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Stochastic thermodynamics and fluctuations in heat released by magnetic nanoparticles
in response to time-varying fields
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Time-varying external magnetic fields can be used to manipulate the dynamics of magnetic nanoparticles.
When suspended in viscous media, external fields not only modify the internal Néel relaxation dynamics within
the magnetic nanoparticles but also the Brownian particle rotation. For the case of oscillating magnetic fields,
Brownian and Néel processes lead to magnetic losses that are dissipated as heat to the neighborhood of the
nanoparticle. The mean value of heat dissipated has been studied intensively in recent years, not least because
of promising biomedical applications such as magnetic fluid hyperthermia. Here, we use the framework of
stochastic thermodynamics to study fluctuations in the dissipated heat. We find that the dynamics of magnetic
nanoparticles as modelled by a mesoscopic model obeys the detailed fluctuation theorem in terms of the total
entropy production within numerical accuracy. In addition, we observe that the total entropy production is
dominated by the dissipated heat and that fluctuations of dissipated heat are rather strong with the standard
deviation being of the same order as the mean value. We also find that the probability of observing negative values
of dissipated heat is rather large for typical field strengths used in magnetic fluid hyperthermia applications.
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I. INTRODUCTION

Colloidal magnetic nanoparticles (MNPs) provide a fas-
cinating model system for condensed matter physics and
statistical mechanics, where field-induced nonequilibrium dy-
namics can conveniently be studied [1]. The strong response
of MNPs to external magnetic fields also opens up a broad
range of applications in smart materials, as well as in record-
ing media, efficient refrigeration and medicine [2–5]. For
many of these applications, the use of time-varying magnetic
fields is of critical importance. Therefore this topic has been
studied intensively in recent years, often with a particular view
on several emerging biomedical applications [6].

One prominent example of biomedical applications of
MNPs is Magnetic Fluid Hyperthermia (MFH) [7–9]. Very
recently, further developments of MFH have been investigated
to stimulate immune response and in the area of controlled
drug release [10,11]. In MFH, magnetic losses are induced
inside MNPs due to externally applied oscillating magnetic
fields. These magnetic losses are then released as heat which
increases the local temperature near the MNP [12].

Many recent studies have investigated the influence of
particle and magnetic field parameters on the work done and
heat released by MNPs subject to oscillating magnetic fields
[13–15]. Magnetic losses in MNPs result from two main
modes of relaxation, known as internal or Néel relaxation
and Brownian particle rotation, each responding differently
to magnetic fields [16,17]. With an eye on MFH applications,
a main goal thereby is to find conditions that maximize
magnetic losses and heat released [18,19]. Corresponding
theoretical and simulation works have helped to understand,
interpret and complement experimental results [20–28].
These studies employed different model systems, focusing on

Brownian or Néel relaxation or both simultaneously. Some
works considered interacting MNPs and the role of structure
formation, others focus on individual, noninteracting MNPs.

We note that the above mentioned theoretical and simula-
tion works have all focused exclusively on the mean values of
the work done and heat dissipated by MNPs in time-dependent
magnetic fields. Knowledge about variations around these
mean values, however, is not only of great theoretical interest
but also relevant for MFH applications. Recent developments
in nonequilbrium statistical physics and stochastic thermo-
dynamics allow us to study such fluctuations in work and
heat, even providing exact results in the form of detailed and
integral fluctuation theorems that hold under rather general
conditions [29–31]. A well-known consequence of fluctuation
theorems is the fact that individual trajectories can correspond
to positive or negative values of entropy production, with the
second law of thermodynamics emerging in the macroscopic
limit. Driven colloidal particles have been used as paradig-
matic model systems to illustrate these fluctuation theorems
[31,32] and more recently to test a generalized differential
fluctuation theorem [33]. In this context, also charged particles
in magnetic fields [34] and periodically driven systems [35]
have been studied theoretically. While it is well-established
that thermal fluctuations have pronounced effects on MNPs
and the resulting magnetization dynamics [36], to the best of
our knowledge, the corresponding fluctuations in work and
heat have not been addressed in detail so far.

Here, we use a mesoscopic model [37] to capture thermal
fluctuations in MNP dynamics, including both, Brownian and
Néel relaxation mechanisms. We use stochastic simulations
to numerically solve the model equations. From a large num-
ber of simulated trajectories, we study fluctuations in the
work done and heat dissipated by MNPs that are subject to
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oscillating magnetic fields. Besides verifying the detailed fluc-
tuation theorem for the total entropy production for the present
case, we also study the variance and skewness of the heat
distribution, deviations from Crooks relation, and evaluate the
probability of observing negative values of heat dissipation,
i.e., where heat is absorbed by the MNP rather than dissipated.

The paper is organized as follows. We start with a brief
review of stochastic thermodynamics and its application to
field-dependent dynamics of MNPs in Sec. II. In Sec. III,
we provide the stochastic formulation of the model equa-
tions used in this study. The corresponding macroscopic and
stochastic entropy production is discussed in Sec. IV. Results
for the statistics of dissipated heat of MNPs in oscillating
magnetic fields are presented in Sec. V and some conclusions
are offered in Sec. VI.

