robust and persists also beyond the solvable point, which
would indicate a proper time-crystal phase supported by the
interactions, rather than an isolated point. We study the period
doubling in the time domain, looking at a collective quantity
that is nonvanishing whenever period-doubling oscillations of
the local magnetizations are present.

Moving away from the solvable point, period doubling os-
cillations are still there, but last a finite time that exponentially
increases with the system size. In this way period-doubling
oscillations become persistent in the large-size limit, as ap-
propriate for a time crystal, for which the time-translation
symmetry breaking appears only in the thermodynamic limit,
in analogy with standard symmetry breaking [37]. In doing
our analysis, we emphasize that for some initial states only
part of the onsite magnetizations can show period doubling.

In order to see a nontrivial period-doubling behavior of
the observables, there must be no energy absorption and
no infinite-temperature thermalization (in this sense the dy-
namics must be regular or integrable-like). In order to find
the range of parameters where this occurs, we focus in
Sec. V A on the average level-spacing ratio, a standard probe
of the integrability, or ergodicity properties of the quantum
dynamics [38,39]. We find an interval of the parameters
where the dynamics is integrable-like and see that this effect
becomes more marked with increasing system size. In this
interval there is no thermalization and we can see the period-
doubling oscillations. We argue that the physical effect lead-
ing to this breaking of ergodicity is disorder, inducing MBL.

In Sec. V we study the π -spectral-pairing properties of the
Floquet states and see that this phenomenon is strictly related

to period doubling. The π -spectral pairing can be found ana-
lytically at the solvable point, and we numerically find that it
is robust in a well-defined range of parameters that marks the
time-crystal phase. This robustness is related to the disordered
long-range interactions that break the degeneracies in the
Floquet spectrum at the solvable point and make the structure
of Floquet states and quasienergies robust under local pertur-
bations (outside of the solvable point, the π -spectral pairing
appears rigorously only in the thermodynamic limit. At finite
size there is an error leading to the finite-time duration of the
period-doubling oscillations—see Appendix B).

In this section we also directly study the cat-state prop-
erties of the Floquet states by using a global quantifier of
the correlations. (These cat-state properties are strictly related
to π -spectral pairing.) The Floquet states with the cat-state
property are the correlated ones, and at the solvable point we
find that are those with a finite local imbalance (for s = 1/2).
Moving away from the solvable point, we numerically show
that the total amount of correlations for an average Floquet
state still increases with system size, which indicates the
presence of long-range correlations and further confirms the
robustness of the time-crystal phase.

In Appendix A we show how the spin flipping for the
spin-1/2 case occurs, in Appendix B we discuss the deep
relation between π -spectral pairing and period doubling, in
Appendix C we consider a different range of the interactions,
in Appendix D we discuss in detail the imbalance distributions
of the classical spin configurations for different values of s,
and in Appendix E we discuss the relation between local
imbalance and correlations for s = 1/2 at the solvable point.
In Sec. VI we draw our conclusions.

II. MODEL HAMILTONIANS

A. Spin-1/2 model

1. Description of the model

We study a disordered spin-1/2 chain with power-law ZZ
interactions, nearest-neighbor XX interactions, and a longitu-
dinal field which is subject to a periodic kick (h̄ = 1 = T ).
The periodic time-dependent Hamiltonian is

Ĥ (t ) = Ĥint + K̂
∑

n

δ(t − n), (1)

where the interaction Hamiltonian and the kicking
Hamiltonian are, respectively,

Ĥint ≡ −
L−1∑
k=1

J
(
σ̂ x

k σ̂ x
k+1 + σ̂

y
k σ̂

y
k+1

) +
L−1∑
k=1

L∑
q=k+1

Vkqσ̂
z
k σ̂ z

q

+
L∑

k=1

hz
k σ̂

z
k ,

K̂ ≡
(π

4
+ ε

) L/2∑
k=1

�σ2k−1 · �σ2k, (2)

where ε �= 0 describes imperfect swaps. So one can construct
the time-evolution operator over one period (the so-called
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Floquet operator) as

ÛF = e−iK̂ e−iĤint . (3)

Here σ̂
β=x,y,z
k are the Pauli matrices; Vkq follows a power-law

behavior plus disorder,

Vkq = 1

NL,α

Ṽkq

|k − q|α , (4)

where NL,α is a suitable Kac normalization constant [40]
which makes the energy extensive defined as

NL,α =

⎧⎪⎨
⎪⎩

1 if α � 1;

ln L if α = 1;

L1−α if α < 1.

(5)

Ṽkq, hk are independent random variables taken from the
uniform box distributions Ṽkq ∈ [V/2, 3V/2], hk ∈ [−h, h].
Power-law interactions are very important. Nearest-neighbor
interactions are not enough for getting a time crystal, because
with them at the solvable point there are still degeneracies
between the Floquet states. These degeneracies spoil the time-
translation symmetry breaking when one perturbs away from
the solvable point (the importance of a gap between Floquet
states is discussed in Sec. V B). In order to break the degen-
eracies one needs to use power-law interactions with disorder.

Let us focus on the kicking Hamiltonian K̂ , with the as-
sociated unitary transformation corresponding to one kick
P̂ = e−iK̂ . The operator P̂ can be factored into a product of
unitary operators acting on neighboring sites (up to an irrele-
vant phase factor—see Appendix A)

e−iK̂ =
L/2∏
k=1

1 + �σ2k−1 · �σ2k

2
. (6)

The operator (1 + �σ i · �σ j )/2 is the swap operator on two sites
[41]. This acts on a two-site product state by exchanging the
states of the two sites (see Appendix A for a discussion)

1 + �σ i · �σ j

2
|ψi, ψ j〉 = |ψ j, ψi〉. (7)

Therefore, the operator P̂ exchanges the states of all odd sites
with their following even sites. Since this operation is well
defined only for pairs of spins, we restrict ourselves to the
case of L even. As we shall see, this protocol will show
several differences in terms of both dynamics and spectrum
with respect to the spin-flip protocol, such that it is not trivial
to relate the two models. Let us start considering a special
point in the parameter space where the dynamics is exactly
solvable.

2. Analysis of the solvable case (J = ε = 0)

To understand the behavior of the model at the level of the
dynamics and spectrum, it is instructive to look at the solvable
case J = ε = 0. In this case, Ĥint commutes with all σ̂ z

k and
e−iK̂ is a perfect swap. One can show that there is an exact
period-doubling dynamics, which can be seen at the level of
the operators themselves,

σ̂ z
k (T ) = Û †

F σ̂ z
k ÛF = σ̂ z

k
, (8)

where k = k + 1 if k is odd and k = k − 1 is k is even.
Therefore, the magnetization serves as an order parameter,
and period doubling will be observed for all initial states
where, for some k, 〈σ̂ z

k 〉 �= 〈σ̂ z
k
〉, since the local magnetization

will oscillate between its initial value and that of its paired
neighbor. We graphically show this behavior in Fig. 1 and
compare it with the more known case of the spin flipping.

We note that the period doubling will be a measurable
effect in the thermodynamic limit only if a finite fraction of
sites satisfies the above condition, i.e., there is an extensive
quantity of not aligned spins.

