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Quantum Hall criticality in an amorphous Chern insulator
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We explore the critical properties of a topological transition in a two-dimensional, amorphous lattice with
randomly distributed points. The model intrinsically breaks the time-reversal symmetry without an external
magnetic field, akin to a Chern insulator. Here, the topological transition is induced by varying the density of lat-
tice points or adjusting the mass parameter. Using the two-terminal conductance and multifractality of the wave
function, we found that the topological transition belongs to the same universality class as the integer quantum
Hall transition. Regardless of the approach to the critical point across the phase boundary, the localization length
exponent remains within ν ≈ 2.55–2.61. The irrelevant scaling exponent for both the observables is y ≈ 0.3(1),
comparable to the values obtained using transfer matrix analysis in the Chalker-Coddigton network. Additionally,
the investigation of the entire distribution function of the inverse participation ratio at the critical point shows
possible deviations from the parabolic multifractal spectrum at the anomalous quantum Hall transition.
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I. INTRODUCTION

The discovery of the integer quantum Hall effect (IQH),
characterized by the quantization of resistance and dissi-
pationless chiral edge transport in a two-dimensional (2D)
electron gas under an external magnetic field, provides a
fundamental understanding of the topological phenomena in
condensed matter physics [1]. The quantum anomalous Hall
effect (QAH), as elucidated by Haldane, extends this phe-
nomenon to scenarios without an external magnetic field,
relying instead on the breaking of the time-reversal symmetry
intrinsically [2,3]. The modern understanding of this pre-
cise quantization is related to the topology of the underlying
Hamiltonian. For example, the Hall conductivity

σxy = e2

h
C

is related to the the Chern number C, a topological index
classifying the wave function in the momentum space [4].
The resistance quantization, therefore, is robust against the
disorder or shape of the sample. While we understand the
Hall quantization, the theory governing the plateau transitions
remains an active research area even now [5–8]. For instance,
the Pruisken’s σ model posits that the fixed points in the two-
parameter flow of dimensionless conductivities σxy and σxx

describe the IQH critical point [9–11]. However, quantitative
predictions of the critical parameters within this field theory
prove challenging, primarily due to the strong coupling nature
of the fixed point σxx ∼ O(1). As it turns out, perturbative cal-
culations are only feasible in the metallic limit when σxx � 1.

Therefore, numerical investigations of the critical point
are crucial for supporting proposed theories. The Chalker-
Coddington (CC) network model [12] stands as the paradigm
for numerical simulations and has been instrumental in pre-
dicting the localization length exponent νIQH � 2.55–2.61
[8,13–19]. In tight-binding square lattices, modeling the

lowest Landau level, this value has been confirmed [20,21],
while the scaling of the conducting extended states in Lan-
dau level models predicts a slightly smaller exponent νIQH �
2.4–2.48 [22–24]. Recently, the IQH transition represented
in a dual composite-fermion model on a square lattice was
found to be also consistent with CC network calculations [25].
However, predicting the leading irrelevant scaling exponent in
numerical simulations remains challenging; nonetheless, mul-
tiple studies predict a value y ≈ 0.4–0.6 [26–29]. Despite the
majority of the work suggesting an exponent within the range
of νIQH ≈ 2.5–2.6, recent conformal field theory studies have
conjectured an exponent ν = ∞ with y = 0 [30,31]. Such a
possibility has been tested on the CC model. Still, with finite-
size numerics, it is challenging to conclude the logarithmic
scaling of σxx(L) with L towards the fixed-point value σ c

xx =
2/π with certainty [32]. These factors collectively emphasize
the formidable challenge in the numerical investigation of
the IQH critical point, primarily due to significant finite-size
corrections.

On the contrary, recent experiments observe a critical ex-
ponent significantly smaller, ν � 2.38 [33,34]. One possible
explanation for the discrepancy is the presence of electron-
electron interactions in experiments. Although the short-range
interactions are irrelevant in renormalization group (RG)
sense at the critical point and would not affect the critical
properties [35,36], the long-range nature of the Coulomb
interaction could make a significant change. However, such
proposals are difficult to verify in numerical studies. An-
other possible explanation is the effect of geometric disorder
[37,38]; such models in the continuum limit could be mapped
to Dirac fermions in random potentials or equivalently to
a 2D quantum gravity. The argument is the following:
the regular CC model does not capture all possible dis-
order potentials that could be present at the IQH critical
point; the random network accounts for those missing po-
tentials. Indeed, the numerical calculation found an exponent
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ν � 2.37(2), which compares well with the experimental
observation.

In this work, we revisit this aspect by considering a quan-
tum anomalous Hall transition in an amorphous system devoid
of any long-range crystalline order [39–50]. Our motivation
for taking such a model is twofold. First, the 2D disordered
Dirac fermions model in the continuum limit was conjec-
tured to share the universality class with the IQH transition
[51]. This connection has been recently investigated numeri-
cally in a model of disordered Chern insulators on a square
lattice [52]. These investigations reveal that at E = 0, the
localization length exponent is ν ≈ 2.3–2.36, similar to
the geometrically disordered CC model [37]. However, at
finite energies E > 0, the exponent closely aligns with the
anticipated IQH value.

Second, we aim to scrutinize whether the QAH transi-
tion in the amorphous system deviates from the conventional
lattice model. This inquiry gets further impetus from recent
numerical work indicating that the amorphous topological
transition potentially belongs to a different universality class,
with the possibility of nonuniversal exponent values falling
within the range 1 � ν � 1.35 [53] across the topological
transition. The suggestion is that this unexpected shift in the
exponent arises due to the proximity of the percolation tran-
sition to the topological transition of the model. While the
previously studied model belongs to the superconducting class
D in the 10-fold classification of topological matter [54], it
becomes all the more crucial to investigate such nonuniversal
behavior within the amorphous unitary class A, where pre-
sumably, one could expect microscopic details not to affect
the critical properties.

While numerous studies have addressed the topological
transition in amorphous models (see Ref. [49] for a review),
a significant gap exists in investigating the critical proper-
ties of the QAH transition to the same precision typically
performed at the IQH transition using the CC model or
tight-binding lattices in the presence of an external mag-
netic field. We employ two complementary observables, the
two-terminal conductance and single-particle wave-function
multifractality, to probe the transition and its associated
critical properties. The disordered average conductance g
signals the transition from the topological phase with a fi-
nite number of edge modes to the trivial phase with g = 0.
At the IQH transition, numerical studies in the CC model
found that it is universal gc � 0.58(3) [e2/h] with consid-
erable mesoscopic fluctuations, 〈(δg)2〉c � 0.081(5)(e2/h)2

[26,28,55,56]. It is interesting to note that the ∼20% devi-
ation of gc from the critical transverse conductivity σxy =
1/2 [e2/h] is not related to numerical errors and is be-
lieved to be due to the multifractal nature of the wave
functions [28].