II. STOCHASTIC THERMODYNAMICS
OF MAGNETIC NANOPARTICLES

A. Work and heat related to a single nanoparticle

Consider a MNP with magnetic moment μu, where μ

denotes the magnitude and u the orientation defined by a
three-dimensional unit vector. In the presence of a time-
dependent external magnetic field H(t ), the MNP gains the
Zeeman potential energy

�(u; t ) = −μ0μu · H(t ), (1)

where μ0 is the vacuum permeability [1,38–40]. We here
consider MNPs with magnetic core small enough so that the
magnitude μ of the magnetic moment remains constant. In
general, an additional term needs to be added to Eq. (1) to
account for the anisotropy energy associated with the mis-
alignment of the magnetic moment with the material’s easy
axis. Here, we focus on magnetically hard MNPs where the
magnetic moment can be considered well aligned with the
easy axis of the magnetic material [39,40].

Colloidal systems such as MNPs are suspended in a
viscous medium that act as a heat bath. Within stochastic
thermodynamics, a single colloidal particle driven by external
fields can be viewed as a mesoscopic nonequilibrium system
to which increments of applied work δŴ and dissipated heat
δQ̂ can be associated [31,46]. Due to random thermal motion
of the colloid, the quantities δŴ and δQ̂ show strong fluctu-
ations. The usual macroscopic thermodynamic increments of
applied work δW and dissipated hear δQ are obtained from
suitable ensemble averages of these quantities. Let us start
with defining the incremental work δŴ done by the external
magnetic field to a single MNP. By changing the external
magnetic field H, an amount of work is done to the system
that is given by [31]

δŴ = ∂�

∂t
dt = −μ0μu · Ḣdt, (2)

where the second equality applies for the particular case of the
Zeeman energy (1). Next, stochastic thermodynamics identi-
fies d� with the change in internal energy and uses the analog
to the first law of thermodynamics to define the corresponding
heat dissipated into the medium by [31]

δQ̂ = δŴ − d� = μ0μH · du. (3)

From Eqs. (2) and (3), the work done by the external field and
the dissipated heat over the time interval [ti, tf ] is given by

Ŵ [ut ] = −μ0μ

∫ tf

ti

ut · Ḣ(t )dt, (4)

Q̂[ut ] = μ0μ

∫ tf

ti

H(t ) · dut , (5)

respectively. In thermodynamics, it is well known that work
and heat are not state variables and therefore depend on the
particular path. Here, using stochastic thermodynamics, the
path corresponds to a particular trajectory of the orientation
of the MNP and this dependence is made explicit in Eqs. (4)
and (5). For convenience of notation, in the following we will
write Ŵ instead of Ŵ [ut ] and Q̂ instead of Q̂[ut ].

For the special case of oscillating magnetic fields that we
consider in this study,

H(t ) = H sin(ωt ), (6)

and after initial transients, the potential energy (1) is periodic.
In this case, we conclude from Eq. (1) that the change of
potential energy over one period is zero, �� = 0. Therefore
the dissipated heat over one period equals the amount of work
done over the same period, Q̂ω = Ŵω. Thus

Q̂ω = μ0μ

∮
H(t ) · dut = −μ0μ

∮
ut · dH(t ). (7)

The identity of stochastic work and heat over one cycle is a
direct consequence of the definition (3).

B. Connection with macroscopic thermodynamics

For the interpretation of stochastic thermodynamics it is
important to note that the MNP is considered as a mag-
netomechanical system as well as a thermal system that
absorbs energy, while the magnetic field H is an external
system, directly acting onto the MNP but without any ther-
mal fluctuations. In this setting, consistency with macroscopic
thermodynamics is ensured if the characteristic time scale
of the solvent τsol is much smaller than timescales of the
MNP dynamics and magnetic field variations [41]. While typ-
ical time scales of nonmagnetic colloidal particles are indeed
much larger than τsol [42], the situation is less clear for the
internal magnetization dynamics within a MNP. Therefore
we here employ a mesoscopic model which ensures that not
only the viscous but also the internal magnetization relaxation
times are much larger than τsol [37]. In addition, frequencies
of the magnetic field will be chosen low enough so that the
associated time scale is also much larger than τsol.

To make contact with macroscopic thermodynamics, we
define the macroscopic magnetization as the mean magnetic
moment per unit volume, M = nμ〈u〉, where n = N/V is
the number density of N MNPs in a volume V and angular
brackets denote ensemble averages [36,40]. The macroscopic
potential energy of a system of N MNPs in a volume V is
given by U = −μ0V M · H = N〈�〉. Taking ensemble aver-
ages of Eq. (2) and multiplying with the number N of MNPs
in a given volume we obtain

δW = N〈δŴ 〉 = −μ0m · dH, (8)
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where m = V M is the ensemble-averaged total magnetic mo-
ment in a volume V . Similarly, the mean heat dissipated into
the medium is given by

δQ = N〈δQ̂〉 = μ0H · dm, (9)

so that the change in the macroscopic internal energy is given
by dE = δW − δQ. From Eq. (8), we conclude that the mean
work done per unit volume over one cycle is given by

�W/V = −μ0

∮
M · dH(t ) (10)

which agrees with the commonly used expression [12]. We
also note that Eq. (8) agrees with the expression used in
Ref. [43]. There, Eq. (9) was given as an “alternative form”
for δW . Stochastic thermodynamics does not support such an
interpretation. For oscillating magnetic fields, the amount of
heat dissipated and work done over one oscillation period are
identical. In this context, it is worth to point out a common
confusion identified by Callen in that U = N〈�〉 represents
the change in energy when the material system is introduced
and does not include the vacuum contribution [44].