As an example, one can imagine an initial state where the
odd spins lie in the xy plane, such that 〈σ̂ z

2k−1(t = 0)〉 = 0, and
the even spins lie in the z direction, and so 〈σ̂ z

2k (t = 0)〉 = ±1.
For the odd ones, the interaction part results in a dephasing of
the spins in the xy plane [42] and the z magnetization remains
zero. For the even ones, being J = 0, the interaction part of
the Hamiltonian does not change the spins pointing along the
z direction. So, due to the periodic swap, the magnetization at
each site will exhibit period doubling by oscillating between
0 and ±1.

Furthermore, certain configurations may display period
doubling restricted only to a part of the chain, such as one
which is part antiferromagnetic ({+−,+−, · · · }) and part
ferromagnetic ({++,++, · · · }). In this case the order pa-
rameter 〈σ̂ z

k (t )〉 oscillates only in a certain part of the chain.
Nevertheless, if the antiferromagnetic part is extensive, then
we still consider such a state as breaking the time-translation
symmetry of the system.

We highlight that the number of spin configurations where
no period doubling takes places increases with system size as
2L/2 and the number of remaining configurations is 2L − 2L/2.
As a consequence, the configurations which display no period
doubling throughout the entire chain must satisfy a very spe-
cial condition, as their fraction vanishes with increasing sys-
tem size as 2−L/2 over the total number of spin configurations.

Thus, we find that this swapping dynamics is in general
quite different than the prototypical model with spin-flip [13],
where the magnetization always (and only) changes sign, in-
dependently of neighboring spins (see Fig. 1).

B. Spin-1 model and beyond

The interesting aspect of spin swapping is that one can
generalize the time-crystal behavior of the spin-1/2 model
to generic local spin magnitude. The price to pay is that,
for increasing spin magnitude s, the spin-swapping operator
becomes more and more complicated [41].

Let us focus here on the spin-1 case (s = 1). The Hamil-
tonian for this case has the same structure as Eq. (1). The
interaction part has much the same form as the spin-1/2 case,
although the periodic swap also involves higher powers of the
spin operators,

Ĥint = −
L−1∑
k=1

J
(
Ŝx

k Ŝx
k+1 + Ŝy

k Ŝy
k+1

)

+
L−1∑
k=1

L∑
q=k+1

Ŝz
k Ŝz

q +
L∑

k=1

hz
kŜz

k,
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K̂ =
(π

2
+ ε

) L/2∑
k=1

[(�S2k−1 · �S2k )2 + �S2k−1 · �S2k],

ÛF = e−iK̂ e−iĤint . (9)

and the operators Ŝβ=x,y,z
k are now spin-1 operators.

Vkq, hk have the same distributions as in the spin-1/2 case.
Of course, even though the Hamiltonian is similar in form,
the spin-1 chain has a different behavior with respect to the
spin-1/2, due to the additional state with sk = 0 [43].

The main difference with the spin-1/2 case is that the
number of classical configurations providing period doubling
is given by 3L − 3L/2 [for generic local spin magnitude s it
is (2s + 1)L − (2s + 1)L/2]. So the ratio of configurations that
provide no period doubling is for generic spin (2s + 1)−L/2.
It is smaller than in the spin-1/2 case, and it decreases for
increasing value of the local spin s. Furthermore, for a random
spin configuration there will be a larger fraction of sites which
participate to the period doubling (see see Appendix D).

It is important to define the spin basis |{sk}〉. In the spin-1/2
case this basis is such that σ̂ z

k |{sk}〉 = sk|{sk}〉, sk ∈ {+,−},
while in the generic case Ŝz

k|{sk}〉 = sk|{sk}〉, sk ∈ {−s,−s +
1, . . . , s − 1, s}. Another important property of our models is
that the dynamics preserves the total z magnetization (Ŝz =
1
2

∑L
k=1 σ̂ z

k for the spin-1/2 case, Ŝz = ∑L
k=1 Ŝz

k otherwise),
which will allow us to restrict our numerics to a subspace
with fixed Sz. In the following are we going to study analyti-
cally and numerically different aspects of the period-doubling
behavior.

III. LOCAL IMBALANCE

In order to easily identify which initial states lead to pe-
riod doubling we define the following operator, which we
call local imbalance (ÎLI). Our aim is to find an operator
that, on classical spin configurations, counts how many pairs
of swapped spins have different values of the magnetization
〈{sk}|ÎLI|{sk}〉 = 1

L/2

∑
k (1 − δs2k−1,s2k ). In the spin-1/2 case,

this operator is

ÎLI = 1

L/2

L/2∑
k=1

(
σ̂ z

2k − σ̂ z
2k−1

)2

4
, (10)

while, in the spin-1 case, it is

ÎLI = 1

L/2

L/2∑
k=1

[(
Ŝz

2k−1

)2 + (
Ŝz

2k

)2

− 1

2
Ŝz

2k−1Ŝz
2k

(
1 + 3Ŝz

2k−1Ŝz
2k

)]
. (11)

This quantity—inspired by the charge-imbalance in fermionic
chains [44,45]—measures the difference in alignment (spin
analog of the fermionic occupation) in all the L/2 even-odd
pairs, regardless of their sign (hence the square).

Let us first focus on the solvable case, and consider the be-
havior of ÎLI on the spin basis |{sk}〉. When 〈{sk}|ÎLI|{sk}〉 =
1, pairs have different spin values (s2k �= s2k−1), the swap
makes spins oscillate between two values, and the dy-
namics is the same as for the spin-flip protocol. When

〈{sk}|ÎLI|{sk}〉 = 0, all pairs have the same spin value, and
the state is left unchanged by the periodic swap. In the gen-
eral case 0 < 〈{sk}|ÎLI|{sk}〉 < 1 only certain pairs will give
rise to period doubling. This is in contrast with the spin-flip
case, where any classical configuration gives rise to period-
doubling oscillations at the solvable point.

Much of this also holds for states close to the spin basis.
For instance, focus on the spin-1/2 case and consider the
product state where spins have alignment close to the z direc-
tion, i.e.,

⊗L
k=1[cos(θk )|+〉 + sin(θk )|−〉] for θk equal to 0 or

π up to small corrections δθ � 1. This state clearly displays
period doubling in every site and at leading order in δθ we
have ILI = 1 − C(δθ )2 with C a constant. Therefore, in this
case, the high value of local imbalance accurately predicts the
presence of period doubling.

Notice that at the solvable point ÎLI commutes with ÛF ,
meaning that it provides also a good quantum number for the
eigenstates of UF and is a useful signature of their properties,
as we shall see below. It is also important to remark that, for
increasing local spin magnitude s, the average local imbalance
of the states in the spin basis increases, and the variance
decreases, as we show in detail in Appendix D. This is in-
teresting because initializing the system with a spin state with
nonvanishing imbalance leads to period-doubling oscillations
lasting forever, at least for the solvable case.

In the next section we move away from the solvable point
and show that there are still period-doubling oscillations that
last for a time increasing with the system size, so we have not
a special isolated point but a robust time-crystal phase.

IV. PERIOD-DOUBLING OSCILLATIONS

A time-crystal behavior is signaled by persistent period-
doubling oscillations of some observables. In order to speak
about a phase and not an isolated point, these oscillations must
be robust to changes of the parameters. Let us consider what
happens when we move away from the solvable point and
take J �= 0. We are going to show that there is an interval of
J where period-doubling oscillations appear, and last a time
that exponentially increases with the system size, for many
possible initial states. We see that both in the case of spin-1/2
model (Sec. IV A), and spin-1 model (Sec. IV B).

