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Charge and magnetic ordering near inhomogeneities in monolayer 2H-NbSe2
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Recent interest in two-dimensional dichalcogenide materials is compounded by an anisotropic spin-orbit
coupling (SOC) and proximity to competing orders like charge density wave (CDW), spin density wave, and
superconductivity. In monolayer 2H -NbSe2, the low-energy electronic structure is influenced by the presence
of an Ising SOC, the formation of a 3Q CDW order (Q = 2/3�M), and a nontrivial topology that includes
the electronic environment near impurities and edges. Scanning tunneling microscopy (STM) experiments
have observed a transition from a 3Q CDW order on the surface to a 1Q charge stripe order near its edges,
and the presence of impurities leads to a nontrivial dependence of superconducting transition temperature on
impurity concentration. First-principle calculations also predict that the material will have strong paramagnetic
fluctuations and lie close to a magnetic instability. In this work, we use a realistic multiorbital model derived
from density functional theory (DFT) calculations, and we implement it on a real-space Hamiltonian to study
the interplay between Ising SOC, charge density wave, and a proximate magnetic order. We find that near
inhomogeneities like impurities and edges, such an interplay can lead to interesting local charge and magnetic
signatures that are in agreement with experimental observations such as 1Q CDW order near the material edge.
We also find that due to an interplay with the underlying CDW state, the local electronic order near certain
impurity sites in monolayer 2H -NbSe2 can show a twofold-symmetric pattern. Finally, we propose that strong
spin fluctuations can lead to the formation of local magnetic order near disorder and influence the electronic
properties of this material.

DOI: 10.1103/PhysRevB.109.174212

I. INTRODUCTION

2H-NbSe2 is a material that draws research interest due to
the nature of an observed 3Q charge density wave (CDW) and
superconducting order both in the bulk and monolayer materi-
als [1–9]. In bilayer bulk 2H-NbSe2, a Fermi surface nesting
is found to be relatively weak, and the strong electron-phonon
(e-ph) coupling has been proposed to play a major role in the
formation of the 3Q CDW state [10,11]. The emergent charge
order observed in the monolayer material differs from the
bulk material in some significant ways. The CDW transition
temperature increases from 33.5 K (bulk) to 145 K (mono-
layer) [1], whereas the superconducting transition temperature
decreases with lowering layer numbers [1,4,12]. Unlike bulk
2H-NbSe2, the monolayer material breaks inversion symme-
try and develops an Ising spin orbit coupling (SOC) and
strongly enhanced paramagnetic fluctuations revealed by first-
principles calculations [7]. These deviations in the electronic
properties due to the reduction in the number of layers provide
us with an opportunity to understand how the 3Q CDW state
interacts with Ising SOC and enhanced magnetic fluctuations
both in the homogeneous material and in the presence of
disorder.

To understand the origin of CDW in 2H-NbSe2, it is impor-
tant to understand the role of e-ph coupling in the formation of
CDW [10,11,13]. For bulk 2H-NbSe2, the low-energy bands
are dominated by 4dz2 orbitals of Nb atoms of two differ-
ent layers. The orbital overlap between these interlayer 4dz2

orbitals leads to an e-ph coupling matrix element that is found
to be directly proportional to the electronic band velocity. The
calculated charge susceptibility cannot explain the 3Q CDW
wave vector at Q = 2/3�M from a purely nesting driven sce-
nario, and a contribution from a momentum-dependant e-ph
interaction is required to obtain a susceptibility peak at the
expected CDW wave vector [10,11].

The structure of monolayer 2H-NbSe2 is devoid of a bi-
layer coupling but is believed to show rich physics due to the
presence of a broken inversion symmetry [14–16]. The broken
inversion symmetry combined with in-plane mirror symmetry
leads to an Ising spin-orbit coupling [15,17,18]. The spin
valley locking resulting from Ising SOC causes electron spins
to align in the out-of-plane direction, making the material
more resistant to the effects of an external in-plane magnetic
field. For example, this leads to a significant enhancement in
the in-plane upper critical field within the superconducting
state [17,19].

Previous theoretical study of charge ordering in monolayer
2H-NbSe2 with density functional theory (DFT) shows a
broadened maxima in the real part of noninteracting suscepti-
bility within the range 2/5�M–4/5�M instead of a peak at the
CDW wave vector [14,21–24]. With the GW approximation,
the peaks do not show any significant change [14]. It is also
found that the presence of atomic SOC does not lead to any
noticeable change in the susceptibility [14]. In a recent study
considering a single-band model of monolayer 2H-NbSe2, the
susceptibility peak was found to appear far away from the
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experimentally observed charge-order peak and strengthens in
the presence of momentum-dependent e-ph coupling [25,26].
Therefore, it would be interesting to study the role of e-ph
coupling on charge susceptibility within a realistic multior-
bital model and study the effect of variation in Ising SOC and
electron doping in the monolayer 2H-NbSe2.