C. Fluctuation theorem for oscillating magnetic fields

Arguably some of the greatest achievements in nonequi-
librium statistical mechanics over the past decades have been
the discovery of fluctuation theorems [29]. These theorems
provide exact relations between changes of work, heat or
entropy along forward and backward trajectories when the
system is subject to time-dependent forcings. Here, we are
particularly interested in systems subject to time-periodic and
symmetric forcings which is realized by oscillating magnetic
fields (6). For this special case, the time-reversed dynamics
coincides with the forward dynamics and the detailed (or
transient) fluctuation theorem simplifies to [30,31,45]

p(−�Ŝtot )

p(�Ŝtot )
= exp [−�Ŝtot/kB], (11)

where p(�Ŝtot ) denotes the probability density of observing
the value �Ŝtot of the total entropy production over one cycle
when the system has settled into a periodic steady state and kB

Boltzmann’s constant. From the detailed fluctuation theorem
(11), one readily derives the integral fluctuation theorem [31]

〈exp [−�Ŝtot/kB]〉 = 1. (12)

It is interesting to note that Eq. (12) indeed holds more gen-
erally for arbitrary time-dependent fields and lengths of the
process [31,46].

The total entropy change �Ŝtot is composed of the entropy
change of the system and the surrounding medium, �Ŝtot =
�Ŝ + �Ŝmed. We can define �Ŝmed = Q̂ω/T with Q̂ω the heat
dissipated into the medium over one period, as defined in
Eq. (7) and T the temperature of the surrounding medium. If
�Ŝ is negligible (on a logarithmic scale) compared to �Ŝmed,
Eq. (11) can be approximated by

p(−Q̂ω )

p(Q̂ω )
= exp [−Q̂ω/kBT ]. (13)

Since Ŵω = Q̂ω for periodic magnetic fields considered here,
Eq. (13) can also be considered as a special case of Crooks

relation [30,31] which holds in case the initial and final state
are equilibrium states. For the long-time limit approaching a
nonequilibrium steady state for constant fields and forcings,
�Ŝ is bounded and can therefore be neglected in several
situations [30,31]. For the present case of oscillating mag-
netic fields, the detailed fluctuation theorem (11) is a rigorous
result that applies to the situation considered here, but there
is a priori no reason to believe that Eq. (13) holds to a
good approximation. We will come back to this point and
study deviations from the relation (13) below. In stochastic
thermodynamics, Q̂ω is a random variable with probability
density p(Q̂ω ). Thus the fluctuation relation (13) connects the
probability of finding the value of dissipated heat Q̂ω relative
to that of −Q̂ω.

An immediate consequence of fluctuation theorems of the
kind (11) and (13) is the much-debated finding that there is a
nonzero (albeit possibly very small) probability of observing
processes where entropy is not increasing but decreasing, or
heat is not dissipated but absorbed. These results are not
in contradiction with macroscopic thermodynamics since the
laws of conventional thermodynamics are recovered for the
mean values of work, heat and entropy change [29].

III. MESOSCOPIC MODEL FOR DYNAMICS
OF MAGNETIC NANOPARTICLES

In the spirit of stochastic thermodynamics, we consider
a mesoscopic model for the dynamics of MNPs where the
solvent is treated as a viscous medium that also acts as a heat
bath. As mentioned in Sec. II B, we can ensure consistency
with macroscopic thermodynamics by a proper time-scale
separation between solvent and the mechano-magnetic sys-
tem. Therefore we here employ the so-called diffusion-jump
model [37] which captures the field-dependent relaxation aris-
ing from Brownian particle rotation and long-time internal
(Néel) magnetization reversals. While the Néel relaxation
is frequently modeled in terms of the stochastic Landau-
Lifshitz-Gilbert equation, this approach is rather inefficient
and may even blur the time-scale separation since it includes
a microscopic attempt frequency [36]. The coarse-grained
diffusion-jump model eliminates the microscopic time scales
but still provides a rather accurate approximation to the more
detailed model for magnetically hard MNPs [27].