The different moments of the wave-function amplitudes
are characterized by an infinite set of critical exponents τq

defined via the scaling of the inverse participation ratios (IPR)
Pq = ∫

dr|ψ (r)|2q ∼ L−τq , with the system size L. At the
IQH transition, the multifractal character of the wave function
shows up by a nonlinear dependence of τq on q [7]. The
critical theories of IQH put severe restrictions on these ex-
ponents; for instance, the conformal theory of IQH transition
would suggest an exact parabolic spectrum of the anomalous

dimensions �IQH
q ≡ τ

(p)
q − 2(q − 1) = γ q(1 − q), with

γ = 1
4 [30,31,57,58]. However, several recent studies have

seen substantial deviations from exact parabolicity in exact
numerics on the CC model [27,59,60]. What this would imply
for the conformal invariance of the critical point is a matter
of an active field of research currently [30,31,57].

Our study demonstrates that the Chern amorphous system
exhibits universal features akin to quantum Hall criticality.
Specifically, we find an exponent ν � 2.60(5), consistent with
the current precise estimate of ν = 2.61(1) [13,17,19,20],
regardless of the approach taken to the transition at an en-
ergy E = 0 with an irrelevant scaling exponent y � 0.3(1).
Both multifractal analysis and finite-size scaling of the two-
terminal conductance corroborate this estimation. Notably, the
conductance displays a wide distribution at criticality, remi-
niscent of class A universality. Additionally, the multifractal
spectrum adheres to the reciprocity relation �q = �1−q re-
specting global conformal invariance. We observe a deviation
in γ ≈ 0.246(2) from its expectation γ = 1

4 ; moreover, within
the accessible system sizes, the flow towards the asymptotic
value with system sizes has a different sign compared to
previous data in the CC network [59,60]. Finally, our data
support possible quartic corrections to the parabolic spectrum,
with a fixed curvature as the system sizes increase. These
observations provide a comprehensive view of the critical
behavior of the amorphous Chern system.

II. MODEL

A. Review of different disorder models

Here, we review different models of disorder that have been
used previously to model the IQH critical point and study its
critical properties.

Continuum potentials. The continuum description of the
disorder, potential V (r), is usually the starting point of any an-
alytical calculations. It implies modeling of the disorder either
with white-noise disorder, i.e., V (r)V (r′) = δ(r − r′), or with
a finite correlation length such as V (r)V (r′) ∝ 1

2πσ 2 e|r−r′|2/2σ 2
,

σ is the standard deviation. Similarly, in several numerical
works, the lowest Landau level model with continuum poten-
tial has been studied, but in many of these works the exponent
is slightly smaller than the CC network [see, for example,
Ref. [24], where V (r) = ∑

i δ(r − ri )].
Lattice models. The standard model to study the IQH tran-

sition is defined on a 2D square lattice H = −t
∑

〈i j〉(c
†
i c j +

H.c.) + ∑
i εic

†
i ci, where εi represent the onsite disorder, usu-

ally taken from uniform distribution. In the presence of a
magnetic field, the hopping matrix elements are modified via
the Peierls substitution. This crystalline microscopic model of
noninteracting electrons usually provides an exponent that is
concomitant with the semiclassical network model, for exam-
ple, Ref. [20], or tight-binding model for QAH [52].

Network model. The most celebrated model of IQH is
the Chalker-Coddington network model [12]. In the limit of
sufficiently smooth (on the scale of magnetic length) disorder
potential, the electron’s motion can be treated within the semi-
classical approximations. The CC model introduced a network
of saddle points connected via the equipotential lines along
which the electrons drift and acquire a random phase as they
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pass through the node. The model represents the IQH criti-
cality for symmetric reflection and transmission amplitudes
and has been widely used to study the critical properties; see,
for example, Ref. [7]. In the continuum limit, the CC model
reduces to the nonlinear-σ model [61].

B. Amorphous lattice

On the contrary, an amorphous lattice has no crystalline
order, as is the case for a regular tight-binding model. The
amorphous models are constructed by placing random N
points confined to a 2D square box of area L2 characterized
by the density ρ = N/L2. The real-space coordinates of the
lattice points are random variables sampled from a uniform
distribution x, y ∈ [0, L]. Each site accommodates two-orbital
degrees of freedom. Fermions hop on this random graph to
sites within a circular ring of radius R. The model was intro-
duced in Ref. [39] and has the form

H = −
∑

i,α; j,β

Tαβ (ri j )c
†
i,αc j,β , (1)

with the orbital hopping matrix given by

Tαβ (ri j ) = d · σ Ce−r�(R − r), (2)

with

d0 = t0
2

, dx = −1

2
cos θ (i + cos θ ),

dy = i

2
sin θ

(
i

2
sin θ − 1

)
, dz = −1/2,

for ri j �= 0 (interorbital hopping) and (d0, dx, dy, dz ) =
(0, 1

2 , 1
2 , 2 + M ) for ri j = 0 (intraorbital hopping). Here σ =

(σ0, σ1, σ2, σ3) and d = (d0, dx, dy, dz ) are four-component
vectors with σ0 = 1 and σi is the ith Pauli matrix. And,
ri is the position vector of the ith lattice site (with respect
to a fixed Cartesian system), ri j = ri − r j, |ri j | = r, θ being
the angle that the vector ri j makes with the positive x axis.
C = e for ri j �= 0, else C = 1. The orbital hopping matrix is
modulated by an exponential decay with distance away from
a lattice site. M is the mass parameter that creates the dif-
ference in onsite energy and breaks the sublattice symmetry.
The Hamiltonian, not being a real symmetric matrix, breaks
the time-reversal symmetry. A finite t0 �= 0 breaks the charge-
conjugation symmetry and renders the system in unitary class
A. The parameter t0 distinguishes model (1) from that stud-
ied in [53]. For the simulations done in this work, we keep
t0 = 1

4 , R = 4 fixed and vary the parameters M and ρ to probe
the scaling behavior.

The system hosts a nontrivial topological phase charac-
terized by the real-space invariant, Bott index [62], in the
parameter space of the Hamiltonian as shown in Fig. 1, right
panel. We study the critical properties of the topological tran-
sition in two different points of the phase diagram (marked
with dashed lines). For the conductance calculation, the lead
is connected to the left and right edges of the system, as shown
in Fig. 1. The periodic boundary is used for the multifractal
calculation at the critical point.

