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Logarithmic critical slowing down in complex systems: From statics to dynamics
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We consider second-order phase transitions in which the order parameter is a replicated overlap matrix. We
focus on a tricritical point that occurs in a variety of mean-field models and that, more generically, describes
higher-order liquid-liquid or liquid-glass transitions. We show that the static replicated theory implies slowing
down with a logarithmic decay in time. The dynamical equations turn out to be those predicted by schematic
mode-coupling theory for supercooled viscous liquids at a A3 singularity, where the parameter exponent is λ = 1.
We obtain a quantitative expression for the parameter μ of the logarithmic decay in terms of cumulants of the
overlap, which are physically observable in experiments or numerical simulations.
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I. INTRODUCTION

In the present work we study a peculiar kind of critical
slowing down occurring in the dynamics of slowly relaxing
complex glassy systems in which the correlation function
of the relevant dynamic variables decays logarithmically in
time. This is different from the usual behavior of, e.g., the
correlation function of density fluctuations in supercooled
liquid next to the dynamic arrest occurring in mean-field
theories for glasses, somehow describing the real-world (off-
equilibrium) glass transition of liquid glass-formers. In that
case the correlator next to the transition displays a two-step
behavior: towards a plateau at short times and from the plateau
towards zero correlation at longer times, the plateau becoming
longer and longer as the external parameters bring the system
nearer to the dynamic arrest line in the phase diagram. In
Götze’s mode-coupling theory (MCT) [1–4] a dynamic arrest
critical point is referred to as an A2 singularity, according to
the classification of Arnold’s catastrophes theory. The critical
point corresponding to a logarithmic decay is, instead, an A3

cusp singularity, a tricritical point signaling the end point of a
liquid-liquid (or glass-glass) dynamic transition.

More in detail, the behavior in time of the correlation
function C(t ) in the time-translational-invariant (TTI) regime
at the ground of MCT is usually characterized by an initial
power-law decay t−a towards a constant value, often related
to the β relaxation occurring in glass formers, and by a decay
−t b from the plateau of C(t ) as the liquid system begins
approaching thermodynamic equilibrium. The exponents a
and b are related by the well-known formula for the so-called
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“parameter exponent:”

λ = �2(1 − a)

�(1 − 2a)
= �2(1 + b)

�(1 + 2b)
, (1)

holding at the dynamical A2 singularity of the MCT for un-
dercooled viscous liquids, �(x) being the gamma function.
By changing the values of the external parameters, a dynamic
arrest line can be drawn in the phase diagram consisting of A2

points. In given systems the exponent parameter λ tends to 1
along the dynamic arrest line, approaching an A3 point. In that
limit the exponent a tends to zero and logarithmic corrections
become relevant to the relaxation.

Hereafter, we present a general method for the quantitative
computation of the coefficient of the logarithmic decay of the
density-density correlation functions in viscous liquids. Götze
and Sjögren [5] predicted a 1/ ln t2 decay exactly at the A3 sin-
gularity and a behavior of the kind −(ln t )γ as a ∼ 0, λ ∼ 1.
Their exemplifying case is the F13 mode-coupling schematic
theory [4]. However, in this case the A3 singularity cannot be
directly accessed in experiments or in numerical simulations
because it occurs in the region of the phase diagram pertaining
to the glassy phase, beyond the dynamic arrest line where TTI
breaks down and the MCT does not hold anymore. Therefore,
in the liquid phase the presence of the A3 singularity is only
felt in weakly logarithmic corrections to the power-law β

decay in regions of the space parameters (temperature, pack-
ing fraction,...) close enough to it. Other systems displaying
this kind of singularity include disordered spin-glass models
[6–10], liquids in porous media, both in the MCT [11,12] and
in the hypernetted-chain approximations [13,14], and liquid
models with pinned particles [15]. The − ln t behavior of the
correlation function appears to be the correct fitting law for
about a decade or two in most of the known experiments and
numerical simulations of repulsive colloids [4,16–19]. Also
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cases where the A3 singularity is directly accessible from the
liquid phase are devised in MCT, for instance, in the F12

schematic model [4]. The quantitative estimation of the pa-
rameters of the logarithmic behavior can, so far, be performed
exactly only in MCT schematic theories. Moreover, as, e.g., in
the case of the F13 model, the A3 singularities lie in the region
where one of the fundamental assumptions on which MCT is
built, TTI does not hold.

In many systems the replica method offers a way to
characterize dynamical arrest phenomena in a purely static
framework which is often simpler than a dynamical approach.
It is, therefore, natural to assume that universal static crit-
ical properties can be obtained a la Landau from simple
assumptions on the (replicated) Gibbs free energy at the cor-
responding critical point. A decade ago it was realized that
replicated theories also determine important features of crit-
ical glassy dynamics [20–24]. Notably, they give the same
scale-invariant equations for the critical correlators that are
often obtained by studying the actual dynamical equations of
these systems. An important consequence is that the exponent
parameter λ, Eq. (1), can be computed in a static replicated
theory.

In this paper we consider a class of replicated theories for
which λ = 1 and show that they predict a logarithmic decay
of the correlation as obtained within MCT at the A3 singular-
ity. Furthermore, we show that the coefficient describing the
logarithmic decay can be quantitatively expressed in terms of
static quantities that can be measured at equilibrium, and we
provide the formula (18), which is the most notable result of
the present work.

The paper is organized as follows. In Sec. II we present the
general framework and the results. In Sec. III we derive the
equations for critical dynamics, starting from the replicated
theory. In Sec. IV we report the general expansion of the free
energy. In Sec. V we connect the free energy with the Gibbs
free energy and we derive the main results. In Sec. VI we give
our conclusions. In Appendix we report the 23 fourth-order
vertices, as well as their associated cumulant combinations.

II. OUTLINE OF THE RESULTS

The framework of this paper is a Landau approach to
glassiness based on replicated theories. In a Landau approach
one does not start from any specific microscopic model, and
instead, (i) identifies an order parameter, (ii) makes some
assumptions on the structure of the corresponding Gibbs
free energy near a critical point, and (iii) explores the con-
sequences of these assumptions. The corresponding results
display a great deal of universality, because the assumptions
of the structure of the Gibbs free energy can be valid for many
different models, often with completely different microscopic
structures. On the other hand, to be concrete, one can usually
exhibit solvable mean-field models whose Gibbs free energy,
as given by a first-principles computation, has precisely the
required structure. Solvable models are typically obtained
considering either long-range models or taking the limit of
infinite dimensions. Later in this section we will mention a
few mean-field models to which our general findings apply.