The diffusion-jump model was introduced in Ref. [37] in
terms of the master equation for the time-dependent proba-
bility density f (u; t ) of finding the magnetic moment μu at
time t ,

∂

∂t
f = (LB + LN) f . (14)

The explicit form of the operators LB and LN are given in
Appendix A. While the formulation (14) in terms of the
probability density is very useful for various reasons, it is
not ideally suited for discussing the stochastic thermodynam-
ics of MNPs. Therefore we here provide the corresponding
stochastic formulation. The three-dimensional unit vector
ut denotes the stochastic variable that represents the ori-
entation of the magnetic moment of the MNP at time t .
From Eq. (1), the dimensionless Zeeman energy can be
written as �/kBT = −ut · h(t ), where we introduced the
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dimensionless field h(t ) = μ0μH(t )/kBT . For later use, we
also define the Langevin parameter by h = |h|. With τB the
Brownian rotational relaxation time of the MNP, the dynamics
of the diffusion-jump model can be expressed as the stochastic
differential equation

dut = Pt ·
[

h(t )
dt

τB
+ dWt

]
− ut

dt

τB
− 2ut dNt , (15)

where Pt = I − ut ut denotes the orthogonal projector with
I the three-dimensional unit matrix. The three-dimensional
Wiener process with zero mean and variance 1/τB is denoted
by Wt .

The first terms in Eq. (15) merely rewrite the classical
model of Martsenyuk et al [40] for the rigid dipole approx-
imations of the dynamics of MNPs in terms of a stochastic
differential equation and have already been given earlier (see,
e.g., Ref. [47]). The last term in Eq. (15) describes addi-
tional Néel relaxation by magnetization reversals in terms of
a Poisson process Nt . In the absence of external magnetic
fields, the Poisson process is homogeneous with a constant
rate λ0 = (2τN)−1, where τN denotes the Néel relaxation
time. In the presence of an external magnetic field h(t ),
the Poisson process in Eq. (15) becomes nonhomogeneous,
where the rate function is a random variable given by λt =
(2τN)−1 exp [−ut · h(t )].

The diffusion-jump model (15) is entirely specified by the
two relaxation times τB and τN and the dimensionless external
magnetic field h(t ). For justifications and more details of the
model as well as a discussion of possible alternatives to the
Arrhenius rate function, we refer the reader to Refs. [27,37].

IV. ENTROPY PRODUCTION IN TIME-VARYING FIELDS

With the one-particle probability density f (u; t ), we asso-
ciate the Boltzmann entropy

S(t ) = −kB

∫
f (u; t ) ln f (u; t ) du. (16)

Along solutions of the master equation (14), the Boltzmann
entropy (16) changes according to

Ṡ = σB + σN + jB + jN, (17)

where σB,N denote the entropy production due to Brownian
and Néel processes, respectively, with jB,N the corresponding
entropy fluxes. Note that Brownian and Néel contributions
to the system’s entropy production are additive. The explicit
form of these quantities is given in Appendix A.

In addition to the system entropy S, we follow Ref. [31] and
also introduce the entropy of the surrounding medium Smed

via dSmed = δQ/T , where Q is the dissipated heat given by
Eq. (9). Then, the change in the total entropy can be written
as dStot = dS + dSmed or

Ṡtot = Ṡ + Q̇B

T
+ Q̇N

T
. (18)

The expressions for the heat production Q̇B,N due to Brownian
and Néel processes are given in Appendix A. Inserting the
above expressions (17), we arrive at the time rate of change of

the total entropy

Ṡtot = σN + σB + kB

τB

[
h2

3
(1 − S2) − 2hS1

]
, (19)

with the orientational order parameters defined by Sk =∫
Pk (u · ĥ) f (u; t )du, ĥ the unit vector in the direction of the

applied field and Pk (x) the kth Legendre polynomial [47]. It is
interesting to note that for Néel processes as described here,
the entropy flux and heat dissipation perfectly balance each
other, jN = −Q̇N/T . This is not true for Brownian particle
relaxation, where the balance of entropy flux and heat gen-
eration can be expressed in terms of an effective Brownian
angular velocity to rewrite Eq. (19) as

Ṡtot = σN + 2τBkB
〈
ω2

B

〉
� 0. (20)

Equation (20) verifies that Ṡtot is non-negative, which is less
obvious from Eq. (19). The definition of the angular velocity
ωB as well as details of the derivation are given in Appendix B.
We note that without the Néel contribution, Eq. (20) is analo-
gous to the case of Brownian translational motion, where ωB

is replaced by an effective Brownian velocity [31].
In stochastic thermodynamics, a trajectory-dependent en-

tropy of the system is defined by [31,46]

Ŝ(t ) = −kB ln f (ut ; t ), (21)

where f (u; t ) denotes the solution of the kinetic model for
given initial conditions and {ut } a corresponding stochastic
trajectory. The instantaneous stochastic entropy production is
therefore given by [46]

d

dt
Ŝ(t ) = −kB

∂
∂t f (u; t )

f (u; t )

∣∣∣∣∣
ut

− kBu̇t ·
(

∂

∂u
f (u; t )

)
ut

. (22)

With dŜmed = δQ̂/T the stochastic entropy change of the sur-
rounding medium, we can write the total stochastic entropy
production as

d

dt
Ŝtot (t ) = −kB

∂
∂t f (u; t )

f (u; t )

∣∣∣∣∣
ut

+ 2kBτBωB(t ) · ωt , (23)

where the stochastic angular velocity ωt is defined by u̇t =
ωt × ut and the quantity ωB is defined in Eq. (B1). Note
that Eq. (23) is formally similar to the case of translational
Brownian motion. However, due to the jump processes associ-
ated with Néel relaxation, not the total but only the Brownian
part of the probability flux ωB appears in Eq. (23).