FIG. 1. Setup for two-terminal conductance g calculations.
Square-lattice leads are connected to a scattering region with random
lattice points. The system shown here has system size L = 8 with a
density of lattice points ρ = 0.7 and with open boundary condition
perpendicular to the transport direction. The gray lines connect the
lattice sites within a hopping distance of R = 4. One extra slice of
regular lattice sites (indicated with red dots) is embedded into the
scattering region on both sides for a smooth connection to the ideal
square leads. Right panel: Shows the qualitative topological phase
diagram of the model (1). The symbol is calculated using the Bott
index (for system size L = 48 and a single lattice configuration), and
the dotted line is a guide to the eye.

III. OBSERVABLES

A. Conductance

In two-terminal conductance measurements, infinite
translation-invariant leads are connected to a finite phase-
coherent scattering region, the latter modeled by tight-binding
Hamiltonians of the form in Eq. (1). The electron wave func-
tions in the leads are plane waves φn = χne±ikn , where kn is
the longitudinal momentum for the nth propagating mode,
n = 1, 2, 3, . . . , N , and χn is the transverse component of the
wave function. The 2N propagating modes (for left and right
leads), also called scattering channels, form a basis for the
incoming waves (ψ in ) and the scattering matrix S transforms
this incident wave in the left lead to outgoing waves (ψout ) in
the right lead as follows:

ψout = Sψ in, S =
(

r t ′
t r′

)
, (3)

with N × N reflection matrices r and r′ (from left and right
boundaries) and transmission matrices t and t ′ (from left to
right and from right to left). The transmission matrix t allows
the calculation of differential conductance by Landauer for-
malism and is expressed as

g = e2

h
Tr(t†t ), (4)

where g is the dimensionless conductance (in units of e2/h).
The transition to an IQH state is characterized by the ap-

pearance of quantized conductance plateaus. We adopted the
longitudinal conductance g (overline denotes the disorder av-
eraging) as an order parameter to study the zero-temperature
quantum phase transition that occurs as we traverse between
phases of different topological numbers. The conductance for
the model studied is a function of model parameters, density,
and energy, i.e., g(L; M, ρ, E ). The parameters M, ρ, E form
a critical surface in the parameter space, where the system
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is IQH critical [63]. We study only the E = 0 critical con-
ductance by tuning the parameters M and ρ, and the energy
dependence of the g at the critical point is presented in the
Appendixes.

We utilize a square geometry of size L × L (with the
largest system size being L = 768) as the scattering region for
conductance simulations at E = 0. The two-terminal setup is
shown in Fig. 1. To maintain a smooth connection with the
lead, we added an extra layer of regular sites at the end of
the sample, maintaining the density of sites in the y direc-
tion fixed. For a given choice of parameters, conductance is
calculated using the open-source quantum transport package
KWANT [64].

Finite-size scaling. Finite-size scaling of observables at
an integer quantum Hall critical point poses serious nu-
merical challenges. Several numerical works underestimated
the localization length exponent ξ ∼ |x|−ν by assuming a
one-parameter scaling collapse F (L1/νx), for some tuning pa-
rameter x ignoring the irrelevant correction to scaling. Since
the work of Slevin and Ohtsuki [13], the importance of irrele-
vant scaling operator at IQH critical point is well understood;
the correction is more significant for smaller system sizes.

The order parameter g (or equivalently ln g) is expanded in
terms of leading relevant scaling observable to an expansion
order NR given by

g = F0(x) + b0L−y F1(x) + c0L−2y F2(x), (5)

where F j = ∑NR
n=0 a jnxn and x = (M − Mc)/McL1/ν , Mc be-

ing the critical mass parameter, ν and y are the leading relevant
and irrelevant exponents, respectively, and (b0, c0, a jn) are
expansion coefficients. The irrelevant expansion is kept to a
maximum order of two to limit the number of fitting param-
eters; it turns out that at least two irrelevant scaling variables
are needed to address the correction to scaling. The expan-
sion has 3(NR + 1) + 3 number of unique fitting parameters
(b0, c0, a jn, ν, y, Mc). We studied the stability of the fit by
varying the order of expansion NR and also the order of the
irrelevant expansion in our analysis (see Appendix C for fur-
ther details). The fitting procedure gives the best estimates of
fitting parameters, and Eq. (5) can be used to reconstruct the
scaling function g.

To observe the scaling collapse, the irrelevant contribution
to the order parameter is subtracted to get the corrected order
parameter (gcorr) in terms of the relevant scaling operator as

gcorr = g − b0L−y F1(x) − c0L−2y F2(x). (6)

When plotted with the parameter M̃L1/ν , this function shows a
one-parameter scaling collapse, and the fitted function comes
as a by-product of this scaling analysis.

B. Multifractality

The multifractal spectrum with the exponents τq is a
characteristic fingerprint of the critical point of Anderson tran-
sitions [7]. It describes the system-size scaling of moments of
wave functions ψ (r) at criticality:

Pq =
∑

r

⎛
⎝ ∑

σ=↑,↓
| �σ (r) |2

⎞
⎠

q

∼ L−τq . (7)

The overline indicates an average over an ensemble of disor-
der samples and σ the two degrees of freedom at each lattice
site.

In contrast to previous works, where the multifractal
spectrum usually characterizes the critical point, here, we gen-
eralize the notion of the critical multifractal (MF) exponents
τq to an effective exponent. It is effective in the sense that
it is defined also away from the critical point, where wave
functions generically Anderson localize, i.e., τq → 0 in the
limit of large system sizes L.

Similar to works about conventional localization-
delocalization transitions [7,65] and topological phase
transitions in other symmetry classes [66], we employ a
system-size scaling approach. We define effective multifractal
exponents as the logarithmic finite difference between
subsequent system sizes,

τ̃q(X, L) = ln〈Pq(X, L)〉 − ln〈Pq(X, L/2)〉
ln L − ln L/2

, (8)

where X is the tuning parameter across the phase transition
in the vicinity of the critical point at Xc [63,65,67,68]. Here,
·̃ denotes effective multifractal exponents: It is defined even
for nonfractal states away from criticality, and they are ob-
tained for a finite system of size L. In that sense, they are
not actual exponents governing a power-law scaling. At the
critical point for large L, the τ̃q reduces to an actual exponent
as in Eq. (7); and τq = limL→∞ τ̃q(L) yields the multifractal
spectrum of the IQH transition.