We will follow and expand the derivation of Ref. [24],
considering theories in which the argument of the Gibbs free

energy G(Q) is a replicated matrix Qab with a = 1, . . . , n. The
replica number n in these theories is usually continued from
integer to real continuous values, and we will take into account
the two important cases n → 0 and n → 1. Such Qab matrix
naturally appears in spin glasses where, due to the presence
of quenched disorder, one resorts for technical reasons to
the replica method. From a physical point of view, the order
parameter to identify a glassy phase, i.e., a “multiequilibria”
phase composed by many different states, cannot rely on an
absolute reference for a state, since no a priori clear pattern is
provided because of frustration. As a consequence, the order
parameter is built on the similarity between different states,
more precisely, on the whole range (hierarchy) of possible
similarities, summed up in a probability distribution for the
values of the overlap matrix elements. In this case Qab is
naturally identified with the average of the overlap between
two different replicas of the system,

Qab = 1

N

N∑
i=1

〈
sa

i sb
i

〉
, (2)

where the si, i = 1, . . . , N , are spins. For the case n → 0, the
angle brackets are thermal averages and the overline is the
average over the quenched disorder. The case n → 1 applies
to problems where for each disorder realization there are many
metastable excited states whose number grows exponentially
with the size of the system. In this latter case, then, the angle
brackets represent thermal averages inside a metastable state
and the overline represents averages over different metastable
states and over the quenched disorder.

It has been argued that a replicated order parameter may
be the relevant one whenever the frozen state is amorphous,
because to detect symmetry breaking we have to compare it
with itself. This has led to the extension of the replica method
to structural glasses [25–29] and more recently to the develop-
ment of the theory of supercooled liquids in the limit of infi-
nite dimensions [30]. In this context Qab is naturally identified
with the averaged density-density fluctuations in the momen-
tum space in a replicated system at some wave vector k,

Qab ≡ 1

V
〈δρ∗

a (k)δρb(k)〉, (3)

where ρa(k) is the Fourier transform

ρa(k) =
N∑

i=1

eı k·r(a)
i

of the density of N particles of the replica a at positions ri,a,
i = 1, . . . , N ,

ρ(r(a) ) =
N∑

i=1

δ
(
r(a) − r(a)

i

)
,

and δρa(k) is the fluctuation of ρa(k) with respect to its
average 〈ρa(k)〉. We note that choice of k in Eq. (3) is
arbitrary and one could consider, instead, the mean-square
displacement [30]. We refer the reader to Sec. II B of [31] for
a thorough discussion of the choice of the order parameter.

In mean-field models we expect that the Gibbs free energy
has a regular expansion in powers of the order parameter at the
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critical point; therefore we will consider the following replica-
symmetric theory written in terms of δQab ≡ Qab − Qc, where
Qc is the value of the order parameter at the critical point and
δQaa = 0:

G(δQ) = m1

2

1,n∑
ab

δQ2
ab + m2

2

1,n∑
abc

δQabδQac

+ m3

2

1,n∑
abcd

δQabδQcd − w1

6
Tr δQ3 − w2

6

1,n∑
ab

δQ3
ab

− 1

24

[
y1Tr δQ4 + y2

1,n∑
ab

δQ4
ab

+ y3

1,n∑
abc

δQ2
abδQ2

ac + y4

1,n∑
abc

δQ2
abδQacδQcb

]
. (4)

The above expression can be obtained from a microscopic
description in a variety of contexts [30,32]. In the above
expression we have retained only the terms relevant for the
present discussion (the y3 term actually vanishes, as will be
shown in Sec. III A), while the complete expression has ac-
tually eight third-order terms and twenty-three fourth-order
terms that will be displayed later, in Appendix. At the end of
Sec. IV we will explain why the other terms can be neglected.
We will focus on critical points characterized by the condition
m1 = 0. Depending on the values of the remaining parameters
and on the replica number n we may have different types of
transition. Three such transitions, discussed in detail in [24],
are

(1) m2 = m3 = 0 and replica number n → 0, which corre-
sponds to a standard spin-glass (SG) transition in zero field or
to the so-called degenerate A2 singularity within MCT,

(2) m2 �= 0 �= m3 and replica number n → 0, that corre-
sponds to the SG transition in a field that occurs along the de
Almeida-Thouless line [6,32], and

(3) m2 �= 0 �= m3 and replica number n → 1, which cor-
responds to the dynamical transition in SG systems that is the
well-known A2 singularity in MCT [31,33].

In dynamics one is typically interested in the correlation
C(t ) between the configuration of the system at time t = 0
and the configuration of the system at time t , which is the
dynamical counterpart of the two-point order parameter Qab.
In spin systems it is naturally defined as

C(t ) ≡ 1

N

N∑
i=1

〈si(0)si(t )〉, (5)

while in structural glasses it is given by

C(t ) ≡ 1

V
〈δρ∗(k, 0) δρ(k, t )〉. (6)

In the liquid or paramagnetic phase the function C(t ) decays
exponentially, but the correlation time diverges at the critical
point. As mentioned in the Introduction, it has been shown
[24] that the structure of the replicated Gibbs free energy at the
critical point determines also the essential features of critical
dynamics. More precisely, in the case of the SG transition (i)
one can show that the TTI correlation at large time differences

t is described by

C(t ) = m1 f

(
t

t∗

)
t 	 1 (7)

for small positive m1, where the timescale t∗ grows like

t∗ ∝ 1

m
1
a
1

,

the exponent a is a solution of the equation

w2

w1
= �2(1 − a)

�(1 − 2a)
, (8)

and the function f (x) obeys the scale-invariant equation:

0 = f (x) + f 2(x)

(
1 − w2

w1

)

+
∫ x

0
[ f (x − y) − f (x)] ḟ (y)dy. (9)

The solution of the above equation diverges as 1/xa for x →
0 and goes exponentially to zero for x → ∞. Precisely at
m1 = 0 the correlation undergoes critical slowing down and
decays as a power law with exponent a, rather than as an ex-
ponential. Similar results are obtained for transitions (ii) and
(iii), as, e.g., for the SK model in a field, the p-spin spherical
and Ising models, the random orthogonal model, or the Potts
model [20–23]. In particular, for the transition of type (iii),
one recovers exactly the same scale-invariant equations of the
critical correlators in MCT (i.e., Eq. 6.55a in Ref. [4]), with
the parameter exponent given by

λ = w2

w1
. (10)