The total stochastic entropy production along a trajectory
�Ŝtot = �Ŝ + �Ŝmed over one period of the magnetic field
Tω = 2π/ω is given by

�Ŝtot/kB = − ln
f (ut+Tω

; t + Tω )

f (ut ; t )
+ Q̂ω

kBT
. (24)

When the system has reached a steady periodic response, we
have f (u; t + Tω ) = f (u; t ) and it seems plausible that �Ŝtot

is dominated by Q̂ω, such that the fluctuation relation for heat
(13) might be a reasonable approximation to the transient
fluctuation theorem (11).
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FIG. 1. (a) The transient entropy production due to Brownian (σB) and Néel (σN) processes in response to oscillating magnetic fields with
frequency ω = 1/τB and dimensionless amplitude h = 1. (b) The entropy production averaged over one cycle is shown versus the amplitude of
the applied field. Full and open symbols correspond to frequencies ωτB = 1 and ωτB = 5, respectively, with squares and circles representing
σ̄B and σ̄N. The ratio of relaxation times was chosen as q = 0.1.

V. RESULTS

Here, we consider MNPs that are exposed to oscillating
magnetic fields (6). Figure 1 shows the Brownian (σB) and
Néel (σN) contribution to the entropy production, Eq. (A4)
and (A6), respectively. We observe from Fig. 1(a) that σB os-
cillates with double the frequency of the applied field, with the
minima occurring near the zeros of the applied field. The Néel
contribution σN, on the other hand, oscillates with the same
frequency as the applied field, where the minima and maxima
of σN occur near the maxima and minima of the applied field,
respectively. For σB, we find that the effect of changing the
ratio q = τB/τN of relaxation times is mainly captured by
the effective relaxation time τeff = τBτN/(τB + τN). For the
Néel contribution, however, increasing q leads to a strong
increase of σN. Figure 1(b) shows the entropy production
averaged over one cycle versus the dimensionless amplitude
h of the applied field. For the Brownian contribution, we
find an approximately quadratic increase of the mean entropy
production with h, whereas a stronger increase is seen for the
Néel contribution. In both cases, we find that the mean entropy
production is larger for ωτB = 1 compared to ωτB = 5 for
q = 0.1. It is also interesting to note that for strong fields,
entropy production is dominated by Néel processes. For weak
fields, either Brownian or Néel processes dominate depending
on the frequency of the applied field.

Next we turn to the heat dissipated over one cycle, Q̂ω,
as the main quantity of interest in the present study. From
Eq. (7), this quantity is identical to the work done by the
magnetic field and can be calculated from the associated
hysteresis loop.

We start by calculating the mean dissipated heat over one
cycle, Qω = 〈Q̂ω〉, where angular brackets denote ensemble
averages. Taking the ensemble average of Eq. (7) and multi-
plying by the number density n of MNPs we arrive at Eq. (10)
since N〈Q̂ω〉 = �W . Instead of �W , it is more common in
the literature to consider the specific loss power defined by
�W/Tω, where Tω = 2π/ω denotes the length of the oscil-
lation period of the magnetic field [8,12]. Figure 2 shows
the mean dissipated heat per unit time versus the amplitude
h of an external oscillating field. Different symbols denote

different frequencies ω of the applied field. From Fig. 2,
we observe the characteristic quadratic increase of the spe-
cific loss power with field strength [see Eq. (C6)]. Strictly
speaking, the quadratic increase is restricted to small am-
plitudes h that remain within the linear response regime.
Heuristic arguments are given in Ref. [12] that suggest re-
placing the factor h2/3 in Eq. (C6) by hL(h) with L(x) =
coth(x) − 1/x the Langevin function. As a quantitative test
of our algorithm, we include in Fig. 2 also the results ob-
tained from solving the kinetic equation for the probability
density [48]. Very good agreement between both approaches
is found. Here and in the following, the size of the symbols
is larger than the numerical uncertainties if not indicated
otherwise.

1 2 3 4 5

0

1

2

3

4

5

6

FIG. 2. Mean dissipated heat per unit time as a function of the
amplitude h of an oscillating field (6). Different frequencies of the
field are applied as indicated in the legend. The ratio of Brownian
and Néel relaxation times was chosen as q = 0.1. Symbols denote
ensemble averages over stochastic simulations, while lines show
reference results obtained from solution to the corresponding kinetic
equation (14).
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FIG. 3. The coefficient of variation σQ/Qω is shown as as func-
tion of the dimensionless amplitude h of an oscillating magnetic field
(6). Various frequencies ω of the field are applied as indicated in the
legend. The ratio of Brownian to Néel relaxation time was chosen as
q = 0.1.