To extract the scaling of the localization length close to
the critical point, we monitor the system-size dependence
of the effective MF exponent τ̃q. It should be stable at the
critical point and diverge towards zero in the phases nearby.
For finite system sizes L the effective exponent τ̃q encodes the
information about the localization length of the system away
from the critical point. Therefore, the scaling of the localiza-
tion length translates to the functional dependence of the MF
dimension on the system size in the vicinity of the critical
point. Similarly to other dimensionless quantities which are
sensitive to the localization length, such as the conductance as
introduced in the previous section, this will allow us to extract
the localization length exponent ν.

The (effective) anomalous dimension is defined as �̃q =
τ̃q − d (q − 1). In particular, it has been hypothesized that at
the critical point, the anomalous MF dimension should be
exactly parabolic with

�IQH
q = γ q(1 − q) with γ = 1

4 , (9)

which serves as our benchmark to characterize the QH critical
point [31].

Numerically, the linear system size L of the Hamiltonian
(1) is scaled between 16 and 768. We use the implicitly
restarted Lanczos method with shift invert at zero energy, the
routine ARPACK as implemented in SCIPY [69], to calculate the
five lowest-lying eigenvectors of the finite-size Hamiltonian
matrix. The number of disorder realizations considered per
system size is summarized in Table I.
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FIG. 2. Finite-size analysis of the mean conductance g and ln g.
(a) Show the raw conductance data as a function of the mass parame-
ter M for different system sizes L = {32–768} with density ρ = 0.7.
Shift in the crossing point with successive system sizes indicates a
strong finite-size effect. (b) The corrected conductance gcorr using
Eq. (6) with NR = 2. (c) Show the scaling collapse of the data
with ν � 2.58(2), and Mc � −2.145(1) with a χ 2 ≈ 1.22. For better
visibility, only a few system sizes are shown. Inset shows the scaling
collapse of the ln gcorr. with similar leading exponent ν ≈ 2.55(5).
The data collapse is obtained with an irrelevant scaling exponent
y ≈ 0.36.

IV. NUMERICAL RESULTS

A. Conductance

The raw data for mean conductance g close to the tran-
sition, scaling with system size L and mass parameter M,
is shown in Fig. 2(a). The data close to the critical point
has relevant and irrelevant contributions, with the irrelevant
scaling being more pronounced for the smaller system sizes.
This is evident from data not showing a unique crossing point,
implying that the asymptotic limit has yet to be reached. We
extract the critical parameters (ν, y, Mc, an, bn) by fitting the
data to the scaling form in Eq. (5) through a χ2-minimization
procedure. The fitting parameters thus obtained, along with
the χ2 value, are shown in Table II. We estimate the leading
relevant exponent for this transition to be ν � 2.60(5), which
agrees reasonably well with other numerical studies of integer
quantum Hall criticality. The fitted value of the irrelevant
scaling exponent is y � 0.3(1).

With the estimated scaling parameters from the above fit-
ting procedure, we estimate the pure relevant scaling near the
critical point using Eq. (6). These corrected conductance gcorr.
data are presented in Fig. 2(b). The data here show only the
dependence on relevant scaling variables and offer a unique

FIG. 3. Finite-size scaling analysis of the logarithm conductance
ln g by varying the density ρ. The mass parameter is fixed at
M = −1. The main panel shows the scaling collapse of ln gcorr. after
subtracting the irrelevant correction (similar analysis as in Fig. 2).
The critical parameters obtained are shown in the figure and in
Table II. The inset figure shows the raw data at various densities and
the system sizes L = {64–512}.

crossing point as a function of L and M. These corrected data
show a one-parameter scaling collapse with the joint variable
of M and L. This is shown in the lower panel of Fig. 2(c) along
with the scaling function, and we get an excellent collapse
with a χ2 ≈ 1.2.

The scaling collapse for the observable ln g is displayed in
the inset in Fig. 2(c), along with the estimated critical parame-
ter is ν � 2.55(5), which is, however, slightly smaller than the
g scaling but overlaps within our 1 σ error bars. We believe
the discrepancy comes from the instability associated with the
multiparameter fits as documented in Tables II and III.

1. Varying the density

Additionally, we monitor the topological transition at a
different point on the critical surface by changing the den-
sity of particles ρ in the system, keeping the area A fixed.
We keep the mass parameter fixed at M = −1. The data for
this simulation are presented in Fig. 3. The scaling analysis
follows a procedure similar to that in Fig. 2. The results of
the scaling analysis are presented in Table III. The estimated
irrelevant exponent is y ≈ 0.174(2), and the leading relevant
exponent agrees with the analysis in Fig. 2. We found a similar
νIQH ≈ 2.61(9) for this transition; however, within the error
bars, it is not different from the exponent found with varying
M. However, the χ2 is significantly bigger for this transition
due to the unavailability of larger L at this transition.

2. Conductance distribution

The fluctuation at the critical point is monitored, and the
data for logarithm conductance (ln g) distribution are pre-
sented in Fig. 4(a). The IQH critical point is marked by a
scale-invariant conductance distribution with a wide range
of conductance values showing strong fluctuation. The es-
timated first and second moments of this distribution are
found to be g � 0.67(2)[e2/h] and var(g) � 0.08[(e2/h)2].
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FIG. 4. (a) Shows the scale-invariant conductance distribution at
the estimated critical point Mc � −2.146. For small system sizes, the
finite-size effects are visible in the tail of the distribution. (b) High-
lighting the scaling of the g close to the critical point. The solid line
indicates the two correction terms mentioned in the legend with y
given in the legend. Depending on the precise value of the Mc the y
also changes as the gc.

The distribution peaked around ∼e2/h indicating that with
the open boundary, one transport channel [the edge mode
in the Chern model (1)] is dominating the transmission; this is
reminiscent of the conductance distribution P(ln g) in quasi-
one-dimensional geometry [70].

The data shown in Fig. 4(b) observe the correction to
these moments with the irrelevant scaling exponent y hav-
ing strong variation depending on the variability of Mc that
arises. Nonetheless, the observed y � 0.4 is smaller. It is
important to note that the mean conductance data show cor-
rections with two irrelevant terms with opposite signs within
the system sizes studied. The reported variance at the critical
point matches reasonably well with the reported values in
the literature [26], and is consistent with the fact that the
variance is almost an order of magnitude smaller than the
mean conductance.