In the current and following sections we shall consider
the disorder average of various quantities, defined as (. . .) =
1

Nd

∑Nd
i=1(. . .). The chosen number of disorder realizations Nd

will typically get smaller with L, since we take advantage
of the self-averaging behavior - specifically, we take Nd =
20 480 · 21−L/2, unless otherwise mentioned, which allows for
sufficiently small statistical errors.

Furthermore, we fix V = 3 and hz = 16 in all our computa-
tions and mostly focus on the perfect swap case ε = 0, except
in certain cases, which we explicitly mention. We shall con-
sider two choices of interaction range: α = 0.5 (long range)
and α = 3 (short range). Since we have found that the two
values typically have only very slight quantitative differences,
we will mostly focus on the α = 0.5 case, and leave the α = 3
case in Appendix C.
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Néel

Half-Néel

FIG. 2. Initial Néel (upper panel) and Half-Néel (lower panel),
with their respective dynamics, which are exact only in the
solvable case.

In the entire section we will focus on stroboscopic dynam-
ics, i.e., the time t = nT will be always an integer multiple
(n ∈ N) of the period T = 1.

A. Spin-1/2 case

In this section we consider the problem of period-doubling
dynamics by looking at two initial states in the spin configura-
tion with finite ILI, such that 〈σ̂ z

k 〉 �= 〈σ̂ z
k
〉 over a finite fraction

of the total sites. Specifically, we consider an initial Néel state
|+ − + − · · ·〉 (fully antiferromagnetic) and a “half-Néel”
state |+ − + − · · · + + + + · · ·〉 (antiferromagnetic on the
length lAF = 2	L/4
, and the rest ferromagnetic), as pictured
in Fig. 2.

With the first state one gets the same kind of dynamics
as the one observed in the spin-flip protocol, since all spins
get inverted after each kick. Indeed, it has maximal local
imbalance ILI = 1. With the second initial state, “half-Néel,”
instead one gets period-doubling dynamics only in the first
half of the chain and ILI = 	L/4
/(L/2).

In order to monitor the period-doubling dynamics obtained
with these initial states, we consider the following quantity,
analogously to the one used in Refs. [13,46]:

Z (t ) = 1

L/2

L/2∑
k=1

sgn
[〈
σ̂ z

2k−1(0)
〉 − 〈

σ̂ z
2k (0)

〉]

× [〈
σ̂ z

2k−1(t )
〉 − 〈

σ̂ z
2k (t )

〉]
. (12)

Z (t ) is defined in such a way that it is always non-negative
at t = 0 and at the solvable point (J = ε = 0) oscillates be-
tween a positive and negative value every period Z (t ) =
(−1)t Z (0), displaying in this way period doubling. It has zero
contributions from regions where 〈σ̂ z

2k−1〉 = 〈σ̂ z
2k〉 and due to

the normalization factor L/2, only states with an extensive
quantity of unaligned spin pairs have a finite Z (0) in the
thermodynamic limit.

Let us average over disorder and focus on the quantity
(−1)t Z (t ), that in presence of period doubling is constantly
positive and does not change sign at every period. In Fig. 3(a)
we show some examples of (−1)t Z (t ) versus t , for different
system size and initializing the system in the Néel state. We
can qualitatively see that (−1)t Z (t ) decays over a timescale
that increases with system size.

Let us study this behavior of the decay time more quanti-
tatively. For a given disorder realization, we define the decay
time τ as the first time where Z (t ) no longer manifests period-

(a)

(b)

FIG. 3. Spin-1/2 model. (a) Dynamics of (−1)t Z (t ) for initial
Néel state and different system sizes. (b) Dynamics of (−1)t Z (t )
for initial Half-Néel state (solid line) and Néel state (dashed line)
and different system sizes. Initial values have all been normalized to
+1 to make the comparison clearer. Numerical parameters: J = 0.1,
ε = 0.01.

doubling behavior, i.e., Z (τ − 1)Z (τ ) > 0 [if multiple periods
are skipped the condition becomes (−1)nZ (τ − n)Z (τ ) < 0].
In Fig. 4 we show τ versus L for different system sizes.
We notice that the decay time exponentially increases with
system size for a range of parameters. This is a signature of
stable period doubling in the thermodynamic limit [18,47],

FIG. 4. Spin-1/2 model. Decay times τ of (−1)t Z (t ) for an
initial Néel state. Here we have considered time evolutions while
skipping over n � 1 periods, such that the time step stays below ∼1%
of the standard deviation of τ .
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FIG. 5. Spin-1/2 model. Comparison of 〈σ̂ z
k (t )〉 at k = L −

	L/4
 (dashed line) and (−1)t 〈σ̂ z
k (t )〉 at k = 	L/4
 (solid line), up

to t = 104, for an initial Half-Néel state. Parameters: J = 0.1.

meaning that there is time-crystal behavior in this range of
parameters.

We show Z (t ) versus t initializing with the half-Néel state
in Fig. 3(b). We notice that the curves do not seem to depend
on the total length of the chain L but rather on the length of
the antiferromagnetic part lAF = 2	L/4
. Each curve for the
Néel state closely follows the one for the half Néel state if the
antiferromagnetic parts are of the same size.

It is also worth noticing that even though Z (t ) decays to
zero at long times, the local magnetizations 〈σ̂ z

k (t )〉 them-
selves do not: The ones in the ferromagnetic part are frozen
(see Fig. 5). This is an effect of many-body localization
(see Sec. V A) that hinders energy absorption and infinite-
temperature thermalization and induces space localization of
excitations.

B. Spin-1 case

Let us now look at the dynamics of the spin-1 chain,
where once again we require that in the initial state 〈Ŝz

k〉 �=
〈Ŝz

k
〉 for an extensive number of sites. Specifically, we con-

sider the initial state “up-zero” given by the alternating
sequence |+1, 0,+1, 0, . . .〉. This state gives an example of a
“nonflip” dynamics already within the spin configuration ba-
sis, in the sense that each site oscillates between 〈Ŝz

k (t )〉 =
0 and 〈Ŝz

k (t )〉 = +1 (solvable case) and does not reduce
to a spin-flip. Furthermore, since the local magnetization
changes value at each site, its local imbalance [Eq. (11)]
has maximal value 1. Once again, in order to study the dy-
namics of the system we use the observable Z (t ) defined in
Eq. (12), with Ŝz

k instead of σ̂ z
k . The behavior of its disorder

average Z (t ) versus t for different system sizes is shown
in Fig. 6(a).

We find again a range of parameters where Z (t ) oscillates
between a positive and negative value and decays to zero in
a time exponentially increasing with the system size, as we
can see in the behavior of τ versus L shown in Fig. 7. Again,
this means that there is time-crystal behavior in this range of
parameters.

The period-doubling oscillations and the fact that they last
for a time exponential in the system size can be seen also

(a)

(b)

FIG. 6. Spin-1 model. (a) Dynamics of (−1)t Z (t ) for an initial

up-zero state. Lower panel: Dynamics of (−1)t (〈Ŝz
k (t )〉 − 0.5) + 0.5

at k = 2	L/4
 (solid line) and k = 2	L/4
 + 1 (dashed line) for an
initial up-zero state. Parameters: J = 0.1.

at the level of the expectations of the onsite magnetizations
[see Fig. 6(b)]. Specifically, by taking the middle of the chain
as representative, we see that both sites (starting at either
〈Sz

k〉 = 0 or 1) oscillate around 〈Sz
k〉 = 0.5 and decay towards

this middle value at exponentially long times.