It has been argued that the Ising SOC also allows for
nontrivial topological properties, and exotic particles like Ma-
jorana bound states (MBSs) could form in these systems
[15]. Within the superconducting phase, the presence of a
Yu-Shiba-Rusinov (YSR) state is found to be effected by the
presence of the CDW order [27,28]. Therefore, the nontrivial
topology combined with the presence of the 3Q CDW order
is likely to lead to interesting electronic properties near impu-
rities and at the edge of monolayer 2H-NbSe2 [2]. A recent
STM experiment found that the 3Q CDW seen in the local
density of states (LDOS) gets modified into a stripe 1Q CDW
order near the edge [2]. To understand the origin of the 1Q
CDW formation, we utilize a six-orbital Hamiltonian on a
real-space lattice and model the edge state CDW properties
for different edge termination geometries. We find reasonable
agreement both in the spatial dependence and the energy
dependence of the calculated CDW in the bulk and edge
states.

Apart from edge states, nonmagnetic and magnetic im-
purities play an important role in monolayer 2H-NbSe2. Se
and Fe defects decrease the superconducting transition tem-
perature in the case of monolayer 2H-NbSe2 [29]. In the
presence of disorder, monolayer 2H-NbSe2 shows a nontrivial
competition between CDW and superconductivity as well as
between different types of CDW ground states [30–35]. The
symmetry of the CDW state is also proposed to break under
Co or Mn adsorption [30]. Our real-space calculations reveal
local electronic effects in the presence of impurities due to
an interplay with the underlying CDW phase. We use the
Ising SOC as a tuning parameter and identify its role in the
local symmetry breaking near impurity sites. In particular, we
study the variations of local electronic structure at inequiva-
lent impurity sites that are induced by the periodicity of 3Q
CDW order.

Apart from the presence of charge ordering, monolayer
2H-NbSe2 has been proposed to lie close to a magnetic insta-
bility [7]. Superconductivity and ferromagnetism have been
found to co-exist in the case of NbSe1.85 for the bulk system
[29]. In other transition-metal dichalcogenides, a ferromag-
netic state with a significant magnetic moment of 0.25μB/Mo
is found to stabilize by creating sulfur vacancies in MoS2

[36]. Such a closely lying magnetic instability makes these
monolayer materials particularly susceptible towards showing
local moment formation near impurities and edges. Impurity-
induced magnetism has been studied in different materials
when the system is near magnetic instability [37–42]. Within
our real-space self-consistent calculations, we find that a local
magnetic ordering can indeed form near impurities and edges
of this material, and we study how the moments are expected
to spatially vary as a function of impurity strength or distance
from various edge terminations.

In the following, we extract a realistic low-energy tight-
binding Hamiltonian for monolayer 2H-NbSe2 from DFT
calculations. The three-orbital tight-binding Hamiltonian is

composed of three 4d orbitals of an Nb atom, although the
basis is doubled due to the presence of the Ising spin-orbit
coupling leading to an effective 6×6 Hamiltonian matrix.
We next evaluate the multiorbital charge susceptibility and
the renormalization of the susceptibility due to e-ph inter-
actions. By utilizing Ising SOC as a tuning parameter, we
show how the SOC and e-ph interaction govern the emer-
gence of a dominant CDW peak near the 3Q wave vector.
To compute the effect of local impurities and edge, we utilize
a real-space model and self-consistently calculate the mean
fields. The impurity-induced magnetism is studied by incor-
porating a Hubbard-Kanamori Hamiltonian and requiring the
system to be proximate to a magnetic instability. We find that
nonmagnetic impurities can induce a local magnetic moment
whose coherence length depends upon the strength of the
impurity potential and Coulomb interaction. We further dis-
cuss the role of Ising SOC and CDW order in localizing and
enhancing the magnitude of the disorder-induced magnetic
moment.

II. MODEL

Although the monolayer structure breaks inversion sym-
metry, the presence of a horizontal mirror plane generates
an effective internal electric field in the Nb plane. The cor-
responding Ising SOC leads to a spin momentum locking
that favors the electron spins to point along the out-of-plane
z-direction. In the momentum space, the spin-orbit coupling
induced band splitting leads to a |k,↑〉 and |k′,↓〉 spin mo-
mentum locked electronic structure.

The electronic structure of monolayer NbSe2 was gener-
ated using DFT calculations. The density functional theory
calculations were performed using the pseudopotential-based
projector augmented wave (PAW) [43] method as imple-
mented in the Vienna ab initio simulation package (VASP)
[44]. The generalized gradient approximation (GGA) was
chosen for the exchange correlation functional [45]. The Bril-
louin zone integration was carried out using a 12×12×1,
�-centered k-mesh. The kinetic energy cutoff for the plane-
wave basis set was chosen to be 500 eV. The PAW basis
functions include 5s and 4d orbitals for Nb, and 4s and
4p orbitals for Se, respectively. Spin-orbit coupling (SOC)
was considered when calculating the electronic structure. The
thickness of the vacuum layer in the z direction is taken
to be 15 Å.