B. Multifractality

1. Localization length exponent ν

In Fig. 5, we show the effective MF exponent at q = 0.5
across the QH transition at ρ = 0.7. Far from the transition
at Mc ≈ −2.144, the effective exponent does not converge to
a finite value when increasing the system size. This indicates,
as expected, Anderson localization inside the trivial (M > Mc)
and the topological phase (M < Mc). However, at criticality,
the effective exponent for different system sizes coincides (up
to irrelevant corrections) approximately with the QH critical
value, i.e., �QH

q ∼ 1
4 q(1 − q), also found in the transport

calculation.
Here, we analyze the vicinity of the critical point. In

Fig. 5 (right panel) we rescale the tuning parameter M →
[M − Mc(L)]L1/ν and observe a collapse with νIQH ∼ 2.6. As
the effective dimension τ̃q is a direct measure of localization,
this indicates the localization length exponent to be consistent
with the results from the conductance calculation and with
universality across different models of the IQH effect.

We extract the curvature of the data shown in Fig. 5 to
visualize residual irrelevant finite-size corrections and analyze
its finite-size scaling. To this end, we fit the data with a

FIG. 5. Effective anomalous MF exponent across the IQH transi-
tion at ρ = 0.7 for the moment q = 0.5 for several system sizes (left)
and approximate collapsed with νIQH ∼ 2.6 (right). The horizontal
line indicates the value of �q/q(1 − q)|q=0.5 for parabolic prediction
at the IQH transition (9). The finite-size correction is taken into
account with the L-dependent critical mass term M̃c(L).

polynomial function of third order

τ̃q = τq + τ̃ ′′
q (M − Mc)2 + τ̃ ′′′

q (M − Mc)3 (10)

with four fitting parameters τq, τ̃
′′
q , τ̃ ′′′

q , and Mc. Asymptoti-
cally, the curvature should scale with the localization length
exponent τ̃ ′′

q ∼ L2/ν . For finite sizes, we assume additional
irrelevant scaling corrections with at least one exponent y of
the form

τ̃ ′′
q ∼ L2/ν (1 + a L−y + b L−2y . . .). (11)

In Fig. 6 the fitted curvature τ̃ ′′
q for different q = 0.5, 1.5

is shown, where the asymptotic finite-size scaling, assuming
νIQH, has been subtracted.

Ideally, if universality were true and irrelevant corrections
were excluded, the data should follow a horizontal line. In re-
ality, irrelevant corrections are present. However, the data are
consistent with the assumed exponent νIQH ∼ 2.6; additional
finite-size corrections can explain the deviations. The irrele-
vant corrections can be fitted with a relatively large inaccuracy
with an exponent y ≈ 0.6(2).

In the lower panels of Fig. 6 show the convergence of the
remaining relevant fitting parameters, i.e., the critical point
Mc, and the MF dimension itself is shown. Seemingly, the
latter lies consistently below the expected value, assuming
parabolic multifractality (dashed line), and also significantly
below the value observed in CC network simulations [59,60].
As this raises questions about the universality of the CC result
for this amorphous system, we discuss this in the following
by analyzing the MF dimensions at the critical point in closer
detail.

C. Multifractal properties at the critical point

1. Reciprocity

It was shown that at the Anderson critical point, the sym-
metry relation between multifractal exponents generically is
exact [71]. This was checked numerically at the IQH transition
previously [59]. The symmetry �q = �1−q implies that the
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FIG. 6. (a) Shows the residual finite-size dependence of the
renormalized curvature τ ′′

q L−2/νIQH as a function of system size L
for two different values of q = 0.5, 1.5 with νIQH ≈ 2.6. The shaded
region gives a variability of y between 0.4 � y � 0.8. The dashed
line indicates a y = 0.6. (b) The 1/L dependence of the finite-
size critical mass parameter M̃c(L). The dashed line indicates the
Mc � −2.143(1) obtained from the interpolation of the data fit-
ting two subleading corrections with y ≈ 0.6. (c) The finite-size
dependence of the prefactor γ̃q(L) of the quadratic term of �q as
defined in Eq. (9).

ratio

rq(L) = L2 (2q−1) Pq

P1−q
(12)

will cancel the leading L dependence. This is referred to as
the reciprocity relation. Further, subleading corrections are
expected to be small in the asymptotic limit. Thus, it is a
way to diagnose whether the numerically accessible system
sizes are large enough to be in the scaling regime. However,
recent works suggest that reciprocity develops before the true
asymptotic limit of QH criticality is achieved [72]; therefore,
solely depending on the convergence of the reciprocity re-
lation could be misleading and has to be taken with care.
Nonetheless, Fig. 7 demonstrates the reciprocity relation for
different q values. With increasing system sizes L = 32–768,
the rq becomes almost independent of the system sizes within
residual statistical noise.

2. Probing parabolicity: IPR

We compare the wave-function statistics to the prominent
parabolic prediction [30,57,58]. The IQH criticality was
predicted to come with an exactly parabolic multifractal
spectrum with γ = 1

4 . This, in turn, was questioned by
several numerical studies of the IQH transition, all in
Chalker-Coddington networks [59,60] finding higher-order
corrections to parabolicity.

To the best of our knowledge, this has never been
checked in an amorphous model of anomalous quantum

FIG. 7. Verifying the reciprocity relation rq at the critical point
for q = −0.1, 0.3, 0.8. The convergence is seen already for L � 27,
with slight deviations, less than 0.1%, possibly indicating residual
statistical noise.

Hall transition. To this end, we perform a detailed study
at the critical point, which was extrapolated from the con-
ductance calculation in the previous section, at (ρc, Mc) =
(0.7,−2.144). The distribution functions for a few moments q
are shown in Fig. 8 (first column). The shapes of the distribu-
tion functions become almost invariant for the larger system
sizes but scale with a power law of the system size. In the
second column, the horizontal axis has been rescaled, with the
exponent expected from the exact parabolic prediction τ

(p)
q . If

the prediction is correct, we expect a collapse for large system
sizes, at which irrelevant finite-size corrections no longer play
a role. Indeed, for q = −0.2, 0.5 the collapse seems to hold
approximately. However, on closer quantitative inspection,
we observe a residual drift of the distribution, particularly
visible for q = 1.5. The third panel shows this residual drift of
the mean. Assuming perfect parabolicity with γ = 1

4 and no
irrelevant corrections, it should be a constant for all q. Instead,
we see significant corrections, larger than the statistical error
bars.