The above results show that critical dynamics at the three
transitions considered is universal, because it follows solely
from the structure of the replicated Gibbs free energy. Further-
more, the above relationship extends the range of predictions
that the replica approach can provide. Besides, the connection
between the replicated Gibbs free energy and the parameter
exponent leads to a connection with connected correlation
functions of the order parameter: the proper vertexes w2 and
w1 in Eq. (4) are associated to vertexes of the free-energy
function of fields in the replica space coupled to the overlap
fluctuations, which are given by the connected correlation
functions of δQab. For instance, one obtains that

w2

w1
= ω2

ω1
, (11)

where ω1, ω2 are six-point functions given, respectively, by

ω1 = 1

N

∑
i jk

〈sis j〉c〈s jsk〉c〈sksi〉c, (12)

ω2 = 1

2N

∑
i jk

〈sis jsk〉2
c, (13)

where the suffix c stands for connected correlation functions.
As mentioned before, we recall that for transitions (i) and (ii)
(n → 0) the angle brackets in the above expressions stand for
thermal averages and the overline stands for the average over
the quenched disorder. For transition (iii) (n → 1) the angle
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brackets in the above expression stand for thermal averages
inside a metastable state and the overline stands for the aver-
age over the different metastable states and over the quenched
disorder.

In this paper we extend the above analysis to a class of
critical points characterized by a replicated Gibbs free energy
of the type (4) but with w2 = w1 ≡ w, i.e., with λ = 1. To
be specific, let us give a few examples of solvable mean-field
models that display such a transition. Let us consider the most
general fully connected spin-glass models with multi-p-spin
interactions:

H = −
∑

p

∑
i1<i2<···<ip

Ji1...ipsi1 . . . sip, (14)

where the J ′s are quenched random interactions and the si

can be either Ising spin or satisfy a spherical constraint. In
the spherical three-spin case, in the presence of a magnetic
field there is a tricritical point with λ = 1 in the temperature–
magnetic field plane where a line of discontinuous transitions
meets a line of continuous transitions [6,34]. Another exam-
ple is that of a mixed 2 + 3 model that corresponds to the
so-called schematic F12 model in the context of MCT. In
the phase diagram, e.g., in the plane of the magnitudes of
the two-spin and the three-spin interaction, there is a λ = 1
critical point. Upon increasing the relative magnitude of the
three-spin interaction, a line of continuous transitions meets
a line of discontinuous transitions [9,35]. Random pinning
of a spherical p-spin-glass model, i.e., freezing a fraction
c of the spins [10,15], is also relevant: in the temperature-
concentration plane there is a line of discontinuous transitions
that, upon increasing the concentration, ends in a point char-
acterized by λ = 1. Finally, we mention the Potts spin glass
with Hamiltonian,

H = −
∑
i< j

Ji j (p δsis j − 1), (15)

where the si are Potts spins with p states and Ji j is a quenched
random interaction. For p � 4 it displays a continuous SG
transition characterized by λ = (p − 2)/2, which implies λ =
1 for p = 4, in both the fully connected [22,36] and the finite-
connectivity case [37].

If λ = 1 the correlation cannot decay with a power law
because Eqs. (10) or (1) yield a = b = 0. Indeed, for all the
three types of transitions we will show that at large times,

C(t ) − C(∞) = 2π2

3 μ ln2(t/t1)
+ 24ζ (3)

μ ln3(t/t1)
ln ln(t/t1) + · · ·,

(16)

where ζ (i) is the Riemann’s ζ function and t1 is an unknown
timescale that cannot be determined due to the timescale
invariance of the equation. We note that this expression was
obtained by Götze and Sjögren [5] within MCT in the context
of the so-called A3 singularities [4], and indeed, we will derive
the same dynamical equations. The parameter μ in Eq. (16)
depends on the quartic coupling constants of the replicated
Gibbs free energy (4) through

μ = −y1 + y2 − y4

3w
. (17)

As usual, the coefficients of the Gibbs free energy can be
expressed in terms of four-point connected correlation func-
tions of the order parameter and, thus, we will show that the
parameter μ can be calculated in terms of physical measurable
observables as

μ = − r

3ω
(υ1 + υ2 − υ4), (18)

where r ≡ χ−1
SG , χSG is the so-called spin-glass susceptibility:

χSG ≡ 1

N

∑
i j

〈sis j〉2
c, (19)

whereas ω is either given by ω1 or ω2 defined in Eqs. (12)
and (13), since they are equal at the critical point that we are
considering. Eventually, the υ’s are the fourth-order analogs
of the ω’s. As we show in Sec. IV, their expressions turn out
to be

υ1 ≡ 3

N

∑
i jkl

〈sis j〉c〈s jsk〉c〈sksl〉c〈sl si〉c, (20)

υ2 ≡ 1

2N

∑
i jkl

〈sis jsksl〉2
c, (21)

υ4 ≡ 6

N

∑
i jk

〈sis jsk〉c〈sis jsl〉c〈sl sk〉c. (22)

We will also consider the critical behavior of the physical
susceptibilities. In particular, we will show that close to the
critical point, where r vanishes linearly with the external
parameters (in mean-field models), the three-point suscepti-
bilities ωi, i = 1, 2 diverge as

ωi = wi

r3
(23)

and the four-point susceptibilities υi, i = 1, . . . , 4, diverge as

υi = O

(
1

r5

)
. (24)

However, the linear combination υ1 + υ2 − υ4 associated to
μ is less divergent if w1 = w2, as it turns out to obey the
following relationship:

υ1 + υ2 − υ4 = 6
(w1 − w2)2

r5
+ y1 + y2 − y4

r4
. (25)

Equations (16), (17), (18), and (25) are the main results of
this paper and will be derived in the following. In particular,
Eqs. (16) and (17) will be derived in the following section.
In Sec. IV the free energy will be introduced, and the expres-
sion of its coefficients (20)–(22) will be derived. Eventually,
Eq. (18) will be derived in Sec. V.

III. DERIVATION OF THE EQUATIONS
OF CRITICAL DYNAMICS

In this section we show how the expression (16) can be
derived from the static replicated Gibbs free energy (4). We
first differentiate it with respect to the order parameter δQab,
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obtaining the following equation of state:

0 = w1(δQ2)ab + w2δQ2
ab + y1

3
(δQ3)ab + y2

3
δQ3

ab

+ y3

6
δQab[(δQ2)aa + (δQ2)bb]+y4

6
δQab(δQ2)ab

+ y4

12

∑
c

[
δQ2

acδQcb + δQ2
bcδQca

]
. (26)

Now we translate the above equation into an equation for
the dynamical correlation, valid at large times and near the
critical point. We will briefly sketch the arguments leading to
this mapping, but we refer the reader to Ref. [24] for all the
details of the procedure. The result is obtained in the context
of a super-field formulation of dynamics [38] in which both
the dynamical correlation and response functions are repre-
sented by a single dynamical order parameter Q(1, 2) in terms
of (commuting) times t1,2 and Grassmannian anticommuting
variables θ1,2, θ̄1,2.