The primitive cell of monolayer 2H-NbSe2 is shown in
Fig. 1(a). DFT calculations reveal that the low-energy Hamil-
tonian is composed of contributions from Nb 3d orbitals
[Fig. 1(b)]. The orbital-resolved band structure, shown in
Fig. 1(b), suggests that the primary contributions to the bands
crossing the Fermi level are from dz2 , dxy, and dx2−y2 orbitals
of an Nb atom. From the band-structure plot in Fig. 1(b) we
can also infer that the �-centered Fermi pocket is mostly
composed of dz2 orbital contributions, whereas the K- and
K ′-centered pockets are primarily composed of dx2−y2 and dxy

orbitals. We develop an effective tight-binding Hamiltonian
composed of the (dz2↑, dxy↑, dx2−y2↑, dz2↓, dxy↓, dx2−y2↓) ba-
sis (see Fig. 10 in Appendix A for a comparison between
DFT electronic structure and the tight-binding Hamiltonian).
The general form of the Hamiltonian relevant for monolayer

174212-2



CHARGE AND MAGNETIC ORDERING NEAR … PHYSICAL REVIEW B 109, 174212 (2024)

(a) (b)

(c) (d)

FIG. 1. (a) Primitive cell (top view), (b) low energy electronic
structure. Here, L+ and L− is defined as |dx2−y2 〉 + i|dxy〉 and
|dx2−y2 〉 − i|dxy〉 respectively [20]. (c) Fermi surface, and (d) density
of state of monolayer 2H-NbSe2 (in eV−1).

2H-NbSe2 is given as

HTB =
∑

μ,ν,σ,k

ξσ
μν (k)d†

μσ (k)dνσ (k). (1)

The operator dμσ (k) [d†
μσ (k)] annihilates (creates) an electron

in orbital μ, spin σ , and momentum k, respectively. The
tight-binding parameters and their momentum dispersion are
provided in Appendix A, and the extracted low-energy band
structure shows good agreement with DFT results. As can
be seen from Fig. 1(b), there are primarily two bands com-
prising the Fermi surface that lead to Fermi pockets centered
at �, K , and K ′ points. The color scale represents the spin
character of the resulting bands that inherently break the in-
version symmetry but keep the time-reversal symmetry intact
[Fig. 1(c)]. The density of states (DOS) [Fig. 1(d)] shows a
peak near ω = −0.1 eV originating from the energy minima
between the � and K points, and it keeps decreasing for higher
energies.

To explore the nature of CDW order in monolayer
2H-NbSe2, and to identify the role of Ising SOC, we have
calculated the multiorbital charge susceptibility including the
effect of an anisotropic e-ph interaction. The charge suscepti-
bility in the orbital basis including momentum dependent e-ph
coupling is given by [13]

χ (q)μν

γ δ = − 1

N

∑
k,s,p

[
U s

γ (k)U s

μ (k)U p

ν (k + q)U p

δ (k + q)

]

× (
gs,p

k,k+qgp,s
k+q,k

) f
(
ξ s

k

) − f
(
ξ

p
k+q

)
ξ s

k − ξ
p
k+q

, (2)

where μ, ν, γ , δ represent the orbital indices, and s, p are
the band indices, each running from 1 to 6. Here, ξ s

k, and
U s

γ (k) are the band energies and corresponding eigenvector
components of the noninteracting Hamiltonian, respectively.
The momentum-dependent e-ph interaction is given by gs,p

k,k+q.
The e-ph interaction has been calculated using a method

proposed by Varma et al. [13]. The model has been success-
fully utilized to obtain the correct dominant ordering wave
vector for the 3Q CDW state observed in bulk 2H-NbSe2

[10,11]. The e-ph matrix element is given by

gs,p
k,k+q = vs

k[A†
kSkAk+q]s,p − [A†

kSk+qAk+q]s,pv
p
k+q, (3)

where vs
k = ∂ξ s

k
∂k is the electronic band velocity of the sth band

[10], Ak represents the eigenvector matrix calculated at the
wave vector k, and the matrix Sk is the orbital superposition
matrix [13].

A real-space analysis of charge-order physics and disorder
effects in this system involves a Fourier transformation of the
six-orbital momentum space Hamiltonian into the real space.
The real-space Hamiltonian including the CDW order takes
the form

H = H0 + HSOC + HCDW, (4)

where H0 is given by

H0 =
∑

i, j,μ,ν,σ

tμν
i j c†

iμσ c jνσ − μc

∑
iμσ

c†
iμσ ciμσ . (5)

Here, i and j are the site indices. μ and ν are the orbital
indices running from 1 to 3 representing dz2 , dxy, and dx2−y2 or-
bitals, σ = (↑,↓) stands for the spin index, μc is the chemical
potential, and c†

iμσ and ciμσ represent creation and annihila-
tion operators of an electron at the site i for orbital μ and
spin σ , respectively. The spin-orbit coupling term HSOC is
described in Appendix A. The charge-order Hamiltonian (see
Appendix B for details) in real space is given by

HCDW =
∑

μ,ν,γ ,δ,
j,m,σ

�mσ
μν (r j )c

†
γ jσ cδ jσ , (6)

where

�mσ
μν (r j ) = VCDW

∑
i

cos[Qm.(ri − r j )]〈c†
μiσ cνiσ 〉. (7)

Here, the index m labeling the CDW wave vector runs
from 1 to 3 as we are dealing with a 3Q type of charge
ordering in the system. VCDW represents the CDW amplitude,
and μ, ν, γ , δ represent the orbital indices running from 1 to
3 in a real-space Hamiltonian considered on a 33×33 lattice.
The real-space Hamiltonian considered in this work assumes
a site-ordered CDW gap [46,47]. Similar approximation has
been considered previously for modeling 3Q CDW order in
NbSe2, and it provides a reasonably good agreement with the
local density of states measured in STM experiments.