However, even though the deviations are significant, it is
difficult to determine their origin conclusively: In particular,
q = 1.5 and q = 0.5 show a significant curvature. This is a
sign that even though the reciprocity is already converged,
residual irrelevant finite-size corrections remain. To deter-
mine their exponent, larger system sizes would be necessary.
Potentially, several irrelevant exponents could play a role
[29].1

The curvature seems small (of the order 10−3) in particular
for lower q’s. It might be too small to explain deviations from
the collapse in the center panels. In this case, the remain-
ing slope of the curves in the right panels is a correction
to the parabolic prediction of the multifractal dimension in
Refs. [31,57]. This scenario would be a strong hint in op-
position to the marginal scaling hypothesis, similar to the
localization length exponent found in the previous sections,
which is consistent with the universality of the IQHE. Devia-
tions from parabolicity and the predicted parabolic prefactor
γ = 1

4 would also fully be consistent with the literature

1Notably, the convergence of the residual IPR has been observed
in the spin quantum Hall critical point, class C for selective q = 2, 3
values [66]. Regardless, it has been firmly established that class C
has quartic corrections in the MF spectrum [66,73].
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FIG. 8. Showing the flow of the distribution of Pq for three different q = −0.2, 0.5, 1.5 with system sizes at the critical point Mc � −2.144
for different system sizes L = {16–768}. First column: Shows the raw IPR data with system sizes. Second column: Shows the distribution of

the logarithm of reduced IPR, ln(PqLτ
(p)
q ), assuming a parabolic multifractal spectrum (9). The third column shows the residual system-size

dependence of the reduced IPR with system sizes. The reduced IPR is expected to saturate in the asymptotic limit for all q values for a parabolic
spectrum. We observe significant finite-size corrections for all q values.

on the well-studied Chalker-Coddington networks [59,60].
Assuming the latter scenario, i.e., the imperfect collapse being
mainly attributed to deviations from parabolicity, it would be
highly interesting to compare the resulting corrections to the
multifractal dimension with the CC network results.

3. Probing parabolicity: Anomalous dimension

In Fig. 9, we show the anomalous part of the multifractal
dimension as a function of the moment q, calculated by the
numerical derivative (8) for increasing system sizes. The ver-
tical axis has been divided by the parabolic part of the MF
spectrum to highlight possible deviations. The data are shown
without assuming a fitting function, as this is a considerable
source of errors and might lead to misinterpretations regarding
the presence of higher polynomial terms in the spectrum.

There are several things we can comment on based
on Fig. 9:

(1) The effective anomalous dimension has not converged
to the parabolic prediction in Eq. (9) for the available system
sizes.

(2) The shape of the anomalous dimension as a function
of q seems stable across the shown system sizes.

(3) The offset on the vertical axis is still shifting with
system size to larger values.

All three of these observations are consistent with what
previous studies found when studying the MF spectra of

CC networks (at much higher precision) [59,60]. Therefore,
it may be possible that the deviations we observed in the

FIG. 9. Highlights the deviation �q(L)/q(1 − q) from the
parabolic multifractal spectrum (9). The data are shown without as-
suming any fitting function and using the pseudonumerical derivative
as defined in Eq. (8) to access the approximate τq directly at the
critical point Mc � −2.144 for different combination of system sizes.
The dashed line is a guide to the eye with a curvature ∼4.1 × 10−3.
The right-hand horizontal lines indicate the flow of the minimum of
these curves with system sizes.
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FIG. 10. Show the flow of the offset b0(L), and the curvature
b2(L) with system size, which is extracted from Fig. 9 using Eq. (13).
Inset reports the value of the three possible extrapolations with
y = 0.3, 0.4, 0.6. (b) Within the error bar the curvature b2(L) shows
convergence with increasing system sizes. The error bar uses the
standard bootstrap procedure with 2σ confidence interval [74].

previous section are actually due to nonparabolicity, even in
the asymptotic limit. This interpretation, however, needs to
be taken with great care since the statistical quality of data
in the present model and, more importantly, the available
system sizes are significantly smaller than necessary to make
a definite statement.

Offset convergence. Another aspect of the above data is
worth noting: Similarly, as in the previous sections, we ob-
serve a shift of the data to larger values of the anomalous
dimension as we increase the system size. This is in contrast to
all previously studied realizations of quantum Hall criticality:
For instance, in [59], the shift was in the other direction,
coming from larger values of the anomalous dimension. This
means that even though all previous studies, including high-
precision CC data, have not been able to converge the offset of
the data (in contrast to the reciprocity relation and the quartic
curvature), this may enable us to give strict lower and upper
bounds for the offset as well, assuming its universality across
different models in the asymptotic limit.

4. Probing parabolicity: Quartic curvature

Partially motivated by Ref. [68], we characterize the resid-
ual curvature in Fig. 9 as

γq = b0(L) + b1(L)
(
q − 1

2

) + b2(L)
(
q − 1

2

)2 + · · · .

(13)

At the IQH critical point in the asymptotic limit, the con-
jecture is b0(L) = γ = 1

4 , and b1(L), b2(L) → 0. In Fig. 10,
both the parameters are shown as a function of system size.
The finite-size extrapolation of the offset b0(L) = b̃∞ − c̃/Ly

is shown in Fig. 10(a) assuming there are different values
of the irrelevant exponent y. We note that with a smaller
y = 0.3, the offset approaches b̃∞ → 1

4 ; however, given the
fit window spans less than one decade, and the considerable
uncertainty in the data, a smaller b̃∞ can not be excluded.
While the offset flows with system size, the curvature within
the error bars largely remains unchanged. Nonetheless, with
improved statistics and system size, the flow toward vanishing
offset can not be ruled out within our study. Current data
seem to converge to b2 ∼ 0.004(10), which is in the similar
window with an earlier estimate 0.0058(6) [59]. Finally, we

also observe a slight violation of the symmetry relation as the
b1 is finite; whether it is due to lack of statistics or has some
origin could not be determined faithfully.

V. DISCUSSIONS AND CONCLUSIONS

Our work represents an essential first step in the high-
precision study of the QAH critical point in an amorphous
model. While the data suggest universality, it currently does
not match the precision of the existing data of the CC
model and may not have reached the true asymptotic limit
yet. Keeping these considerations in mind, we list the main
achievements of this work:

(i) The correlation length exponent is ν � 2.60(5)
at E = 0.

(ii) The irrelevant exponent is compatible with y ≈ 0.3(1).
(iii) The prefactor of the irrelevant scaling L−y term is

smaller (almost by a factor of 2–3) than the higher-order term
L−2y, and comes with an opposite sign.

(iv) Data support a nonparabolic MF spectrum.
(v) The prefactor of the quadratic term converges towards

its asymptotic value γ = 1
4 from below with increasing system

sizes, in contrast to the CC model, where it converges from
above.

(vi) The fate of the quartic curvature in the thermody-
namic limit remains inconclusive.