A. Theories with n = 0

At equilibrium Q(1, 2) can be parameterized by a sin-
gle time-translational-invariant correlation function C(t ) =
C(−t ) according to the following form that encodes causality
and the fluctuation-dissipation theorem (FDT):

Q(1, 2) =
{

1 + �12
∂

∂t1

}
C(t1 − t2), (27)

with

�12 ≡ 1
2 (θ1 − θ2)[θ1 + θ2 − (θ1 − θ2) sgn(t1 − t2)]

=
{

(θ̄1 − θ̄2)θ2, t1 > t2

(θ̄1 − θ̄2)θ1, t2 > t1.
(28)

We note that this representation is appropriate for the phase
transitions characterized by a replicated free energy with n =
0, whereas for n = 1 a different representation must be con-
sidered ([24], Sec. III D v). We postpone the discussion of this
case to the end of this section. On general grounds it is to be
expected that the dynamical order parameter Q(1, 2) at large
times must be related to the static order parameter Qab. Indeed,
as noted in [38], the static result is obtained in the so-called
fast motion (FM) limit that corresponds to an infinitely fast
microscopic dynamics. In this limit configurations at different
times are completely uncorrelated and they are equivalent to
different replicas of the same system. As a consequence, in
this limit QFM (1, 2) has a diagonal structure:

QFM (1, 2) = δ(1, 2)[C(0) − C(∞)] + C(∞), (29)

where δ(1, 2) is a delta function in the supervariables, and
C(0), C(∞) are the values of the correlation at zero and
infinite time, respectively. It is useful to describe the dynamics
at large but not infinite times in terms of the deviation of
Q(1, 2) from its FM limit, introducing the quantity

δQ(1, 2) = Q(1, 2) − QFM (1, 2). (30)

The dynamical equations for Q(1, 2) can be obtained from
a dynamical Gibbs free energy, and one may expect that the
critical dynamics is determined a la Landau by its expansion

in powers of δQ(1, 2). In [24] it is argued that the dynamical
Gibbs free energy must have the same structure of the repli-
cated Gibbs free energy with the same coupling constants and,
therefore, Eq. (26) translates into an identical equation for
δQ(1, 2).

In the following we will rewrite Eq. (26) with δQab →
δQ(1, 2) as an equation for C(t ). In order to simplify the
computation, we observe that all the terms are obtained from
δQ(1, 2) through the operation of exponentiation of matrix
elements and dot products. These operations preserve super-
symmetry, time reversal, zero ghost number, and causality
(see [38], Sec. 5.5), and therefore their result can still be writ-
ten in the form (27), which is the most general form satisfying
these properties. Using an appropriate even function A(τ ), the
generic exponentiation corresponds to a simple power:

A(1, 2)k =
{

1 + �12
∂

∂t1

}
Ak (t1 − t2). (31)

The dot product corresponds to∫
A(1, 3)B(3, 2) d3 =

{
1 + �12

∂

∂t1

}
[AB](t1 − t2), (32)

where the function [AB](t ) stands for

[AB](t ) = A(t )B(0) + B(t )A(0) − A(∞)B(−∞)

− d

dt

∫ t

0
A(t − y)B(y)dy. (33)

One can check that if both A(t ) and B(t ) are even functions,
then [AB](t ) is even and [AB](t ) = [BA](t ). We recall that
δQ(1, 2) is also of the form (27) with δC(t ) = C(t ) − CFM (t ),
where CFM (t ) obeys CFM (0) = C(0) and CFM (0+) = C(∞).
Therefore, by construction we have that δC(0) = δC(∞) = 0,
and this simplifies considerably the evaluation of the various
terms. Using the two rules (31) and (32), we can translate
all the terms of Eq. (26) into expressions of their dynamical
counterparts. For the quadratic terms we have

w1(δQ2)ab → −w1
d

dt

∫ t

0
δC(t − y) δC(y) dy, (34)

w2 δQ2
ab → w2 δC2(t ). (35)

In order to make contact with the MCT notation of Ref. [5],
we define

δC(t ) ≡ G(t ) (36)

and introduce the Laplace transform of the time functions as
[4]

Â(z) = LT [A(t )](z) ≡ i
∫ ∞

0
A(t ) eizt dt, Im[z] > 0. (37)

The formulas for the transforms of the convolution and of the
time derivative are repeatedly used in the following derivation
and we write them explicitly:

LT

[∫ t

0
A(t − y)B(y)dy

]
= −iÂ(z)B̂(z), (38)

LT

[
dA(t )

dt

]
= −izÂ(z). (39)
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We also define (G2)(t ) as the time derivative of the convolu-
tion, cf. Eq. (33):

(G2)(t ) ≡ − d

dt

∫ t

0
G(t − y) G(y) dy. (40)

The contributions of the quadratic terms can now be expressed
as

w1 (δQ2)ab → w1 z Ĝ2(z), (41)

w2 δQ2
ab → w2 LT [G2(t )], (42)

while those of the cubic terms can be expressed as
y1

3
(δQ3)ab → y1

3
z2Ĝ3(z), (43)

y2

3
δQ3

ab → y2

3
LT [G3(t )], (44)

y3

6
δQab((δQ2)aa + (δQ2)bb) → 0, (45)

y4

6
δQab(δQ2)ab → y4

6
LT [G(t )(G2)(t )], (46)

y4

12

∑
c

[
δQ2

acδQcb + δQ2
bcδQca

] → y4

6
z Ĝ(z) LT [G2(t )].