V. PROPERTIES OF THE FLOQUET SPECTRUM

In order to understand the behavior of the model through-
out the entire Hilbert space, it is useful to look at the Floquet
spectrum. Thus, we discuss the properties of the quasiener-
gies {μβ} (Secs. V A and V B) and the Floquet states {|ψβ〉}

FIG. 7. Spin-1 model. Decay times τ of (−1)t Z (t ), averaged
over disorder for an initial up-zero state.
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(Sec. V C) in relation with thermalization properties and pe-
riod doubling.

A. Regular dynamics

In order to see persistent period doubling, there must be no
thermalization of local observables. (Local thermalization is a
common behavior of many-body quantum systems [48].) The
dynamics of the system must be regular, that is, similar to an
integrable quantum system. Here this effect can be provided
by disorder, that is known to break ergodicity and induce
many-body localization [31,38,49].

In order to check the range of J where integrable-like be-
havior occurs, we diagonalize the Floquet operator defined in
Eq. (3) as ÛF |ψβ〉 = e−iμβ |ψβ〉. The eigenvectors |ψβ〉 are the
so-called Floquet states and the phases of the eigenvalues μβ

are the corresponding quasienergies [32,33]. Let us evaluate
the average level spacing ratio 〈r〉 [38] defined as

〈r〉 = 1

N

NM−2∑
β=1

[
min(μβ+2 − μβ+1, μβ+1 − μβ )

max(μβ+2 − μβ+1, μβ+1 − μβ )

]
, (13)

where quasienergies are restricted to the first quasienergy
Brillouin zone [50,51] [−π, π ] (they are periodic of pe-
riod 2π ) and taken in increasing order. N is the dimension
of the sector of the Hilbert space with vanishing total
magnetization, sz = 0. We consider in Eq. (13) only the
quasienergies μβ corresponding to Floquet states in this sec-
tor. In this way we are restricting to an irreducible invariant
subspace of the Hamiltonian, a condition required in order
for the distribution of the level spacings δβ = μβ+1 − μβ

(and the related ratio 〈r〉) to be a meaningful ergodicity
indicator [52].

When the driven system is ergodic, i.e., locally thermal-
izing with infinite temperature [53], the Floquet operator
ÛF belongs to the circular orthogonal ensemble (COE) of
symmetric unitary matrices (because of the time-reversal in-
variance) [39,54–56]. In this case, the distribution of the
level spacings δβ = μβ+1 − μβ is of the COE type and
the average level spacing ratio acquires the value 〈r〉COE
� 0.5269.

A level spacing distribution of the Poisson type, in-
stead, corresponds to an integrable dynamics [57] and is
observed for instance for many-body-localized systems, both
autonomous [38] and periodically driven [58]. Like the
present ones, these are systems with disorder, and they never
thermalize due to the existence of a superextensive number
of localized integrals of motion [59–61] that deeply affect
dynamics, and forbid thermalization of local observables. In
the periodically driven case this hinders energy absorption and
avoids infinite-temperature thermalization. Integrability and
Poisson level-spacing distribution correspond to an average
level spacing ratio 〈r〉P � 0.386, and due to the presence
of disorder we expect to see them here in some range of
parameters.

To inquire this point, we plot 〈r〉 versus J for different
system sizes in the spin-1/2 model [Fig. 8(a)] and the spin-1
model [Fig. 8(b)]. When the size L is large enough, we see
that there is an interval where 〈r〉 is stuck to the Poisson
value. So there is a parameter region—in all the considered

(a)

(b)

FIG. 8. Average level spacing ratio 〈r〉 versus J in the spin-1/2
case (a) and spin-1 case (b) for different L and α = 0.5.

cases J � 10−1—where the dynamics is regular. This property
persists as the system size is increased (at least for the system
sizes we can numerically attain). Then we can talk about an
integrable-like phase where there is no thermalization and a
nontrivial dynamics like the one leading to persistent period-
doubling oscillations can appear.

B. π-spectral pairing of the quasienergies

1. Theoretical discussion

A necessary condition for the presence of period doubling
is the so-called π -spectral pairing [13,14,62–64], i.e., each
quasienergy must have a partner shifted by π . (See Ref. [23]
and Appendix B for an analysis of how π -spectral pairing
gives rise to period doubling.) At the solvable point our spin-
1/2 model shows π -spectral pairing, as can be easily checked.

Let us define |{sk}〉 as the transformed configuration of
|{sk}〉 under spin swap and consider that the energy of the
classical configuration is

E ({sk}) =
L−1∑
k=1

L∑
q=k+1

Vkqsz
ksz

q +
L∑

k=1

hz
ksz

k .

We can write the action of the Floquet operator Eq. (3) on the
spin configurations mentioned above

ÛF |{sk}〉 = e−iE ({sk})|{sk}〉,
ÛF |{sk}〉 = e−iE ({sk})|{sk}〉. (14)

From these relations one can diagonalize ÛF and find the
Floquet states as

|ψ±
β 〉 = 1√

2
[eiE ({sk})/2|{sk}〉 ± eiE ({sk})/2|{sk}〉], (15)
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and the corresponding quasienergies, respectively, as

μ+
β = [E ({sk}) + E ({sk})]/2,

μ−
β = μ+

β + π, whenever {sk} �= {sk}. (16)

Therefore a part of the Floquet states show π -spectral pairing,
i.e., μ−

β − μ+
β = π . This is valid only for the configurations

such that {sk} �= {sk}, that are (2s + 1)L − (2s + 1)L/2 in num-
ber (see Sec. II A 2), that is, the overwhelming majority. If the
configurations {sk} and {sk} differ over an extensive number
of sites, then the Floquet states |ψ±

β 〉 are cat states and are
globally different from each other.

We can interpret the oscillations of the magnetization
as Rabi oscillations of a spin configuration |{sk}〉 with its
swapped partner |{sk}〉. Indeed these configurations are given
by linear combinations of the two Floquet states |ψβ,+〉 ±
|ψβ,−〉, and the relative phase ±1 = ∓eiπ gets inverted every
time the Floquet operator acts on the state. Specifically, if all
eigenstates are π -paired, then this guarantees that there will
be period-doubled oscillations for any generic initial state.

We note here that the presence of disorder and power-law
interactions is fundamental, as it removes all degeneracies
between distinct quasienergies at the solvable point. Nearest-
neighbor interactions would not be enough to remove all
degeneracies. A fully gapped Floquet spectrum is important
because only in this case the application of a small pertur-
bation is expected to preserve the structure of the Floquet
states and the spectral pairing. More precisely, states that dif-
fer only locally (i.e., are coupled only by operators localized
on a specific small range of sites [13]) will have different
quasienergies. This property is called local spectral gap, and in
the presence of this property we expect that for all eigenstates
local perturbations perturb locally, in a way that is analogous
to the ground states of gapped systems [65]: These perturba-
tions couple globally different Floquet states at order O(L)
in perturbation theory, and so do not mix them at any per-
turbative order in the limit L → ∞ [66,67]. This implies that
there exists a local unitary transformation which relates the
original eigenstates to the perturbed eigenstates [58,68] and
in particular the properties of the Floquet spectrum are con-
served under local perturbations [13,66]. As a consequence,
we expect that even in the presence of perturbations (J, ε �= 0)
there will still be π -spectral pairing and thus a time-crystal
phase over a finite region of parameters. This expectation
is fully confirmed by the numerical results we are going to
discuss.