Exponents. Using extensive numerical simulations, we
have shown that the amorphous topological model studied
in this paper belongs to the conventional unitary ensemble
and shares critical properties akin to IQH criticality. In
particular, the critical exponent νIQH is found to be consistent
with the most recent high-precision calculation on CC
model νIQH � 2.609 [19]. However, contrary to Dresselhaus
et al. [19], we have used the standard finite-size numerical
analysis of the g while carefully considering two subleading
corrections, which turns out to be crucial. It is important to
note that the factorization ansatz,2 which has been reviewed
carefully in a recent work by Slevin and Ohtsuki [75], was
found to estimate consistently a smaller exponent ν ≈ 2.55
for the transfer matrix data [13]. A similar study of the
factorization ansatz in the amorphous models is performed
in Appendix B. Our data confirm the νIQH ≈ 2.61 with a
similar χ2 value as observed in Fig. 2; therefore, we could not
unambiguously discard the factorization ansatz against the
multiparameter fit. However, it should be noted that for the
factorization ansatz, the critical Mc is taken from the previous
analysis as shown in Fig. 2. We monitor a smaller νIQH in the
scaling of ln g with a larger error bar.

2This ansatz of Ref. [19] proposes that the scaling function (5) can
be rewritten as the following:

g(x, L) = g1[φ1(x)L1/ν]g2[φ2(x)L−y],

where x is the control parameter such as the M or ρ, and g1,2 are
two independent scaling functions. Furthermore, it was argued that
the x dependence on the irrelevant scaling term can be ignored, i.e.,
g2[φ2(x)L−y] ≡ g2(L−y ). This would imply that the reduced conduc-
tance g(x, L)/g(x = 0, L) will have no irrelevant scaling corrections
and is the pure scaling variable.
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From our current data, we can rule out an exponent smaller
than approximately ∼2.4. This finding has the following im-
plications. In the square-lattice Chern model, recent work has
demonstrated that the localization length exponent varies with
energy. Specifically, at E = 0 the exponent is smaller than at
larger energy values [52]. This result was taken as a sign of the
nonuniversality of the anomalous quantum Hall effect, as the
critical exponent depends on system parameters. However, a
thorough exploration of the irrelevant finite-size corrections in
the full lattice version of the model has yet to substantiate this
result. Instead, a recent ongoing study by Dieplinger et al. [76]
found a localization length exponent consistent with previous
results ν ∼ 2.6 at E = 0. The investigations carried out in this
paper extend that result to an amorphous geometry; also, here,
we observe the expected IQH exponent at zero energy, thus
corroborating the recent result.

Second, it was previously found that geometric disorder in
CC model could lead to a smaller exponent [37]. However,
within the framework of the amorphous model, our results
are inconsistent with it, though both models are significantly
different. We consistently observe the same exponent within
the error margins whether we change the density of points
ρ or the mass M, pointing towards the universality of the
transition across the phase boundary. Moreover, the observed
universality contrasts with recent work on amorphous class
D model [53], where the exponent varies across the topo-
logical transition boundary. This variation was conjectured to
result from the interplay between lattice percolation and the
quantum Hall transition. In the model (1) studied here, the
percolation transition probably occurs at a scale significantly
different than the topological transition. Consequently, the
likelihood of observing such an interference effect is minimal;
therefore, the apparent nonuniversality of the previous study
should be taken as a model-dependent phenomenon.

In contrast to the CC model and several other studies
(see, e.g., Ref. [29]), we consistently observe a slightly larger
variation of the irrelevant exponent y ≈ 0.2–0.4 for both the
observables. The most important thing to note is that there is
a conspiracy of errors. It implies that one would minimally
require second-order irrelevant corrections, i.e., L−2y, to see
the appropriate corrections consistently, but to note that the
prefactors of these corrections have opposite signs, with c0

being larger than b0 (5). It further suggests that finite-size
corrections differ at different length scales, and one must take
extreme care to distinguish that. A detailed analysis of this
aspect would require high-precision data, which falls beyond
the scope of this work.

Conductance. The two-terminal conductance g at the crit-
ical point is believed to be universal and characterized by
a broad distribution [26,28,55,56,77]. The experiment ex-
hibits a near-uniform behavior, i.e., a broad distribution,
within the range [0, e2/h] [78]. The amorphous model with
open boundary conditions also identifies a scale-invariant
broad distribution. However, this distribution appears some-
what skewed, reminiscent of the dependence on boundary
conditions on the network model [55] or akin to observa-
tion at the 3D Anderson critical point [79]. In contrast, in
quasi-1D geometries, the two-point conductance exhibits a
logarithm-Gaussian distribution at criticality [29]. Addition-
ally, the scaling of the g − gc ∼ L−y, at the criticality agrees

with an irrelevant scaling exponent y ≈ 0.3(1), and here also,
we could identify the conspiracy of errors. Moreover, while
accessing the transition by changing the density of the points,
Fig. 3, we found a rather smaller irrelevant exponent y � 0.2,
which is most likely due to the lack of larger system sizes
(see Table III), highlighting the need for larger L for these
analyses.

Multifractality. The ultimate behavior of the q dependence
of the MF spectrum �q is challenging to ascertain, particu-
larly in the amorphous model, due to limitations in achieving
large system sizes. Nonetheless, we can observe deviations
from a truly parabolic spectrum, even concerning the QAH
critical point. One example of this can be seen in the re-
duced IPR, where we notice systematic finite-size deviations
from the presumed parabolic form for τq. Similarly, the MF
spectrum obtained without any a priori assumption of the
functional form exhibits deviations (though with sizable error
margins) characterized by a curvature ≈0.0042(10), which is
consistent with an earlier estimate ≈0.0058(6) by Evers et al.
[59], and by Obuse et al. [60].

Flow. An alternative scenario could involve the curvature
b2(L) staying finite in the asymptotic limit, while the overall
deviation b0(L) converges towards γq = 1

4 . Observably, the
flow in the offset b0(L) is slow, and within our system sizes,
we observe a flow exponent y ≈ 0.3(1), consistent with an
estimate from the conductance scaling. However, the status
of the finiteness of b2(L) in the asymptotic limit appears
inconclusive in our study.