(47)

We stress that in order to compute the vanishing term propor-
tional to y3, we have used the fact that, according to Eqs. (32)
and (33),

AB(1, 1) = [AB](0) = A(0)B(0) − A(∞)B(−∞), (48)

which implies

(δQ2)aa → δC(0)2 − δC2(∞) = 0. (49)

Dividing Eq. (26) by w1 and multiplying by z, we obtain

0 = z

{
w2

w1
LT [G2(t )] + z Ĝ2(z)

}

+ y1 + y2 − y4

3w1
z LT [G3(t )]

− 2y1 − y4

6w1
z{LT [G3(t )] − z2Ĝ3(z)}

+ y4

6w1
z {LT [G3(t )] + z Ĝ(z) LT [G2(t )]}

+ y4

6w1
z {LT [G(t )(G2)(t )] + z2 Ĝ3(z)}, (50)

where we have just rearranged the various term for later con-
venience. Shortening μ ≡ (y1 + y2 − y4)/(3w1), the first two
lines correspond to the equation

0 = z

{
w2

w1
LT [G2(t )] + z Ĝ2(z)

}
− μ z LT [G3(t )], (51)

considered by Götze and Sjögren [5], who showed that its
solution at leading order follows the logarithmic decay of
Eq. (16). Our equation (50) has the same form except for the
additional terms of the last three lines. In order to characterize
its solution one introduces an auxiliary function g by setting

G(t ) = g[ln(t/t1)]. Following [5] we introduce the variable

y ≡ ln
1

−izt1
,

and changing the integration variable in the Laplace transform
from t to u ≡ −izt , we obtain the relationship

−z Ĝ(z) =
∫ ∞

0
du e−ug(y + ln u). (52)

The Taylor expansion around y gives

−z Ĝ(z) = g(y) + �1 g′(y) + 1
2�2 g′′(y) + · · · , (53)

where

�n ≡
∫ ∞

0
du e−u(ln u)n. (54)

It follows that for a generic product the Laplace transform
reads

−z LT
[
Gp

1 (t )Gq
2(t )

]
(z)

= gp
1gq

2 + �1
(
pg′

1gp−1
1 gq

2 + qg′
2gq−1

2 gp
1

)
+ 1

2�2
[
p(p − 1)g′′

1 gp−2
1 gq

2 + pqg′
1g′

2 gp−1
1 gq−1

2

+ q(q − 1)g′′
2 gq−2

2 gp
1

] + · · · . (55)

The integrals �n can be expressed as polynomials of degree
n of the Euler’s constant γ = −�1, with coefficients given
by combinations of Riemann’s zeta function up to ζ (n). Fur-
thermore, given any two functions G1(t ) and G2(t ) and the
corresponding functions g1 and g2, we have.1

−z{LT [G1(t )G2(t )] + z Ĝ1(z) Ĝ2(z)} = ζ (2)g′
1g′

2 + · · · ,

(56)

where ζ (2) = π2/6. With the help of the above formulas we
obtain

z{LT [G2(t )] + z Ĝ2(z)} = −ζ (2)(g′)2

+ 2[γ ζ (2) + ζ (3)]g′g′′

+ · · ·
zLT [G3(t )] = −g3 + 3γ g2g′ + · · ·

z{LT [G3(t )] − z2 Ĝ3(z)} = O(g (g′)2)

z{LT [G3(t )] + z Ĝ(z) LT [G2(t )]} = O(g (g′)2)

z{LT [G(t )(G2)(t )] + z2 Ĝ3(z)} = O(g (g′)2). (57)

To derive the above formulas we used the fact that the
last three lines are all of the form −z{LT [G1(t )G2(t )] +
z Ĝ1(z) Ĝ2(z)}. At leading order, at the tricritical point w1 =
w2, Eq. (51) becomes

−2 π2

3
(g′)2 + μg3 = 0, (58)

whose solution is the leading order of Eq. (16). Since solving
Eq. (58) one observes that at leading order g = O(y−2), we
also see that the leading corrections to the first two lines is

1Note that there is a typographical error in Eq. (A9) in [5], the
correct expression being the one displayed here, in Eq. (56).
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O(y−7) while the last three lines are O(y−8). Higher-order
terms, O(δQ4), in the equation of state would also give a
contribution O(y−8), and therefore, the subleading correction
is solely determined by the subleading corrections to the first
two lines in Eq. (50). The coefficient of the second line
is, eventually, simply the combination μ, cf. Eq. (17). The
solution at leading and subleading order is, eventually, the
anticipated result of Eq. (16):

G(t ) = 2π2

3 μ ln2(t/t1)
+ 24ζ (3)

μ ln3(t/t1)
ln ln(t/t1) + · · · .

B. Theories with n = 1

We now turn to the n = 1 case. This is relevant for the
important case of the dynamic transition in SG models with
one step of replica symmetry breaking and in glass-forming
supercooled liquids [24,30,31,33,39]. As we mentioned be-
fore, here the dynamics has to be described in a formalism
that takes into account the initial condition. The formulation
is given in Sec. III D of Ref. [24], and a complete treatment
is reported in [31]. We will not enter into the details hereafter,
and we will limit ourselves to noting that the dynamical ob-
jects involved are, once again, the supersymmetric matrices
Q(1, 2). Inasmuch as we did above, these can be written in
terms of a single TTI correlation function C(t ) = C(−t ):

Q(1, 2) → C(t ). (59)

Once again, Eq. (26) can thus be translated into an equa-
tion for C(t ). As we saw before, we only need to specify
the analog for n = 1 of Eqs. (31) and (32), i.e., the be-
havior of element-wise products Ak (1, 2) and dot products∫

A(1, 3)B(3, 2) d3. For the products we just have [24]

A(1, 2)k → Ak (t1 − t2), (60)

while for the dot product we have∫
A(1, 3)B(3, 2) d3 → [AB](t1 − t2) (61)

with [31]

[AB](t ) = A(t )B(0) + B(t )A(0)

− d

dt

∫ t

0
A(t − y) B(y) dy. (62)

Note that this is different from Eq. (33) for the n = 0 dynamics
due to the absence of the term A(∞)B(∞). However, since
we are computing products of δQ(1, 2) and we have δC(0) =
δC(∞) = 0, the two expressions yield the same results. As a
consequence, the mappings of (41)–(47) hold for n = 1. We
stress that again Eq. (45) gives a vanishing contribution as

AB(1, 1) = [AB](0) = A(0)B(0) (63)

[again, with no term −A(∞)B(∞)], and therefore

(δQ2)aa → δC(0)2 = 0. (64)

The validity of the mappings implies that Eq. (50) holds also
for n = 1 and, consequently, the same logarithmic relaxation
behavior, cf. Eq. (16), is derived, with the same procedure
performed for n = 0, in Sec. III A.

IV. EXPANSION OF THE REPLICATED FREE
ENERGY AT FOURTH ORDER

In this section we express the coefficients of the free energy
of a generic model in terms of physical observables, namely,
the cumulants of the overlap. For the sake of clarity, in the
following we will reproduce the derivation of the third-order
expansion, initially reported in Ref. [24], while we will post-
pone to Appendix the derivation of the fourth-order result. For
the sake of readability we might repeat some of the definitions
already given before.