2. Numerical analysis

To study the persistence of the spectral pairing outside the
solvable case, we consider the following quantities [22,64]:

�0
β = μβ+1 − μβ ;

�π
β = min

γ
|μγ − (μβ + π )1|. (17)

All quasienergies are taken in the first Floquet Brillouin
zone μβ, (μβ + π )1 ∈ (−π, π ) and the differences between
quasienergies are also taken mod 2π , i.e., we evaluate �π

β by
minimizing the π distance between quasienergies on the unit
circle, as shown in Fig. 9.

μβ

(μβ + π)1μγ∗

Δπ
β

FIG. 9. Choice of π -paired eigenvalue μγ ∗ corresponding to a
given μβ and its π -shifted spectral gap �π

β .

In case the system features π -spectral pairing in the
thermodynamic limit, the π -shifted spectral gaps �π

β should
scale to zero with system size faster than the spectral gaps �0

β .
In order to quantitatively probe this property, we numerically
diagonalize ÛF in the Sz = 0 subspace and compute the
logarithmic averages [64,69],

〈log10 �π 〉 ≡ 1

N
∑

β

log10 �π
β , and

〈log10 �0〉 ≡ 1

N
∑

β

log10 �0
β, (18)

where the sum over β is restricted to the quasienergies of
Floquet states in the sector of the Hilbert space with Sz = 0.
In order to understand if there is π spectral pairing in the ther-
modynamic limit, we consider the spectral-pairing parameter,

�� ≡ 〈log �π 〉 − 〈log �0〉. (19)

In the case of spectral pairing this difference should decrease
with system size L. We plot � versus J for different values
of L in Fig. 10(a) for the spin-1/2 and Fig. 10(b) for the
spin-1 case.

We see that in all the considered cases there is a thresh-
old value for J ∼ 10−1 where all the curves appear to cross.
Below this threshold, �� decreases with the system size, mark-
ing the presence of π -spectral pairing (the results at large L
and very small J are flawed by the finite representation of
floating-point numbers in our numerics). In contrast, above
this threshold �� no longer decreases with L (either saturates
or gets closer to 0), and so there is no π -spectral pairing.

In order to further understand the stability of the time-
crystal phase, we also measure the spectral pairing for
different nonzero values of J and ε in the spin-1/2 case, as
seen in Fig. 11. We find again that even with both J and ε

nonzero �� decreases exponentially in system size, albeit this
is possible for fairly small values of the perturbations.

So, we have π -spectral pairing not only at the solv-
able point J = 0 but also in a full range around this value.
Therefore, there is a phase where time-translation symmetry
breaking appears, as we theoretically expected. Quite nicely,
the range of parameters of J—at ε = 0—where π -spectral
pairing appears coincides with the range where the system has
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(a)

(b)

FIG. 10. Spectral-paring parameter �� versus J in the spin-1/2
case (a) and spin-1 case (b) for different L and α = 0.5.

a Poisson level statistics (see Fig. 8), and so the dynamics is
nonthermalizing, and persistent period-doubling oscillations
can appear.

C. Correlations in the Floquet states

Let us discuss the structure of the Floquet states. As
we have seen above, the majority of these states are the
superposition of two different classical spin configurations
(cat states) similar to Eq. (15). The same occurs in the
case of the usual spin-flip time crystal [13,18]. In that case
all the Floquet states are cat states, and all them show
long-range correlations. Defining Cβ (i, j) ≡ 〈ψβ |σ̂ z

i σ̂ z
j |ψβ〉 −

FIG. 11. Spectral-paring parameter �� versus L in the spin-1/2
case for different values of J , ε, and α = 0.5. Numerical parameters:
Nd varies between ∼102 and ∼104.

〈ψβ |σ̂ z
i |ψβ〉〈ψβ |σ̂ z

j |ψβ〉, one has Cβ (1, L) �= 0, whatever the
state |ψβ〉 and the length L chosen.

In our case the situation is different. Here there can be spin
pairs left unchanged by the swap, and the cat-state features
might not be fully captured by looking at the correlations
between the first and last sites. For instance, consider the state
which is ferromagnetic in the first half of the chain and antifer-
romagnetic in the second half, and construct the Floquet states
according to Eq. (15) |ψβ〉 ∝ |++,++, · · · ,+−,+−〉 +
eiφ|swap〉. If we measure correlations only in the first half, or
between the first and second half, then we would incorrectly
classify this as a short-range correlated state, whereas within
the second half of the chain there are indeed long-range cor-
relations. Therefore, to properly measure correlations in such
state it is necessary to take into account a global correlation
quantifier. We use the sum of all two-point connected correla-
tion functions divided by the number of spins,

�β ≡ 1

L

∑
i< j

|Cβ (i, j)|, (20)

with the two-site correlation Cβ (i, j) defined above. Such a
quantity measures the amount of correlations per site. Heuris-
tically, we expect two distinct behaviors for short-range and
long-range correlated states: For short-range “physical” states,
a given site will be correlated only with a small (nonextensive)
amount of neighbors, meaning �β ∼ O(1); for long-range
“unphysical” states, a given site will be potentially corre-
lated with a finite fraction of the entire chain, meaning that
�β ∼ O(L).

Let us first focus on the solvable case. Looking at the
definition of the local imbalance Eq. (10) we see that it is
kept unchanged under swap, so it has a well-defined value
over the Floquet states (that are superposition of two classical
configuration related by the swapping operation). With a bit of
work (see Appendix E 1) we can find for s = 1/2 the simple
relation

�β = ILI,β (ILI,β · L − 1)/2. (21)

From it one can see that �β linearly increases with L if
and only if the local imbalance is nonvanishing. This shows
why the local imbalance is a natural measure of the time-
translation symmetry breaking properties of a Floquet state:
It quantifies the amount of long-range correlations related to
its cat-state nature. In particular, notice that when ILI = 0,
the eigenstates are trivial spin configurations |ψβ〉 = |{sk}〉,
where there are no long-range correlations and no spectral
pairing. Equation (21) is valid only for s = 1/2. For generic s
a similar relation is valid if correlations are evaluated using
the mutual information (see Appendix E 2) instead of the
connected correlator.

Let us move to the numerical results in the presence
of perturbations. Specifically, we look at the average 〈�〉,
defined as

〈�〉 = 1

N
∑

β

�β,

with β restricted the Sz = 0 subspace. We plot 〈�〉 versus L
in Fig. 12(a). We see two distinct behaviors of �β . At small
J , close to the solvable point, it increases linearly with L, as
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(a)

(b)

FIG. 12. 〈�〉 versus L for different values of J in the spin-
1/2 (a) and spin-1 (b) cases. Numerical parameters: α = 0.5, Nd =
5120 · 21−L/2.

a signature of long-range correlations, as we have described
above. The range of J where this fact occurs is in agreement
with the range where spectral pairing occurs [see Fig. 10(a)]
and the dynamics is regular [see Fig. 8(a)]. At large J instead
〈�〉 gets smaller and possibly saturates with the system size,
and accordingly there is no spectral pairing and no regular
dynamics.