To study the impurity effect, we additionally include an
impurity Hamiltonian term. The total Hamiltonian including
the impurity term is given by

H = H0 + HSOC + HCDW + Himp. (8)
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For a potential impurity problem, Himp takes the form

Himp = Vimp

∑
μ,σ

c†
i,μ,σ ci,μ,σ , (9)

where Vimp is the impurity potential strength.
To study the effect of two different types of edges, we deal

with an open boundary condition along the x and y directions
utilizing the Hamiltonian described in Eq. (4). If we keep the
boundary open along the x direction we will get the line edge,
and an open boundary along the y direction will lead to a
zigzag edge.

Motivated by proposals for strong ferromagnetic fluctu-
ations in this system, we study in some detail the nature
of magnetic moment induced near impurities and edges. To
model the local magnetism that could be induced near im-
purities and edges, we introduce a local interaction via a
Hubbard-Kanamori Hamiltonian,

HU = U
∑
i,μ

n̂iμ↑n̂iμ↓ + U ′ ∑
i,μ �=ν

∑
σ

n̂iμσ n̂iνσ̄

+ (U ′ − J )
∑

i,μ �=ν

∑
σ

n̂iμσ n̂iνσ , (10)

where U ′ = U − 2J , and we choose J = 0.25U . The total
Hamiltonian for this system then becomes

H = H0 + HU + HSOC + HCDW + Himp. (11)

Since no long-range magnetism is known to occur in this
system, the Hubbard parameter is tuned close to but below
the stoner value U = Uc. In a real-space self-consistent cal-
culation, the mean fields including site- and orbital-resolved
magnetism are then calculated both near impurities and edges
to identify whether the system can locally cross the stoner
criterion due to a local charge redistribution near the disorder
and form magnetic puddles.

III. RESULTS

A. Charge susceptibility

We first calculate orbital-resolved charge susceptibility in
the absence of e-ph coupling within the six-orbital model
and an Ising spin-orbit coupling of 75 meV that provides
a good agreement with the DFT generated low-energy elec-
tronic structure for monolayer 2H-NbSe2. The total physical
susceptibility is shown in Fig. 2(a). In the absence of e-ph
coupling, there is a broadened maximum that is significantly
shifted from the experimentally observed CDW wave vec-
tor Q = 2/3�M. Similar to previous observations for bulk
2H-NbSe2 [10,11], this indicates that a purely nesting driven
scenario cannot explain the charge-order transition in mono-
layer 2H-NbSe2. Note that we do find that in the absence of
e-ph coupling, the charge susceptibility can be obtained at the
relevant Q = 2/3�M wave vector by considering a stronger
Ising SOC of about 200 meV, but this would lead to deviations
in agreement with DFT generated electronic structure.

We then calculate the susceptibility in the presence of
e-ph coupling and light electron doping. The noninteracting
susceptibility of the electron-doped material in the absence
of e-ph coupling has been calculated previously [14], and
our model shows quantitative agreement with these results.

(a)

(d) (e)

(b) (c)

FIG. 2. Calculation of charge susceptibility in different cases.
(a) Total charge susceptibility with an Ising SOC value 0.075 eV.
(b) Total charge susceptibility with Ising SOC in the presence of e-ph
coupling. (c) Orbital-resolved charge susceptibility for the case sim-
ilar to (b). Parts (d) and (e) represent e-ph coupling magnitude and
charge susceptibility, respectively, calculated over the first Brillouin
zone for the case similar to (b). From the plots (b) and (e), it is clear
that the total susceptibility plot shows a sharp peak at 2

3 �M.

In Fig. 2(d), we show the e-ph matrix element by calculat-
ing the function

∑
k |gk,q|2. The e-ph interaction is peaked

at the CDW wave vector, and its effect leads to a charge
susceptibility peak at the CDW wave vector. The total charge
susceptibility in the presence of e-ph coupling now shows
a strongly enhanced peak at the experimentally observed
CDW wave vector [see Figs. 2(b) and 2(e)]. Orbital-resolved
susceptibility calculation shows that all three orbitals are
contributing significantly in the CDW formation [Fig. 2(c)],
although the dxy and dx2−y2 orbital contributions are primarily
responsible for the dominant peak at the CDW wave vector.
These results imply that although the Hamiltonian of mono-
layer 2H-NbSe2 differs from the bulk 2H-NbSe2 Hamiltonian
in some important aspects, the CDW formation in both cases
can be described by assuming a momentum-dependent e-ph
coupling.