Within stochastic thermodynamics, the heat dissipated over
one cycle defined in Eq. (7) is a stochastic variable. Therefore
we can study not only the mean value as in Fig. 2 but its
statistics more generally. To do this, it is convenient to define
the centered moments

μn = 〈(Q̂ω − Qω )n〉 (25)

for n = 1, 2, . . . By definition μ1 = 0 and μ2 = σ 2
Q the

variance.
In Fig. 3, we show σQ/Qω, i.e. the standard de-

viation normalized with the mean value. This quan-
tity is known as the coefficient of variation and can
be interpreted as the relative spread of the random
variable around its mean value. Figure 3 shows that
σQ/Qω strongly deceases with increasing amplitude h
of the applied field for all frequencies investigated. How-
ever, even at relatively large field strengths we find σQ/Qω ∼
1, indicating that the typical spread in Q̂ω is comparable
to its mean value. This is an important finding, high-
lighting the importance of considering fluctuations in this
situation. It is also interesting to note that the variance
and the coefficient of variation depend nonmonotonically
on the frequency ω of the applied field. Appendix C
shows that such a behavior arises already in a weakly
driven system and results from equilibrium magnetization
fluctuations.

Next, we consider the normalized skewness coefficient de-
fined as

μ̃3 = μ3

σ 3
Q

= μ3

μ
3/2
2

. (26)

The skewness vanishes for symmetric distributions, i.e., if
positive and negative deviations from the mean value are
equally likely. Positive values of the skewness μ̃3 imply that
the tail towards larger values of Q̂ω is stronger, whereas the
opposite is the case for negative μ̃3. The normalized skewness

1 2 3 4 5
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FIG. 4. Normalized skewness coefficient μ̃3 defined in Eq. (26)
as function of the dimensionless amplitude h of an oscillating mag-
netic field (6). The same conditions and symbols as in Fig. 3 are used.

coefficient (26) is shown in Fig. 4 for different amplitudes h
and frequencies ω of an applied magnetic field. It is interesting
to observe that the skewness is nonmonotonic in the amplitude
as well as in the frequency of the applied field.

Having investigated the mean, variance and skewness of
the dissipated heat, Fig. 5 shows the underlying probability
density p(Q̂ω ), estimated from the empirical histogram via
kernel smoothing

p(Q̂ω ) ≈ 1

Nb

N∑
j=1

K (|Q̂ω − Q̂ j |/b), (27)

where Q̂ j denote the numerical value for the dissipated heat of
ensemble member j and b the smoothing length. We choose

-5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

FIG. 5. The probability density p(Q̂ω ) estimated from stochastic
simulations using Eq. (27) for an ensemble size of N = 107. Differ-
ent field strengths and frequencies of the applied field were chosen,
as indicated in the legend.
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FIG. 6. (a) Test of the detailed fluctuation theorem (11) for the fluctuations of the total entropy change �Ŝtot over one period. Symbols
denote simulation results for different field amplitudes and frequencies, as indicated in the legend, while the black solid line is the theoretical
result. Panel (b) shows a test of the approximate fluctuation relation (13) for the dissipated heat over one cycle. The ratio of the probabilities
p(−Q̂ω )/p(Q̂ω ) is shown versus the dimensionless heat Q̂ω/kBT . The same color coding as in panel (a) is used. The inset shows the same data
on a linear instead of a semi-logarithmic scale.

the Epanechnikov kernel, K (z) = (3/4)(1 − z2) if z < 1 and
K (z) = 0 else. The ensemble size of the stochastic simula-
tions is chosen as N = 106. For more accurate estimates of
the probability densities, some simulations were performed
with N = 107. Selecting appropriate values for b is known as
bandwidth selection problem. For the present case, we choose
b = 2�q̂ with �q̂ the bin width obtained from dividing the
interval from minimal to maximal value of Q̂ω/kBT into Nb =
500 bins of equal width.

First, it is reassuring to notice from Fig. 5 that the proba-
bility density p(Q̂ω ) is unimodal as one might have intuitively
expected. Next, as expected from the mean value shown
in Fig. 2, we find that the location of the maximum of
p(Q̂ω ) moves to larger Q̂ω with increasing amplitude h of
the applied field. In addition, a significant broadening of
the peak with increasing h is seen. Together with Fig. 3,
we learn that the width of the peaks grows less strong
with h compared to the mean value. From Fig. 5 we also
learn that the distribution p(Q̂ω ) depends sensitively on the
frequency of the applied field. Finally, Fig. 5 also shows
unequivocally the appearance of events with the opposite
sign of Q̂ω, i.e. where heat is not dissipated but absorbed by
the MNPs.

As mentioned in Sec. II C, the appearance of microscopic
events with both signs of total entropy change, dissipated
heat and both signs of work done is implied by stochastic
thermodynamics. The detailed fluctuation theorem (11) is a
very strong result that connects the probability of observing
events with positive and negative total entropy change. On the
other hand, we expect deviations from the relation (13) since
it does not apply to the present situation.

Having already calculated the trajectory dependent
dissipated heat over one cycle Q̂ω, we use Eq. (24) to find
the corresponding total entropy change for every trajectory.
To evaluate the corresponding expression, we use an accurate
and efficient algorithm for the numerical solution f (u; t ) of
the kinetic equation (14) of the diffusion-jump model [48].
Figure 6(a) shows that for all magnetic field strengths and
frequencies investigated, we find that all our numerical values

fall onto the same master curve exp [−�Ŝtot/kB] over three
decades within numerical accuracy. Therefore our numerical
simulations agree with the predictions from the detailed
fluctuation theorem (11). We also verified that our numerical
solution satisfies the integral fluctuation theorem (12) to
within 0.4%. Better accuracies can be obtained by further
increasing the ensemble size of the stochastic simulations,
however at a considerable computational cost.