Averages in the replicated system can be rewritten as

〈· · · 〉 ≡ 〈· · · 〉J , (65)

where 〈· · · 〉J are thermal averages at fixed quenched disor-
dered interactions J while the overline is the average over the
couplings that must be performed reweighting each disorder
realization with the single-system partition function to the
power n:

OJ =
∫

dP(J )OJZn
J∫

dP(J )Zn
J

. (66)

Note that the thermal averages between different replicas fac-
torize prior to the disorder averages. We define the following
free-energy functional:

F (λ) ≡ − 1

N
ln〈e

∑
(ab) NλabδQ̃ab〉, (67)

where

δQ̃ab = 1

N

∑
i

sa
i sb

i − q (68)

and

q ≡ 1

N

∑
i

〈
sa

i sb
i

〉 =
∑

i

〈si〉2
J . (69)

We note that the above free-energy functional arises if we
apply to each spin sa

i of each replica a Gaussian-distributed

random field ha
i with covariance matrix given by ha

i hb
j =

λabδi j . Following [24], we start by expanding F (λ) in powers
of λ at fourth order assuming λaa = 0 ∀a:

F (λ) = − 1

2

∑
(ab),(cd )

λabGab,cdλcd

− 1

6

∑
(ab),(cd ),(e f )

Wab,cd,e f λabλcdλe f

− 1

24

∑
(ab),(cd ),(e f ),(gh)

Yab,cd,e f ,ghλabλcdλe f λgh. (70)

The G′s, the W’s, and the Y’s are, respectively, the connected
correlation functions of order two, three, and four. In the
replica symmetric case, the total number of different cumu-
lants of order K , Ca1b1,...,aK bK is given by the set of possible
diagrams (connected and disconnected) with K legs with the
condition that any leg connects different vertices (due to the
assumption λaa = 0). We have thus only three possible values
of G,

Gab,ab = G1, Gab,ac = G2, Gab,cd = G3, (71)
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and eight possible values of W as pictorially listed in Fig. 1:

Wab,bc,ca = W1, Wab,ab,ab = W2, Wab,ab,ac = W3, Wab,ab,cd = W4, (72)

Wab,ac,bd = W5, Wab,ac,ad = W6, Wac,bc,de = W7, Wab,cd,e f = W8. (73)

We want to recast the cubic part of the free energy in the following form:∑
(ab),(cd ),(e f )

Wab,cd,e f λabλcdλe f = ω1

∑
abc

λabλbcλca + ω2

∑
ab

λ3
ab + ω3

∑
abc

λ2
abλac + ω4

∑
abcd

λ2
abλcd + ω5

∑
abcd

λabλacλbd

+ω6

∑
abcd

λabλacλad + ω7

∑
abcde

λacλbcλde + ω8

∑
abcde f

λabλcdλe f . (74)

The above identity leads to the following relationships be-
tween the ω’s and the W’s [40]:

ω1 = W1 − 3W5 + 3W7 − W8 (75)

ω2 = 1
2W2 − 3W3 + 3

2W4 + 3W5 + 2W6 − 6W7 + 2W8

(76)

ω3 = 3W3 − 3W4 − 6W5 − 3W6 + 15W7 − 6W8 (77)

ω4 = 3
4 (W4 − 2W7 + W8) (78)

ω5 = 3W5 − 6W7 + 3W8 (79)

ω6 = W6 − 3W7 + 2W8 (80)

ω7 = 3
2W7 − 3

2W8 (81)

ω8 = 1
8W8. (82)

From the definition (67) we easily see that the coefficients
of F (λ) can be related to spin averages, in particular, G is
precisely the dressed propagator:

G(ab),(cd ) ≡ − ∂2

∂λab∂λcd
F (λ) = N〈δQ̃abδQ̃cd〉. (83)

In the following and in the previous expression, averages are
always computed at λab = 0. Assuming that we are in a replica
symmetric phase, we obtain that G(ab),(cd ) can take three possi-
ble values, depending on whether there are two, three, or four
different replica indexes. The corresponding values are

G1 ≡ N
〈
δQ̃2

12

〉 = 1

N

∑
i j

(〈sis j〉2 − q2), (84)

FIG. 1. Diagrams corresponding to the cubic cumulants W .

G2 ≡ N〈δQ̃12δQ̃13〉 = 1

N

∑
i j

(〈sis j〉〈si〉〈s j〉 − q2), (85)

G3 ≡ N〈δQ̃12δQ̃34〉 = 1

N

∑
i j

(〈si〉2〈s j〉2 − q2). (86)

The cubic terms are given by the third derivative:

W(ab),(cd ),(e f ) ≡ − ∂3

∂λab∂λcd∂λe f
F (λ)

= N2〈δQ̃abδQ̃cdδQ̃e f 〉c

= N2〈δQ̃abδQ̃cdδQ̃e f 〉, (87)

where the suffix c stands for connected functions with respect
to the overlaps (not with respect to the spins), and the second
equality follows from the fact that the average of δQ̃ab is zero
by definition. The cubic cumulants can take eight possible
values:

W1 = N2〈δQ̃12δQ̃23δQ̃31〉
= 1

N

∑
i jk

〈sis j〉〈s jsk〉〈sksi〉 − 3q
∑

i j

〈sis j〉〈si〉〈s j〉

+ 2N2q3, (88)

W2 = N2〈δQ̃3
12

〉
= 1

N

∑
i jk

〈sis jsk〉2 − 3q
∑

i j

〈sis j〉2 + 2N2q3, (89)

W3 = N2
〈
δQ̃2

12δQ̃13
〉

= 1

N

∑
i jk

〈sis jsk〉〈sis j〉〈sk〉 − 2q
∑

i j

〈sis j〉〈si〉〈s j〉

− q
∑

i j

〈sis j〉2 + 2N2q3, (90)

W4 = N2
〈
δQ̃2

12δQ̃34
〉

= 1

N

∑
i jk

〈sis j〉2〈sk〉2 − 2q
∑

i j

〈si〉2〈s j〉2

− q
∑

i j

〈sis j〉2 + 2N2q3, (91)
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W5 = N2〈δQ̃12δQ̃13δQ̃24〉
= 1

N

∑
i jk

〈sis j〉〈sisk〉〈sk〉〈s j〉 − 2q
∑

i j

〈sis j〉〈si〉〈s j〉

− q
∑

i j

〈si〉2〈s j〉2 + 2N2q3, (92)

W6 = N2〈δQ̃12δQ̃13δQ̃14〉
= 1

N

∑
i jk

〈sis jsk〉〈si〉〈s j〉〈sk〉

− 3q
∑

i j

〈sis j〉〈si〉〈s j〉 + 2N2q3, (93)