B. Charge density wave

The CDW transition in monolayer 2H-NbSe2 is observed
at Tc ∼ 145 K. The calculated charge-density wave for the
homogeneous system is shown in Fig. 3. In Fig. 3(a), we plot
the local electron density variation at a lattice site given by
δni = ni − n, where ni is the computed site resolved electron
occupation and n represents its average value over all sites.
We find the ground-state CDW profile favors a form factor
with three separate site-resolved order parameters for which
a Fourier transform of the electron density shows a peak at
the expected Q = 2/3�M wave vector [Fig. 3(b)]. Within
these sites, whereas site 1 locally preserves a sixfold rotational
symmetry, site 2 locally forms a threefold-symmetric charge-
density profile around it, and site 3 locally breaks even the
D3h point-group symmetry [Fig. 3(a)]. Although for global
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(a)

(c) (d)

(b)

FIG. 3. (a) Self-consistently calculated real-space CDW map for
VCDW = 0.02 eV. The three inequivalent electron densities in the
CDW state are 1: purple with δni = −0.02, 2: red with δni = 0.02,
and 3: yellow with δni = 0, where δni is the shift in electron occupa-
tion due to CDW. (b) Fourier transformation of the real-space CDW
order parameter shows the peak at 2

3 �M, (c) total DOS showing the
CDW dip around Fermi energy, and (d) LDOS map over a real-space
lattice at ω = 20 meV.

observables the configurational averaging would restore the
D3h symmetry relevant to monolayer 2H-NbSe2, the local
breaking of symmetry can have interesting consequences in
local observables including electron density variations near
impurities or a locally observed superconducting gap in STM
experiments. In Fig. 3(c) we show the density of states within
an energy window of ω = ±30 meV. This has been calcu-
lated by summing the site-resolved LDOS shown in Fig. 3(d)
at ω = 20 meV. For a VCDW = 0.02 eV, the corresponding
LDOS gives a CDW gap of �CDW = 8 meV at the Fermi level
that agrees well with previous work [7,48–50].

The suppression of the LDOS at Fermi energy is associated
with the CDW gap and agrees well with similar features
seen in the experiment [49]. The incomplete suppression im-
plies that similar to bulk 2H-NbSe2, the CDW gap is highly
anisotropic in momentum space. Another feature obtained in
our calculations and observed in the previous STM experi-
ments are the additional CDW-induced dips in LDOS at finite
energies.

C. Effect of isolated impurities on CDW

To determine the interplay of CDW order and Ising
spin-orbit coupling on the electronic structure of monolayer
2H-NbSe2, we study the perturbation of electronic proper-
ties near isolated impurities. The effect of a nonmagnetic
impurity on the CDW is shown in Fig. 4. Here we show
the impurity effect by considering a finite impurity potential
of Vimp = 0.5 eV at the three different types of sites. The
real-space electronic occupation around the impurity sites is

(a) (b)

(c) (d)

(e) (f)

FIG. 4. Charge order map in real space in the presence of im-
purity [sitting at the center of each hexagon in (a), (c), and (e)]
with impurity potential 0.5 eV for VCDW = 0.02 eV. The charge-order
map and its Fourier transform are shown for (a),(b) sites of type 1;
(c),(d) sites of type 2; and (e),(f) sites of type 3, respectively. The
plotted region is zoomed in area near the impurity sites.

shown in Fig. 4 on the left column, and the corresponding
Fourier transform is shown in the right column. The Fourier
transform clearly shows the expected symmetry of the lo-
cal charge environment around the three different types of
sites. For example, an impurity placed at site 1 or site 2 [see
Figs. 4(a) and 4(c)] leads to a Fourier transform that has a
sixfold rotational symmetry [Figs. 4(b) and 4(d)], whereas an
impurity placed in site 3 clearly shows a Fourier transform
with only a twofold rotational symmetry present [Figs. 4(e)
and 4(f)]. In the case of a second type of impurity site, we
see that the real-space [Fig. 4(c)] map does have a reduced
D3h symmetry, but the Fourier transform [Fig. 4(d)] remains
approximately sixfold rotation symmetric since the symmetry
breaking only contributes from lattice sites at larger distances
from the impurity where the local charge-order modulation is
already suppressed. It can also be seen that for impurity at site
2, the peak position in the Fourier transform does not show
any significant peak at 2/3�M, rather it shows high intensity
near the � point indicating the formation of longer wavelength
modulations. Similar self-consistent calculations with larger
impurity potentials show a qualitatively similar but a more
localized charge distribution.

To include the effect of strong magnetic fluctuations
predicted in monolayer 2H-NbSe2, we next model the
system close to a stoner magnetism by introducing a
Hubbard-Kanamori Hamiltonian and tuning the Hubbard in-
teraction (U = 1.08 eV, J = U/4) to lie close to the critical
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(a) (b)

(c) (d)

(e) (f)

FIG. 5. Calculated magnetic moment (ni↑ − ni↓) in the presence
of impurity (sitting at the center of each hexagon) in the presence
of Ising SOC (magnetic moments are in units of 10−3/μB). The
left and right columns represent an induced magnetic moment for
a nonmagnetic impurity potential of 0.5 and 50 eV, respectively.
(a),(b) Type 1 sites; (c),(d) type 2 sites; (e),(f) type 3 sites.

interaction strength (Uc = 1.1 eV). We do not find any qual-
itative differences in our results with small changes in the
interaction parameter U .