From the data shown in Fig. 5 we plot in Fig. 6(b) the
ratio p(−Q̂ω )/p(Q̂ω ) versus Q̂ω. From Fig. 6(b) we find that
our numerical results agree rather well with the approximate
fluctuation relation (13). Upon closer inspection, however,
systematic deviations are clearly seen on a semi-logarithmic
scale, since the dynamics obeys the detailed fluctuation the-
orem (11) rather than (13) and the fluctuation relation (13)
holds only approximately.

We have seen above that the fluctuation relation (13) pre-
dicts the existence of trajectories with Q̂ω < 0. To quantify
this phenomenon, we define the probability p− that heat is not
released but absorbed,

p− =
∫ 0

−∞
p(Q̂ω )dQ̂ω. (28)

Note that p− can be obtained not only from the probability
density shown in Fig. 5 but is available directly from the
stochastic simulations via the relative frequency of trajecto-
ries with Q̂ω < 0. Figure 7 shows the probability p− as a
function of the amplitude h of the oscillating magnetic field.
We observe that the probability p− decreases with increasing
h. This finding is expected since the mean value increases
with h and the relative spread decreases (see Figs. 2 and 3).
Therefore large enough fluctuations that lead to negative val-
ues of Q̂ω are less likely to occur. Interestingly, the values of
p− depend nonmonotonically on the frequency of the applied
field. From Fig. 4, we find that the skewness is positive for
ωτB = 5 but negative for ωτB = 1, suggesting that the tail of
p(Q̂ω ) to negative values of Q̂ω is stronger for the τBω = 1.
However, p− is found to be smaller for ωτB = 1 compared to
ωτB = 5, mainly because the mean value is different in both
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FIG. 7. The quantity p− defined in Eq. (28) as function of am-
plitude h of oscillating magnetic field for various frequencies as
indicated in the legend. The ratio of the Brownian to the Néel re-
laxation time is chosen as q = 0.1.

cases. Therefore we conclude that the skewness needs to be
interpreted carefully and does not provide a reliable measure
of quantities like p−.

VI. DISCUSSION AND CONCLUSIONS

We studied the stochastic dynamics of MNPs in response
to oscillating external magnetic fields, taking into account
Brownian particle rotation and internal Néel relaxation.
Within the framework of stochastic thermodynamics, we an-
alyze fluctuations in magnetic losses and the resulting heat
dissipated by the MNPs. The corresponding mean value of
dissipated heat is related to the specific loss power or specific
absorption rate that has been studied intensively in recent
years due to its importance for MFH applications.

Here, we find that fluctuations of the dissipated heat
around the mean value are significant, with standard de-
viations being of the same order as the mean value. For
driven colloidal systems, fluctuation theorems relate the prob-
abilities of entropy production, work and heat in forward
and reversed processes under rather general conditions. We
verify quantitatively the validity of the detailed fluctuation
theorem for the total entropy production when applied to
the present situation. A corresponding fluctuation relation
for the dissipated heat does not apply to oscillating fields,
but is found to hold approximately. A consequence of this
fluctuation relation is the occurrence of microscopic trajec-
tories with negative values of the dissipated heat, i.e. where
heat is absorbed by MNPs rather than dissipated. While the
probability of these events depends on the frequency of the
applied field, we find them generally to be rather significant
for weak and moderate field strengths. The manipulation of
dissipated heat via external magnetic fields is not only fas-
cinating from a theoretical point of view, but might also be
highly relevant for applications of MNPs such as MFH in
particular, where local heating needs to be controlled rather
accurately.
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APPENDIX A: ENTROPY AND HEAT
IN THE DIFFUSION-JUMP MODEL

The explicit form of the master equation (14) of the
diffusion-jump (DJ) model is given by [37]

LB f (u; t ) = 1

2τB
[L2 f (u; t ) − L · [(u × h) f (u; t )]], (A1)

LN f (u; t ) = 1

2τN
[eu·h f (−u; t ) − e−u·h f (u; t )], (A2)

where τB and τN denote the Brownian and Néel relax-
ation time, respectively, L = u × ∂/∂u the rotational operator
and h = μ0μH/kBT the dimensionless magnetic field. For
convenience of notation, we here suppress the explicit time-
dependence of h(t ).

Along solutions of the DJ model (14), the rate of change
of the Boltzmann entropy (16) can be written as Ṡ = ṠB + ṠN,
where

Ṡα = −kB

∫
ln[ f (u; t )]Lα f (u; t )du, (A3)

with α ∈ {B, N} and we used
∫
Lα f du = 0 due to the conser-

vation of the normalization of f .
Inserting the explicit form (A1) for the Brownian contribu-

tion and performing partial integration we find ṠB = σB + jB,
where we defined

σB(t ) = kB

2τB

∫
1

f (u; t )
[L f (u; t )]2du � 0, (A4)

jB(t ) = −kB

τB
hS1(t ) (A5)

with the orientational order parameter S1 introduced after
Eq. (19). Note that the Brownian contribution to the entropy
flux is given by the Zeeman energy per τB. For simplicity
of notation, possible time dependence of the external field is
suppressed.