A similar analysis can be performed in the spin-1 case
replacing σ̂ z

i with Ŝz
i in the definition of Cβ (i, j) and comput-

ing the resulting �β over the Floquet states. At the solvable
point no straightforward relation may be found between this
quantity and local imbalance. Nevertheless, when we apply
the perturbation J �= 0, we still find that 〈�〉 linearly in-
creases with L in a range of J [see Fig. 12(b)], marking
long-range correlations. In this range there is also spectral
pairing [see Fig. 10(b)] and regular dynamics [see Fig. 8(b)].
For larger J there is none of these properties and no time
crystal [70].

VI. CONCLUSIONS

In conclusion we have described a mechanism to realize
time crystals in Floquet systems, based on a spin Hamiltonian
with disorder and long-range interactions, to which a time-
periodic swapping of nearby sites is applied. In contrast with
the existing examples, based on the flipping of the local spins,
this protocol is not restricted to spin-1/2 Hamiltonian but can
be applied to models with local spins of any magnitude.

After that, we have introduced the model Hamiltonians
and have analytically discussed the case of the solvable point,

where the period-doubling oscillations of the local magnetiza-
tions persist forever, also at finite system size. If one takes as
initial state a classical spin configuration, then one can see
period-doubling oscillations for the large majority of these
configurations, with the exception of a fraction exponentially
decaying to zero with system size. In order to characterize
which configurations give rise to a period-doubling dynamics,
we have introduced a quantity called local imbalance (ILI).
We have seen that, for increasing local spin magnitude s,
the spin configurations have in average a larger ILI, with
a smaller variance. This implies that for increasing system
size a random initial spin configuration shows an increasing
tendency to provide a period-doubling behavior.

Then we have moved away from the solvable point, to
see if the period-doubling oscillations are robust to such a
perturbation. This is an important point to understand if we
are dealing with a time crystal, i.e., a robust phase of the
matter stabilized over a finite parameter range by the effect
of the interactions. For that purpose we have numerically
studied the model with s = 1/2 (spin-1/2 case) and the one
with s = 1 (spin-1 case). For perturbations small enough but
finite we see that the period-doubling oscillations persist for a
time that exponentially increases with the system size: They
persist forever only in the large-size limit. In this way the
time-translation symmetry breaking occurs only in the ther-
modynamic limit, in analogy with the standard symmetry
breaking of quantum phase transitions.

We have then focused on the properties of Floquet
quasienergies and states. We have considered a probe of quan-
tum regularity and ergodicity, the average level spacing ratio
of Floquet quasienergies, to understand in which range of
parameters the quantum dynamics is regular, thermalization
of local observables is absent, and then period-doubling os-
cillations are possible. We have found a range of parameters
where this ergodicity breaking occurs, and the effect becomes
more marked when the system size is increased, so that we
deal with a regular-dynamics phase. In this range of param-
eters a nontrivial period-doubling dynamics is possible, and
the ergodicity breaking is an effect of disorder that induces
many-body localization.

We have then moved to period-doubling-related properties
of Floquet quasienergies. We have analytically shown that at
the solvable point, up to a fraction exponentially vanishing
with the system size, quasienergies show π -spectral pairing, a
property strictly associated to period doubling. Moving away
from the solvable point, we have numerically shown that the
π -spectral pairing is robust in a well-defined range of pa-
rameters that defines the time-crystal phase. This robustness
is related to disorder and long-range interactions that break
degeneracies of the quasienergies at the solvable point, mak-
ing properties of quasienergies and Floquet states robust under
local perturbations. The range of parameters where π -spectral
pairing occurs lies inside the range where the dynamics is
regular and there is no thermalization.

Looking at the properties of the Floquet states, we have
defined a global correlation quantifier. At the solvable point
we have found that it is strictly related to the ILI of the
Floquet state: A finite ILI corresponds to a Floquet state with
the cat-state structure related to π -spectral pairing. Moving
away from the solvable point, we have found that there is
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a finite range of parameters where the correlations increase
linearly with system size, which indicates cat-state behavior
and symmetry breaking.

The ranges of parameters where there is regular dynamics,
π -spectral pairing, and long-range correlations agree with
each other. Together with the results about the dynamics, this
suggests the existence of a time-crystal phase.

About experimental implementation, at least for the spin-
1/2 case, semiconductor spin qubits are a platform where
we expect that our protocol is easier to implement than the
sin-flip one. In this context indeed there is time control on
the Heisenberg interactions required to implement the swap,
while the magnetic field (needed to implement the spin flip)
is static [71]. In this framework, the experimental implemen-
tation of the partial swap—that is, our swap far from the
solvable point—is discussed in detail in Ref. [72].

Perspectives of future work include the application of this
protocol to models with different local Hilbert space (for
instance bosons or rotors) and the use of different physical
effects to induce ergodicity-breaking (for instance the Stark
many-body localization [73,74]).
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APPENDIX A: SPIN SWAPPING

Here we show that the operator in Eq. (7) realizes swaps
product states. It suffices to show this in the σ̂z basis |si, s j〉
and then extends the result linearly to all product states. So
we wish to show

1 + �σ i · �σ j

2
|si, s j〉 = |s j, si〉. (A1)

We use the defining identities of the Pauli operators
σ̂z|s〉 = s|s〉, σ̂x|s〉 = |−s〉, and σ̂y = iσ̂xσ̂z, hence:

�σ i · �σ j = σ̂ z
i σ̂ z

j + σ̂ x
i σ̂ x

j + σ̂
y
i σ̂

y
j

= σ̂ z
i σ̂ z

j + σ̂ x
i σ̂ x

j

(
1 − σ̂ z

i σ̂ z
j

)
,

1 + �σ i · �σ j

2
= 1 + σ̂ z

i σ̂ z
j

2
+ σ̂ x

i σ̂ x
j

1 − σ̂ z
i σ̂ z

j

2
. (A2)

Since the σ̂ z
k operators act diagonally on the spin basis,

they serve purely as a filter to either the condition
δsi,s j = 1+sis j

2 (first term, aligned spins) or the condition

δsi,−s j = 1 − δsi,s j = 1−sis j

2 (second term, unaligned spins):

1 + �σ i · �σ j

2
|si, s j〉 =

{|si, s j〉 si = s j,

|−si,−s j〉 si = −s j,
= |s j, si〉,

(A3)

as expected. From this relation one can also see how in the
spin-1 case the swap operator has to involve higher power of
the spin operators, since already the “filter” itself δsi,s j (and
its complement) involve terms such as s2

i + s2
j , as seen in

Eq. (11).
We now aim to demonstrate Eq. (6). This is equivalent to

demonstrate the following equality:

e−i(π/4)�σ i·�σ j = eiφ 1 + �σ i · �σ j

2
, (A4)

with i and j arbitrary sites and some phase φ. To do this, we
use the fact that the swap operator is an involution and thus
squares to the identity:

(
1 + �σ i · �σ j

2

)2

= 1. (A5)