Self-consistent calculation of the mean fields leads to a
stabilization of local magnetization near the nonmagnetic im-
purity sites. In Fig. 5 we show the formation of the weak
local magnetism near nonmagnetic impurities in the presence
of an Ising spin-orbit coupling. Comparing Figs. 5(a) and
5(b), we find that the magnetic modulation near the impu-
rity site has a longer correlation length for larger impurity
strengths. This local modulation approximately maintains the
lattice D3h symmetry for impurity placed at the three types
of sites shown in Figs. 5(b), 5(d), and 5(f). Interestingly, as
shown in Fig. 6, impurity-induced magnetism computed in the
absence of Ising spin-orbit coupling not only retains a local
hexagonal D6h symmetry for all three types of sites, but is
significantly suppressed in magnitude and corresponds to a
longer correlation length. The long lengthscale of the induced
magnetic order in the absence of Ising SOC persists even in
the absence of the underlying 3Q CDW order. We find that
the additional lengthscale in the Friedel oscillations near the
impurity induced by the Ising SOC localizes the magnetic mo-
ments closer to the impurity sites. We can therefore conclude
that the presence of an Ising spin-orbit coupling enhances the
tendency for the monolayer NbSe2 to form local magnetism
near disorder.

(a) (b)

(c) (d)

(e) (f)

FIG. 6. Magnetic moment in the presence of nonmagnetic im-
purity (yellow dot in the middle of each plot) and in the absence
of Ising SOC. The left and right columns represent the induced
magnetic moment for a nonmagnetic impurity potential of 0.5 and
50 eV, respectively. (a),(b) Type 1 sites; (c),(d) type 2 sites; (e),(f)
type 3 sites. In the left column, moments are in units of 10−6/μB

(effectively zero), and in the right column, moments are in units
of 10−3/μB.

D. Effect on edge termination

The role of edge states in monolayer 2H-NbSe2 has been of
interest because of the nontrivial topological nature of the ma-
terial’s electronic structure. Recent experiments find that the
CDW order near the edge is significantly modified compared
to the 3Q CDW pattern observed in the bulk regions [2]. In
particular, it was proposed that the three-unit-cell modulation
of the CDW order near the edge cannot be accounted for either
via Friedel oscillations or quasiparticle interference effects.
It has been argued to result from a superposition of the 3Q
vectors of the CDW order near an edge. Here we study the
effect of an edge using a realistic real-space self-consistent
microscopic model that simulates the edge with open bound-
ary conditions (Figs. 7 and 8).

We find a clear enhancement of electron occupation near
the material edge with quasi-one-dimensional modulations of
electron density [Figs. 7(b) and 7(d)]. The 3Q CDW ordering
is restored as we move away from the edge towards its cen-
ter [Figs. 7(a) and 7(c)]. Calculations of the orbital-resolved
LDOS for dz2 orbital at an energy ω = −17 meV reveal the
presence of stripe 1Q ordering as shown in Fig. 8(d). Such
a modulation is weaker at the chemical potential and is fur-
ther suppressed for positive energies ω = 17 meV [Fig. 8(c)].
The orbital-resolved LDOS of the d2

z orbital is expected to
dominate the differential conductance measured in STM ex-
periments since the Wannier function corresponding to d2

z
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(a) (b)

(c) (d)

FIG. 7. Calculated charge ordering near a line edge: Plots (a),
and (b) show the modulation of the CDW order parameter away from
the edge with hexagonal marked regions that have been zoomed in
(c), and (d) respectively.

orbitals will be more extended from the surface. In Figs. 8(c)
and 8(d) we show the orbital-resolved LDOS for a dz

2 or-
bital at energies ω = (17,−17) meV, respectively. It can be
seen that a three-unit-cell stripe order is observed at around
ω = −17 meV, which gets suppressed at positive energies.
Further, compared to the total LDOS shown at the same en-
ergies in Figs. 8(a) and 8(b), the three-unit-cell periodicity is
much more apparent in the orbital-resolved LDOS. Similar
energy-dependent modulation of the 1Q CDW order has been
observed in STM experiments [2].

We next study the induced magnetic moment at the edge by
considering open boundary conditions along the x direction,

(a) (b)

(c) (d)

FIG. 8. Calculated LDOS for an open boundary along the x di-
rection shown in Fig. 7. Parts (a) and (b) represent the LDOS plotted
in a transverse direction from the edge summed over all three orbitals
at energy 17 and −17 meV, respectively. Parts (c) and (d) show
the LDOS contribution from dz2 orbital at energy 17 and −17 meV,
respectively.