W7 = N2〈δQ̃12δQ̃13δQ̃45〉
= 1

N

∑
i jk

〈sis j〉〈sk〉2〈si〉〈s j〉 − 2q
∑

i j

〈si〉2〈s j〉2

− q
∑

i j

〈sis j〉〈si〉〈s j〉 + 2N2q3, (94)

W8 = N2〈δQ̃12δQ̃34δQ̃56〉
= 1

N

∑
i jk

〈si〉2〈s j〉2〈sk〉2

− 3q
∑

i j

〈si〉2〈s j〉2 + 2N2q3. (95)

Substituting the above expressions in the relationship between
the ω’s and the W we obtain

ω1 = 1

N

∑
i jk

〈sis j〉c〈s jsk〉c〈sksi〉c, (96)

ω2 = 1

2N

∑
i jk

〈sis jsk〉2
c, (97)

ω3 = 3

N

∑
i jk

〈sis jsk〉c〈sis j〉c〈sk〉, (98)

ω4 = 3

4N

∑
i jk

[〈sis j〉2
c〈sk〉2 − 〈sis j〉2

c 〈sk〉2], (99)

ω5 = 3

N

∑
i jk

〈sis j〉c〈sisk〉c〈sk〉〈s j〉, (100)

ω6 = 1

N

∑
i jk

〈sis jsk〉c〈si〉〈s j〉〈sk〉, (101)

ω7 = 3

2N

∑
i jk

[〈sis j〉c〈si〉〈s j〉〈sk〉2 − 〈sis j〉c〈si〉〈s j〉 〈sk〉2],

(102)

ω8 = N2

8
(qJ − q)3. (103)

We note that upon passing from the W’s to the ω’s there
is an increase in symmetry and simplicity; in particular, we

FIG. 2. Diagrams corresponding to the quartic cumulants Y .

see that due to various cancellations ω1, ω2, ω3, ω5, and ω6

have a single disorder average, ω4 and ω7 have a two disorder
average, and only ω8 has three disorder averages.

We now turn to the fourth-order contribution that involves
the 23 diagrams shown in Fig. 2. These same diagrams have
been also studied by Temesvári (see Appendix A in [41], note
that we use a different naming convention). The expressions
of the cumulants Yab,cd,e f ,gh in terms of the physical observ-
ables can be obtained by differentiation, as we did before for
the third order, cf. Eqs. (88)–(95). Again, we are not interested
directly in the Y cumulants but rather in those linear combi-
nations of theirs, corresponding to the unrestricted sums over
replicas indexes. In other words, we want to determine the 23
connected correlation functions υi that satisfy the following
equation:

1

24

∑
(ab),(cd ),(e f ),(gh)

Yab,cd,e f ,ghλabλcdλe f λgh

= 1

24

[
υ1Tr λ4 + υ2

∑
ab

λ4
ab + υ3

∑
abc

λ2
abλ

2
ac

+ υ4

∑
abc

λ2
abλacλcb + · · ·

]
. (104)

Inasmuch as in the cubic case, we should first associate to the
coefficients Yi the appropriate averages of the overlap [corre-
sponding to Eqs. (88)–(95) for the third order] and then sep-
arately determine the connection between the Yi’s and the υi.
Both computations are reported in Appendix. The results can
then be used to derive the analog of expressions (96)–(103).
In spite of the complexity of the intermediate passages, it turns
out that the result is particularly simple for the four terms
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explicitly included in Eq. (5), only three of which are relevant
to compute the μ coefficient of the logarithmic decay. We find

υ1 = 3

N

∑
i jkl

〈sis j〉c〈s jsk〉c〈sksl〉c〈sl si〉c, (105)

υ2 = 1

2N

∑
i jkl

〈sis jsksl〉2
c, (106)

υ3 = 3

N

∑
i jkl

〈sis jsksl〉c〈sis j〉c〈sksl〉c, (107)

υ4 = 6

N

∑
i jk

〈sis jsk〉c〈sis jsl〉c〈sl sk〉c. (108)

We are now in a position to discuss why we retained only two
cubic diagrams and four quartic diagrams in the Gibbs free
energy (5). The key point is that the dynamical correlation
δQ(1, 2), for all the three transitions outlined in Sec. II, for
n = 0, 1, satisfies the relationship

∫
d1 Q(1, 2) = δC(0) + (n − 1)δC(∞) = 0 (109)

because δC(0) = δC(∞) = 0. More generically, one can ar-
gue that any object formed from δQ(1, 2) by means of
products and index integrations that depends only on one
index, e.g.,

A(1)≡
∫

[δQ(1, 2)]5[δQ(2, 3)]6 δQ(2, 4) δQ(4, 1) d2 d3 d4,

(110)

vanishes because, upon computing it, one ends up with an
expression that only depends on powers of δC(0) and δC(∞).
Actually, this is the same expression that one would obtain
plugging into the above expression a replica symmetric ma-
trix with diagonal elements equal to δC(0) and off-diagonal
elements equal to δC(∞).

The same is naturally true for objects that depend on
no index at all. Therefore, we can neglect all disconnected
diagrams in the Gibbs free energy, as they lead to terms con-
taining factors that do not depend on either 1 or 2 in Eq. (26)
obtained by differentiation with respect to δQ(1, 2).

For the same reason, we can also neglect diagrams with
dangling hands in the Gibbs free energy. Indeed, they con-
tribute two types of terms to the equation: either a term with
a dangling hand [that vanishes because of Eq. (109)] or terms
that depend only on index 1 or 2 separately and thus vanish.
More generically, any diagram that can be disconnected re-
moving one vertex yields a vanishing contribution.

Diagrams with dangling hands are the simplest diagrams
satisfying this property but not the only ones. Indeed, we
could also have consistently ignored the term proportional
to y3 in expression (5) from the beginning, since removing
the central vertex in the third diagram in Fig. 2 we have two
disconnected graphs.