This allows us to expand the exponential in a power series,
which corresponds to Euler’s identity

e−i π
2

1+�σi ·�σ j
2 = −i

1 + �σ i · �σ j

2
(A6)

and leads to the result we were looking for,

e−i π
4 �σ i·�σ j = e−iπ/4 1 + �σ i · �σ j

2
. (A7)

A similar derivation can also be done for the general spin-
s case by starting with the swap operator P̂, which satisfies
P̂2 = 1:

e−i π
2 (P̂−1) = P̂. (A8)

In the case of spin-1 we arrive at the desired result:

e−i π
2 [(�Si·�S j )2+�Si ·�S j ] = −[(�Si · �S j )

2 + �Si · �S j − 1]. (A9)

APPENDIX B: π SPECTRAL PAIRING AND PERIOD
DOUBLING

Let us show the relation between π -spectral pairing and
period doubling (see also Refs. [23,50]). Let us assume that at
least a part of the Floquet spectrum is π -spectral paired, that
is, it is organized in pairs μ−

β , μ+
β such that μ−

β − μ+
β = π . We

initialize the system in the state |ψ (0)〉 and study the strobo-
scopic dynamics of some observable O(t ) = 〈ψ (t )|Ô|ψ (t )〉,
with t an integer multiple of the driving period T = 1. We
can expand the stroboscopic-time-evolved state in the Floquet
basis as |ψ (t )〉 = ∑

β Rβe−iμβ t |ψβ〉, where Rβ ≡ 〈ψβ |ψ (0)〉.
Expanding the expression for the expectation of the
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observable we get

O(t ) =
∑

β

|Rβ |2〈ψβ |Ô|ψβ〉
︸ ︷︷ ︸

diagonal

+
∑

β

(R+
β )∗R−

β 〈ψ−
β |Ô|ψ+

β 〉ei(μ−
β −μ+

β )t

︸ ︷︷ ︸
period-doubling

+
∑

β �=γ , ν �=ρ

(
Rν

β

)∗(
Rρ

γ

)〈
ψν

β

∣∣Ô∣∣ψρ
γ

〉
ei(μν

β−μρ
γ )t

︸ ︷︷ ︸
off-diagonal

. (B1)

The diagonal term provides a constant contribution, while
the off-diagonal one (where μν

β and μρ
γ are different and

unpaired) gives a superposition of incoherent oscillations that,
after disorder-average, vanish after a short transient. The in-
teresting term is the one denoted “period-doubling,” where
one can factorize a term eiπt that provides the period-doubling
oscillations, due to the fact that μ−

β − μ+
β = π .

We have seen in Sec. V B 2 that when we are not at the
solvable point but J is small enough, the π -spectral pairing
appears only in the thermodynamic limit. At any finite size
one has μ−

β − μ+
β = π + δβ , where δβ is a small correction

decreasing with the system size. Due to this correction, the
period-doubling term averaged over disorder provides period-
doubling oscillations that last for a finite time, provided
roughly by the inverse of the typical value of δβ (call it δ).
Because δ decreases with the system size (see Sec. V B 2),
the time of the period-doubling oscillations increases expo-
nentially with the size, as we have seen in Secs. IV A and
IV B.

We emphasize that the period-doubling term is nonvanish-
ing only for an appropriate choice of operator and initial state.
For instance, in Fig. 5, the period-doubling term vanishes for
the onsite magnetizations at the sites corresponding to the half
of the chain where the initial state is uniform.

APPENDIX C: SHORT-RANGE RESULTS (α = 3)

Here we show the results for the short-range case, α = 3.
As mentioned in the main body of the paper, we only found
minor quantitative differences between the two. In this sec-
tion it is taken for granted that α = 3 in every figure. Let us
briefly list the figures:

(i) In Fig. 13(a) we show (−1)t Z (t ) versus t for different
system sizes and initial states in the spin-1/2 model. This is
the equivalent of Fig. 3.

(ii) In Fig. 14(a) we show the decay time τ versus L
for different parameters in the spin-1/2 model. This is the
equivalent of Fig. 7. In Fig. 14(b) we show the same the spin-1
model (equivalent of Fig. 7).

(iii) In Fig. 15 we show 〈r〉 versus J for both models and
different system sizes. This is the equivalent of Fig. 8.

(iv) In Fig. 16 we show the spectral-pairing parameter
defined in Eq. (19) versus J for both models and different L.
This is the equivalent of Fig. 10.

(v) In Fig. 17 we show 〈�〉 versus L for different values
of J and both models. This is the equivalent of Fig. 12.

(a)

(b)

FIG. 13. Spin-1/2 model. (a) (−1)t Z (t ) versus t for initial Néel
state and different system sizes. (b) (−1)t Z (t ) versus t for initial
Half-Néel state (solid line) and Néel state (dashed line) for different
system sizes. Initial values have all been normalized to +1 to make
the comparison clearer. Parameters: J = 0.1, ε = 0.01.

Comparing Figs. 15–17 we see that also for α = 3 regular
dynamics, spectral pairing and long-range correlations occur
in the same range of J .

APPENDIX D: LOCAL IMBALANCE FOR SPIN STATES

As discussed in Sec. II B, the spin-1 case displays many
differences with the spin-1/2 case. From the point of view
of the spectrum, at the solvable point, we can already notice
some variations. Apart from the fact that a larger fraction
of the spectrum participates to period doubling at any L, a
generic spin configuration will also tend to have a larger local
imbalance. Quantitatively, this may be seen by looking at
the asymptotic behavior L → ∞ of the probability density
function of the imbalance over spin configurations p(ILI).
We show some examples of this probability density function
for L = 120 and different values of the local Hilbert space
dimension in Fig. 18.

In order to quantitatively obtain this probability distribu-
tion let us consider a chain of length L where at each site there
corresponds a local Hilbert space of dimension d = 2s + 1,
where s is the value of the local spin. It is easy to see that the
ILI can only take values

ILI = N

L/2
,

where N � L/2 is the number of pairs whose spins differ from
each other. There are many spin configurations associated to
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(a)

(b)

FIG. 14. (a) Spin-1/2 model. Decay time τ versus L for initial
Néel state and different values of J . Here we have considered time
evolutions while skipping over n � 1 periods, such that the time step
stays below ∼1% of the standard deviation of τ . (b) Spin-1 model.
Decay time τ versus L for initial up-zero state.

(a)

(b)

FIG. 15. Average level spacing ratio 〈r〉 versus J in the spin-1/2
case (a) and spin-1 case and (b) for different L and α = 3.

(a)

(b)

FIG. 16. Spectral-pairing parameter �� versus J in the spin-1/2
case (a) and spin-1 case (b) for different L and α = 3.

a single value of ILI. This degeneracy, i.e., the dimension
DL(ILI) of an eigenspace corresponding to a given value of
local imbalance ILI is

DL

(
ILI = N

L/2

)
= [d (d − 1)]N dL/2−N

(
L/2

N

)
. (D1)

One can find this result considering that each pair where spins
differ can appear in d (d − 1) different ways, while each pair
where spins are equal can appear in d different ways. So the
probability distribution of the imbalances

p(ILI) = 1

dL
DL

(
ILI = N

L/2

)

is a binomial. Therefore, the asymptotic distribution p(ILI) is
a normal distribution with mean

〈ILI〉 = (d − 1)

d
(D2)

and variance

σ 2(ILI) = p(1 − p)/(L/2) = 2(d − 1)

Ld2
(D3)

vanishing for L → ∞ and s → ∞. This proves more con-
cretely that increasing s improves the behavior of the period
doubling caused by the swap, because the typical value of
the local imbalance increases and the fluctuations around it
decrease. We can see an example of the changing behavior of
p(ILI) with d at fixed L in Fig. 18. Although no such direct an-
alytical result can be found restricting to the subspace Sz = 0,
the same qualitative behavior is observed numerically at large
L (not shown). This suggests once again that the subspace
Sz = 0 we numerically consider here faithfully represents the
entire Hilbert space.
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(a)

(b)

FIG. 17. 〈�〉 versus L for different values of J in the spin-
1/2 (a) and spin-1 (b) cases. Numerical parameters: α = 3,
Nd = 5120 · 21−L/2.