(a) (b)

(c) (d)

FIG. 9. Magnetic moment and charge ordering for U = 1 eV.
(a),(b) Modulation of magnetic moment near an x-side edge. (c) Rel-
ative modulation of magnetic moment and charge ordering near the
edge. (d) Enhancement of the induced magnetic order near the edge
in the presence of a CDW order.

and strong paramagnetic fluctuations that place the system
below but close to the stoner limit (U < Uc). In Fig. 9, we
can see that there is a significant enhancement of magnetic
moment localized near the edge [Figs. 9(a) and 9(b)]. As
shown in Fig. 9(d), the induced moment near the edge is
enhanced in the presence of a CDW order. This is due to the
charge modulation induced by the CDW ordering that pushes
certain sites closer to a local stoner instability, thus enhancing
the induced magnetic moment. It can also be observed from
Fig. 9(c) that the induced spin-density order near the edge
has approximately twice the periodicity of the induced stripe
charge order.

IV. CONCLUSION

The emergent order in a monolayer transition-metal
dichalcogenide material like 2H-NbSe2 is expected to show
interesting properties due to the interplay between charge or-
dering and an Ising spin-orbit coupling induced by the broken
inversion symmetry. We find that the electronic structure of
the material leads to a charge susceptibility that supports a 3Q
CDW order at the Q = 2/3�M wave vector under the influ-
ence of an anisotropic electronic phonon coupling. The Ising
spin-orbit coupling plays only a weak role in the emergence
of the charge order.

Further, self-consistent real-space mean-field calculations
within a three-orbital model relevant to monolayer 2H-NbSe2,
correctly stabilize the 3Q CDW order. It is found that nonmag-
netic impurities lead to a charge order whose local modulation
strongly depends on the interplay between the CDW and
spin-orbit coupling. For example, in the presence of a CDW
order, we distinguish three types of sites where the presence
of an impurity could lead to a sixfold rotation symmetry,
a threefold rotational symmetry, or a twofold symmetry of
the local charge order depending upon the local environment
around the impurities. In zero magnetic fields, the local sym-
metry breaking will be observable only in local probes like
STM near the impurity or vacancy sites, as otherwise impurity
averaging effects would restore the lattice symmetry. How-
ever, in the presence of a strong in-plane external magnetic
field, the out-of-plane spins induced by the Ising SOC will
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get canted, and any impurity averaging will not restore the
lattice symmetry. This can lead to the breaking of the D3h

symmetry in global observables, and a twofold anisotropy can
show up in measurements such as magnetoresistance. Similar
twofold anisotropy of the superconducting gap structure has
been observed in experiments in monolayer NbSe2 [51].

By including electronic correlations in our calculations, we
have studied the effects of recent predictions suggesting these
monolayer materials are close to a magnetic instability. We
find that local magnetic modulations can stabilize near non
magnetic impurities with a triangular symmetry. Further, our
calculations also reveal that the Ising spin-orbit coupling en-
hances the magnitude but significantly reduces the correlation
lengthscale of these local moments.

Monolayer 2H-NbSe2 also undergoes interesting charge
modulation near the edge of the material. We find the presence
of a three unit cell 1Q charge ordering near the edge which is
in agreement with recent experiments. These 1Q modulations
exist for different types of edges in the presence of an under-
lying CDW instability in the lattice. Additionally, we also find
the presence of a local stripe type magnetic ordering near the
edge that has twice the periodicity as the underlying charge
order modulations.

We believe that our work would be useful towards develop-
ing a better understanding of disorder effects, particularly in
the context of local probe spectroscopy. The results would also
be useful for developing an understanding of disorder effects
within the superconducting state.
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APPENDIX A: TIGHT-BINDING HAMILTONIAN

The low-energy tight-binding Hamiltonian for monolayer
2H-NbSe2 can be expressed as a sum of contributions from
a three-orbital noninteracting Hamiltonian and a contribution
that includes Ising SOC being given by H = H0 + HSOC. The
Hamiltonian terms can be expressed by

H0 =
∑
μνσk

Hμν (k)c†
μσ (k)cνσ (k), (A1)

where the orbital index μ, ν and spin σ describe a d-orbital
basis (dz2 , dxy, dx2−y2 ). The Ising spin-orbit coupling contribu-
tion is given by

HSOC = itSOC

∑
k

[c†
x2−y2↑(k)cxy↑(k) − c†

x2−y2↓(k)cxy↓(k)]

+ Hermitian conjugate. (A2)

The elements of H0 Hamiltonian are given by

H11 = e1 + 2t0[cos(2k′
x ) + 2 cos(k′

x ) cos(k′
y)]

+ 2r0[cos(2k′
y) + 2 cos(3k′

x ) cos(k′
y)] + 2u0[cos(4k′

x )

+ 2 cos(2k′
x ) cos(2k′

y)],

H12 = −2
√

3t2 sin(k′
x ) sin k′

y + 2(r1 + r2) sin(3k′
x )

× sin(k′
y) − 2

√
3u2 sin(2k′

x ) sin(2k′
y) + I{2t1 sin(k′

x )

× [2 cos(k′
x ) + cos(k′

y)] + 2(r1 − r2) sin(3k′
x ) cos(k′

y)