For the Néel contribution to the entropy change, we find
from Eq. (A2) again that the rate of entropy change can be
separated in a production and flux term, ṠN = σN + jN, with

σN(t ) = kB

4τN

∫
[eu·h f (−u; t ) − e−u·h f (u; t )]

× ln
eu·h f (−u; t )

e−u·h f (u; t )
du � 0 (A6)

and

jN(t ) = kB

τN

∫
u · h e−u·h f (u; t ) du. (A7)

Note that the form (A6) of the entropy production due to Néel
relaxation is well-known for Markov processes [29].

Next we calculate the dissipated heat. From Eqs. (9) and
(14), we find that also the dissipated heat can be separated
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into Brownian and Néel contributions, Q̇ = Q̇B + Q̇N, with

Q̇α = NkBT h ·
∫

u Lα f (u; t ) du. (A8)

Inserting the explicit form (A1), (A2) of the operators LB,N

into Eq. (A8), we find

Q̇B = kBT

τB

[
−hS1 + h2

3
(1 − S2)

]
, (A9)

Q̇N = −kBT

τN

∫
(u · h)e−u·h f (u; t ) du. (A10)

We note that Q̇N(t ) = −T jN(t ). Moreover, Q̇B and Q̇N vanish
in equilibrium as they should.

APPENDIX B: EFFECTIVE BROWNIAN
ANGULAR VELOCITY

In kinetic theory, it is common to define an effective ve-
locity v from the relation ∂ f /∂t = −∇x(v f ) [29,42]. For
the present case, we can define an effective Brownian angu-
lar velocity ωB from the Brownian contribution to the time
evolution (14) via the relation LB f = −L · (ωB f ). From the
explicit form (A1) of LB we can read off

ωB = 1

2τB
[u × h − L ln f ]. (B1)

Calculating ω2
B from Eq. (B1) and performing averages with

respect to f (u; t ), we find after integration by parts

〈
ω2

B

〉 = 1

(2τB)2

[
2h2

3
(1 − S2) − 4hS1 + 2τB

kB
σB

]
, (B2)

where we used the definition (A4) and the orientational order
parameters Sk .

APPENDIX C: HEAT FLUCTUATIONS
FOR WEAKLY DRIVEN SYSTEM

To better understand fluctuations in heat dissipated due
to oscillatory magnetic fields, we start from Eq. (7) and
define fluctuations in the heat dissipated over one period
Tω = 2π/ω as

δQ̂ω = −kBT hω

∫ Tω

0
[ut − 〈ut 〉] cos ωtdt (C1)

where ut and 〈ut 〉 are the components of ut and 〈ut 〉 parallel
to the direction of the applied field, respectively. Then, the
variance σ 2

Q = 〈δQ̂2
ω〉 can be written as

σ 2
Q = (kBT hω)2〈δu2〉

∫ Tω

0

∫ Tω

0
C(t1, t2) cos ωt1 cos ωt2dt1dt2

(C2)

with the magnetization auto-correlation function

C(t1, t2) = 〈[ut1 − 〈ut1〉][ut2 − 〈ut2〉]〉
〈[u − 〈u〉]2〉 . (C3)

After initial transients, we expect time-translational invari-
ance, C(t1, t2) = C(t1 − t2). We note that the correlation
function (C3) describes nonequilibrium fluctuations in a pe-
riodically driven system. Therefore expressions for C are in
general expected to be rather involved. For sufficiently weak
external driving, however, we may approximate Eq. (C3) with
the same form as the equilibrium correlation function,

C(t1, t2) = exp [−|t1 − t2|/τ ], (C4)

with an effective relaxation time τ . Inserting Eq. (C4) into
Eq. (C2), we obtain an explicit expression for the variance,

σ 2
Q = 2π (kBT )2h2〈δu2〉 ω/τ

1 + (ωτ )2

×
[

1 − ωτ/π

1 + (ωτ )2
(1 − e−2π/ωτ )

]
. (C5)

In general, we expect the relaxation time τ introduced in
Eq. (C4) to depend on the field amplitude h and frequency
ω. For weak driving, for which Eq. (C4) is better justified, τ

is approximately constant and can be identified with the effec-
tive relaxation time τeff introduced above. Even in this regime,
the fluctuations (C5) show an intricate and non-monotonic
dependence on the frequency ω of the applied field.

For weak fields, the linear response result for the mean
dissipated heat over one cycle is [12]

〈
Q̂ω

〉 = π

3
kBT h2 ωτ

1 + (ωτ )2
. (C6)

The coefficient of variation is defined as σQ/〈Q̂ω〉. From
Eqs. (C5) and (C6), we find that the coefficient of variation
first decreases with increasing frequency ω, reaching a mini-
mum near ωτ = 1 before increasing again. This behavior is in
qualitative agreement with the results shown in Fig. 3.
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