APPENDIX E: CORRELATIONS IN THE EXACT
FLOQUET STATES

In this Appendix we find the relation between the local
imbalance and the global correlation quantifier Eq. (20). In
Appendix E 1 we consider the case where the global quan-
tifier is constructed using the connected correlations and the
relation is valid only for local spin magnitude s = 1/2. In

FIG. 18. Probability density function of the local imbalance at
different local Hilbert space dimensions d and L = 120 (solid line)
and its approximation as a normal distribution (dashed line). Spin-
1/2 and spin-1 correspond to d = 2 and d = 3, respectively.

Appendix E 2 we evaluate correlations using the mutual in-
formation and get a relation valid for generic s.

1. Connected correlations

Here we derive Eq. (21) relating the local imbalance and
the global correlation quantifier Eq. (20). Equation (21) is
valid in the solvable case (ε = 0 = J), for the spin-1/2 chain.
In this case the Floquet states are given by superpositions of a
classical spin configuration and its swapped partner:

|ψβ〉 = c+|{sk}〉 + c−|{sk}〉, (E1)

where |c+| = |c−| = 1/
√

2 if ILI > 0 while c+ = 1, c− = 0
(or equivalently c− = 1, c+ = 0) if ILI = 0. Since we are
dealing with expectation values of σ̂ z operators and their
products, the phases of c+ and c− are irrelevant and we ignore
them for convenience of notation.

We first notice that the spins at sites k where sk = sk are in-
dependent from every other spin, since their value remains the
same in the superposition. This means that the state factorizes
as a product state between site k and every other site:

|ψβ〉 = c+|s1 · · · sk · · ·〉 + c−|s1 · · · sk · · ·〉 = |ψβ〉�k ⊗ |sk〉.
(E2)

Therefore, any connected correlation function between such
sites k and any other site q will be zero, Cβ (k, q) = 0, ∀q �= k.

There only remains the case where both k and q satisfy
sk = −sk , sq = −sq. The evaluation of Cβ (k, q) is now trivial
if one notices that sksq = sksq:

〈σ̂ z
k σ̂ z

q 〉
β

= |c+|2〈{si}|σ̂ z
k σ̂ z

q |{si}〉 + |c−|2〈{si}|σ̂ z
k σ̂ z

q |{si}〉
= sksq,

〈σ̂ z
k 〉

β
= |c+|2〈{si}|σ̂ z

k |{si}〉 + |c−|2〈{si}|σ̂ z
k |{si}〉

= |c+|2(sk − sk ) = 0,

Cβ (k, q) = 〈
σ̂ z

k σ̂ z
q

〉
β

− 〈
σ̂ z

k

〉
β

〈
σ̂ z

q

〉
β

= sksq. (E3)

In the spin-1/2 case this can only take values ±1, meaning
that its absolute value is always +1. Finally, we have that
|Cβ (k, q)| vanishes for every site k aligned with its partner
k, while it equals one for every choice of sites k and q that
are both unaligned with respect to their partners k and q. By
definition of local imbalance, the number of such sites is equal
to ILI,β · L (double the number of unaligned pairs). Finally,
the computation of �β reduces to counting the number of
distinct pairs of sites within this region:

�β = 1

L

∑
i< j

|Cβ (i, j)| = 1

L

∑
i|si �=si

∑
j>i|s j �=s j

+1

= ILI,β (ILI,β · L − 1)

2
, (E4)

which is the desired result.

2. Mutual information

A general, model-independent, alternative to connected
correlation functions which can measure correlations between
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two sites is given by the mutual information I:

Iβ (i, j) = S(β )
i + S(β )

j − S(β )
i, j , (E5)

where S(β )
A = −Tr[ρ (β )

A ln ρ
(β )
A ] is the entanglement entropy of

the Floquet state |ψβ〉 over the region A (i.e., a set of sites
in the chain). Calling B the complement of A, the reduced
density matrix is defined as ρ

(β )
A = TrB[|ψβ〉〈ψβ |]. The global

correlation quantifier for the mutual information is defined as

�β (I ) = 1

L

∑
i< j

Iβ (i, j). (E6)

We now show by using the mutual information instead of a
connected correlation function that we get the same scaling
law in the general spin-s case. Let us first explicitly write the
reduced density matrix of sites i and j for the Floquet state
|ψβ〉 = c+|{sk}〉 + c−|{sk}〉:

ρ
(β )
i, j = Tr �i � j |ψβ〉〈ψβ |

= |c+|2|si, s j〉〈si, s j | + |c−|2|si, s j〉〈si, s j |
+ c+c∗

−δ{sk}�i � j ,{sk}�i � j |si, s j〉〈si, s j | + H.c., (E7)

where each sk now takes d = 2s + 1 different possible values
in {−s,−s + 1, . . . , s − 1, s}. If {sk}�i � j �= {sk}�i � j , which means
that there is at least one site q where sq �= sq, then the reduced
density matrix takes the simple form:

ρ
(β )
i, j = |c+|2|si, s j〉〈si, s j | + |c−|2|si, s j〉〈si, s j | (E8)

and similarly for the reduced density matrix of site i and
site j:

ρ
(β )
i = |c+|2|si〉〈si| + |c−|2|si〉〈si|,

ρ
(β )
j = |c+|2|s j〉〈s j | + |c−|2|s j〉〈s j |,

(E9)

It is straightforward to see that when |c+|2 = |c−|2 = 1/2
and si �= si, s j �= s j the entropy of these states is ln 2 and,
consequently, the mutual information is also ln 2:

Iβ (i, j) = Si + S j − Si j = ln 2. (E10)

Outside of an irrelevant special case (at ILI = 1
L/2 ), the scaling

of the global correlation quantifier is still respected, as only
the pairs with unaligned spins will contribute

�β (I ) = 1

L

∑
i< j

Iβ (i, j) = ILI,β (ILI,β · L − 1)

2
ln 2. (E11)

We notice that for L � 1 a typical Floquet state |ψβ〉 has
(d − 1)/d · L/2 pairs of unaligned neighboring spins, cor-
responding to ILI = (d − 1)/d . This typical value coincides
with the average Eq. (D2), because the fluctuations Eq. (D3)
vanish for L → ∞. Substituting this typical value in Eq. (E11)
we find that the typical amount of global correlations increases
with local spin magnitude s,

�(I ) ∼ L

2

(d − 1)2

d2
ln 2, (E12)

and the fluctuations around this value become smaller, as
we can see in Eq. (D3). This finding confirms that at higher
values of spin the correlations are stronger and thus the time
crystalline behavior becomes more robust with increasing s.
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