+ 2u1 sin(2k′
x )[2 cos(2k′

x ) + cos(2k′
y)]},

H13 = 2t2[cos(2k′
x ) − cos(k′

x ) cos(k′
y)]

−
(

2√
3

)
(r1 + r2)[cos(3k′

x ) cos(k′
y) − cos(2k′

y)]

+ 2u2[cos(4k′
x ) − cos(2k′

x ) cos(2k′
y)]

+ I

{
2t1

√
3 cos(k′

x ) sin(k′
y)

+ 2√
3

sin k′
y(r1 − r2)[cos(3k′

x ) + 2 cos(k′
y)]

+ 2
√

3u1 cos(2k′
x ) sin(2k′

y)

}
,

H22 = 2t11 cos(2k′
x ) + (t11 + 3t22) cos(k′

x ) cos(k′
y)

+ 4r11 cos(3k′
x ) cos(k′

y) + 2(r11 +
√

3r12) cos(2k′
y)

+ (u11 + 3u22) cos(2k′
x ) cos(2k′

y) + 2u11 cos(4k′
x )

+ e2,

H23 = [
√

3(t22 − t11) sin(k′
x ) sin(k′

y) + 4r12 sin(3k′
x )

× sin(k′
y) +

√
3(u22 − u11) sin(2k′

x ) sin(2k′
y)]

+ I{4t12 sin(k′
x )[cos(k′

x ) − cos(k′
y)]

+ 4u12 sin(2k′
x )[cos(2k′

x ) − cos(2k′
y)]},

H33 = 2t22 cos(2k′
x ) + (3t11 + t22) cos(k′

x ) cos(k′
y)

+ 2r11[2 cos(3k′
x ) cos(k′

y) + cos(2k′
y)] + 2√

3
r12

× [4 cos(3k′
x ) cos(k′

y) − cos(2k′
y)] + (3u11 + u22)

× cos(2k′
x ) cos(2k′

y) + 2u22 cos(4k′
x ) + e2.

The numerical values of the tight-binding matrix elements
(Fig. 10) are given by

e1 = 1.8247; e2 = 2.07; t0 = −0.12; t1 = 0.3645;

t2 = 0.4449; t11 = 0.2068; t12 = 0.3498; t22 = −0.0961;

r0 = −0.036; r1 = −0.025; r2 = −0.0445; r11 = 0.071;

r12 = 0.0285; u0 = −0.034; u1 = 0.0064; u2 = 0.031;

u11 = 0.087; u12 = 0; u22 = −0.054; tSOC = 0.075.

Here, k′
x = 1

2 kxalat and k′
y =

√
3

2 kyalat (kx and ky are momentum
space wave vectors and alat is the lattice constant).
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FIG. 10. DFT generated band structure (red dashed line) and the
tight-binding fitting (blue line) of that in the absence of Ising SOC
(left) and in the presence of Ising SOC (right).

APPENDIX B: MEAN-FIELD DECOUPLING

The Hubbard-Kanamori Hamiltonian expressed in an or-
bital basis can be given by

HU = U
∑
i,μ

n̂iμ↑n̂iμ↓ + U ′ ∑
i,μ �=ν

∑
σ

n̂iμσ n̂iνσ̄

+ (U ′ − J )
∑

i,μ �=ν

∑
σ

n̂iμσ n̂iνσ . (B1)

After performing a mean-field decomposition in the particle
hole channel, it is given by

HU = U
∑
i,μ

〈niμ↑〉niμ↓ + 〈niμ↓〉niμ↑

+ U ′ ∑
i,μ �=ν

∑
σ

〈niμσ 〉niνσ̄ + 〈niνσ̄ 〉niμσ

+ (U ′ − J )
∑

i,μ �=ν

∑
σ

〈niμσ 〉niνσ + 〈niνσ 〉niμσ . (B2)

In the above expression, we have U ′ = U − 2J . The
above mean-field form has been utilized in computing the
local magnetic instability in the system. The CDW Hamilto-
nian originates from the e-ph interaction by integrating out
the phonons. The quartic interaction term is restricted to
the dominant isotropic contribution [VCDW(k, Qm) = VCDW].
The interaction Hamiltonian then reads

HCDW = VCDW

∑
μ,ν,γ ,δ,

k,k′,m,σ

(
c†
μ,k,σ

cν,k+Qm,σ c†
γ ,k′,σ cδ,k′−Qm,σ

)
.

(B3)

Fourier-transforming the above generates the corresponding
Hamiltonian in real space,

HCDW = 2VCDW

∑
μ,ν,γ ,δ
i, j,m,σ

cos{Qm.(ri − r j )}c†
μiσ cνiσ c†

γ jσ cδ jσ .

(B4)

Further performing a mean-field decomposition, we define the
CDW order parameter,

HCDW =
∑

μ,ν,γ ,δ
j,m,σ

�mσ
μν (r j )c

†
γ jσ cδ jσ , (B5)

where

�mσ
μν (r j ) = 2VCDW

∑
i

cos{Qm.(ri − r j )}〈c†
μiσ cνiσ 〉. (B6)

As discussed above, the order parameter is restricted to site-
ordered terms.
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