Experiments. Traditionally, in experimental investigations,
the critical exponents of the IQH were determined through
the scaling of the transverse resistance with temperature
(dRxy/dB)|Bc ∝ T −κ , where κ = p/2ν and p is related to
the scaling of the decoherence length with temperature Lφ ∝
T −p/2. Recent experimental measurements have achieved
high accuracy [34,80–82] with κ � 0.42, and even more
recently at the fractional Hall plateaus [83]; however, esti-
mating ν requires an independent measurement of p. For
instance, from the coherence length measurement, Li et al.
[34] confirmed p = 2, which would imply a localization
length exponent ν ≈ 2.38. This discrepancy with most numer-
ical simulations remains unresolved. Theoretically, under the
assumption of short-range electron-electron interactions, one
can estimate p = 1 + 2μ2/d , where μ2 represents the sub-
leading multifractal exponent [36,84,85]. In numerical studies
in the CC model, it was determined to be μ2 ≈ 0.62(5) [36],
implying a smaller p � 1.62. In the future, conducting a sim-
ilar analysis at the QAH critical point would be fruitful.

Recent experimental advancements have also focused on
probing the QAH transition within magnetic topological in-
sulators [86–90]. A recent experiment by Deng et al. [90]
measured the temperature-dependence exponent in the QAH,
quantum axion insulator transition, and found it to be smaller
κ � 0.34(2). In a separate study, Liu et al. [87] reported a
significantly larger value κ ≈ 0.47. Hence, it is evident that
current experimental analyses exhibit significantly larger error
bars when compared to both previous experiments on the IQH
and numerical simulations; thus, further precise experimental
studies are necessary.

Outlook. We conclude with a few potential directions for
future research in amorphous systems. A recent experiment
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TABLE I. Disorder configurations for different observables in the unit of ×106, and for different varying parameters M, ρ.

L 32 48 64 96 128 192 256 384 512 768

(g, M) Nc 1.5 1.5 1.25 0.75 0.5 0.5 0.315 0.225 0.19 0.045
(g, ρ) Nc 0.68 0.65 0.26 0.20 0.15 0.31 0.07 0.06
(Pq, M )|crit. Nc 6.06 2.22 1.04 0.32 0.15 0.19 0.26 0.079 0.074 0.014

demonstrated that in 2D Dirac systems, conductance fluctua-
tions reveal signatures of the MF spectrum at the critical point
[91]. These measurements were close to the IQH plateau tran-
sitions in high-mobility graphene devices. Similar analyses
could also be conducted in amorphous materials, and it would
be exciting to probe the localization length exponent in such
an experiment.

Recently, it was shown that the surface states of chiral 3D
topological insulators (class AIII) at finite energies are IQH
critical [67,92]. Investigating whether such states also exist in
amorphous 3D models holds promise for future exploration
and understanding of topological protection of critical surface
states at finite energies in amorphous models.
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APPENDIX A: DISORDER CONFIGURATIONS

Table I gives the details of the number of configurations
that have been used in determining the critical properties for
various observables and parameters.

FIG. 11. Showing the possible alternative scaling collapse for
the same data as in the main text, Fig. 2.

APPENDIX B: ALTERNATIVE SCALING

In Fig. 11, we show the scaling collapse of the g using
the factorization ansatz used in Ref. [19]. Unlike the previous
study, we required extra information of Mc, which we took
from the scaling ansatz fit (Fig. 2), thus, the analysis is not
fully uncorrelated. Nonetheless, we observe νIQH � 2.61(1),
which is closer to Ref. [19]. Importantly, the number of fitting
parameters reduced drastically from 12 to 3 within the NR = 2
expansion order.

APPENDIX C: FITTING PROCEDURE

As described in the text, to achieve a stable fit, we could
not keep any expansion order NR. We use Eq. (5) with NR = 2
with two irrelevant corrections. This sometimes results in an
unstable fit with unrealistic fitting parameters. The fitting data
are provided in Tables II and III for different transition points.
It has a lot of variability depending on the initial conditions
and the number of fitting parameters.

APPENDIX D: ENERGY AND LEAD DEPENDENCE
OF THE CRITICAL PROPERTIES

We examined how the critical point (Mc = −2.144, ρc =
0.7) depends on the energy in Fig. 12. For negative ener-
gies within a specific range, quantized plateaus emerge as
the system size increases. In contrast, positive energies lead

FIG. 12. Energy dependence of the logarithm conductance at the
criticality. The parameters M = −2.144, ρ = 0.7 are fixed to their
critical values at E = 0 and the energy E is then varied to monitor the
energy dependence. The inset figure shows the approximate scaling
collapse of the various L curves by rescaling the energy axis. Note
here that the collapse here is just by eyeballing and no scaling func-
tion has been fitted to the data. The approximate critical parameters
are shown in the figure.
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TABLE II. Showing the variability of the finite-size scaling analysis for the transition with different initial conditions than what is shown
in the main text. The NR, NI, ND, NP represent the number of relevant parameters, irrelevant expansion order, data points, and fitting parameters,
respectively.

g ln g

L NR NI ND NP Mc ν y χ 2/dof Mc ν y χ 2/dof

48–768 2 2 170 12 −2.145(1) 2.55(2) 0.36(3) 1.26 −2.144(2) 2.69(3) 0.61(3) 1.14
64–768 2 2 153 12 −2.147(4) 2.55(5) 0.29(5) 1.27 −2.146(1) 2.51(13) 0.37(5) 1.06

the system toward an insulating state. While we have not
conducted an exhaustive analysis of the energy dependence, it
is evident that a range of energies around E = 0 exists where
the system exhibits critical behavior. Notably, in the main text,
we focused on studying the critical energy at E = 0.

For the conductance simulations done in the main text,
we connected a regular square-lattice lead to the amorphous
scattering region. For smooth connection, we embedded L
number of lattice sites on both sides of the scattering region
(see Fig. 1). We analyzed the stability of the IQH critical
conductance value to variations in the lead connections and
lead Hamiltonian structure. For instance, we decreased the
quantity of embedded sites to L/2 (see Fig. 1) and observed
that the conductance value at the critical point (gc) stayed
constant (data not shown). For the conductance data obtained
in this work, we kept the lead hopping matrix to be 2 × 2

identity matrix, and with zero onsite potential. The choice
was made to have a finite density of lead energy states at the
E = 0. The critical conductance value remained stable to the
choice of lead hopping and onsite matrix elements as long as
the lead density of states remains finite at E = 0.

TABLE III. Variability of the finite-size scaling analysis for the
transition when the critical density parameter is fixed to ρc � 0.344.
The parameters are same as defined in Table II.

ln g

L NR NI ND NP Mc ν y χ 2/dof

48–512 2 2 200 12 0.335(7) 2.55(9) 0.8(4) 4.4
64–512 2 2 175 12 0.341(1) 2.56(3) 0.27(15) 4.5
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