V. INVERSION OF THE LEGENDRE TRANSFORM:
RELATIONS BETWEEN CUMULANTS AND VERTEX

COEFFICIENTS

In this section we express the coefficients of the Gibbs
free energy in terms of those of the free energy obtained in
the previous section. The Gibbs free energy is defined as the
Legendre transform of the free energy F (λ):

G(δQ) ≡ F (λ) +
∑
(ab)

λabδQab, (111)

where λ is a function of δQab according to the following
implicit equation:

δQab = − ∂F

∂λab
. (112)

On the other hand, the free energy F is the Legendre transform
of the Gibbs free energy G with

λab = ∂G

∂δQab
. (113)

We consider the free-energy expansion Eq. (70), taking into
account only those terms eventually relevant to describe the
critical slowing down:

F (λ) = −1

2

∑
(ab),(cd )

λabGab,cdλcd

− ω1

6
ω1Tr λ3 − ω2

6

∑
ab

λ3
ab

− υ1

24
Tr λ4 − υ2

24

∑
ab

λ4
ab

− υ4

24

∑
abc

λ2
abλacλe f , (114)

leading to

δQab = − ∂F

∂λab
= G(ab)(cd )λcd + ω1(λ2)ab + ω2λ

2
ab

+ υ1

3
(λ3)ab + υ2

3
λ3

ab + υ4

6
λab(λ2)ab

+ υ4

12

∑
c

(
λ2

acλcb + λ2
bcλca

)
, (115)

where

G(ab)(cd ) =
⎧⎨
⎩

G1 (ab) = (cd )
G2 (b = d ) ∨ (a = c)
G3 a �= c ∧ b �= d

. (116)

The inverse M = G−1 matrix displays the generic form

M(ab)(cd ) = r(δacδbd + δadδbc)

+ (M2 − M3)(δac + δad + δbc + δbd ) + M3

(117)

with

r ≡ M1 − 2M2 + M3 = 1

G1 − 2G2 + G3
. (118)

Using the above properties and neglecting terms without
both indexes a and b (irrelevant in the present context), we
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can invert Eq. (115), yielding to the fourth order,

λab = rδQab − ω1r3(δQ2)ab − ω2r3δQ3
ab

+
(

2r5ω2
1 − r4 υ1

3

)
(δQ3)ab +

(
2r5ω2

2 − r4 υ2

3

)
δQ3

ab

+
(

r5ω1ω2 − r4 υ4

12

) ∑
c

(
δQ2

acδQcb + δQacδQ2
cb

)

+
(

2r5ω1ω2 − r4 υ4

6

)
δQab(δQ2)ab. (119)

Comparing the above expression with Eqs. (4) and (26), we
find the relationships between the cumulants ω, υ and the
vertex coefficients w, y:

y1 = −6r5ω2
1 + r4υ1 (120)

y2 = −6r5ω2
2 + r4υ2 (121)

y4 = −12r5ω1ω2 + r4υ4 (122)

w1 = r3ω1 (123)

w2 = r3ω2. (124)

At the tricritical point, the expression for the logarithmic
decay parameter μ, cf. Eq. (17), can be expressed in terms of
cumulants as

μ = −y1 + y2 − y4

3w1
= −r

υ1 + υ2 − υ4

3ω1
, (λ = 1) (125)

where we explicitly used the fact that the exponent parame-
ter is λ = 1 = ω2/ω1. From Eqs. (120)–(124) we notice that
though each vertex coefficient singularly diverges as r−5, their
combination y1 + y2 − y4, for w1 = w2, diverges as r−4, thus
yielding a finite μ when power-law critical slowing down
(described by means of the third-order expansion when λ �= 1)
is no longer defined. To clearly see this we can express the
quartic susceptibilities in term of the coupling constants:

υ1 + υ2 − υ4 = 6
(w1 − w2)2

r5
+ y1 + y2 − y4

r4
. (126)

This shows that whenever w1 �= w2 the critical behavior of
the quartic susceptibility is O(r−5) and it is controlled by the
cubic coupling constants. Instead, when w1 = w2 the quartic
susceptibility is less divergent O(r−4) and it is controlled by
the quartic coupling constants.

VI. CONCLUSIONS

In this paper we have demonstrated that the structure of the
replicated Gibbs free energy near a critical point character-
ized by w1 = w2 implies a logarithmic decay of dynamical
correlations. This allows us to characterize the asymptotic
critical dynamics in a variety of systems where the equilib-
rium statics can be studied by means of the replica method
but the microscopic dynamical equations are difficult to solve,
including Ising spin-glass models, Potts spin-glass models,
and the hard-spheres models in the limit of infinite dimension.

The connection between static and dynamics is also
quantitative, in the sense that the parameter controlling the
logarithmic decay can be read from the static Gibbs free

energy and, thus, it can be expressed in terms of connected
correlation functions of the overlap fluctuations that can be
measured statically from equilibrium configurations. This is
significant from the point of view of numerical simulations of
glassy systems, as often one can use clever algorithms to ob-
tain equilibrium configurations much faster than the standard
dynamical microscopic evolution [42–44].

The emergence of logarithmic slowing down, being a con-
sequence solely of the Gibbs free-energy structure, has a great
deal of universality. Indeed, many models that can be utterly
different from each other at the microscopic level can in
principle be described by the same Landau theory. Note that
we have written the expression of μ in terms of observables
for spin systems, but it can be easily rewritten for particles
systems, as we explained in Sec. II. Thus the relationship
between μ and experimental observables is completely gen-
eral: it would be important to work out in full the connection
between these cumulants and higher-order nonlinear suscepti-
bilities that can be measured in experiments [45].

It is also interesting to mention two instances in which
there is instead no connection between logarithmic slow-
ing down and connected correlation functions of the overlap
fluctuations. This is provided by the Fredrickson-Andersen
kinetically constrained model on the Bethe lattice with either
random pinning [46] or with nonhomogeneous facilitation
[47,48]. The analytical solution of these models [49] has
indeed allowed demonstration and quantification the logarith-
mic slowing down as given by Eq. (16), but a thermodynamic
analysis of the model has revealed that there is no connection
between the observed MCT-like dynamics and connected cor-
relation functions of the overlap that are not divergent at the
critical point [50], i.e., Eq. (18) does not hold.

The results presented here have a mean-field nature, and
their relevance for realistic models in finite dimensions, say
two and three, in principle is not granted. This issue notwith-
standing, analytical predictions like those derived here and
more generally those of mode-coupling theory are typically
used to describe successfully numerical and experimental data
in the context of supercooled liquids and colloids [4,16–19].
A relevant exception is the discontinuous dynamical arrest
transition that is known to become a crossover in finite dimen-
sions: it has been argued that this phenomenon is precisely due
to long-wavelength fluctuations that destroy the mean-field
theory below the upper critical dimension 8 [31,33,51–54].
In the spin-glass literature the relevance of mean-field theory
for realistic systems is an essential question [55–57], but it is
typically discussed in a purely static context and there is at
present no understanding of the fate of the dynamical power-
law (and logarithmic) decays found in mean-field theory.

It should be also noted that we have been considering
equilibrium dynamics, and therefore the results are limited
to the temperature regime in which the system can still be
thermalized and there is no aging. Nonetheless, it is not un-
likely that, with more effort, the analysis can be extended to
the aging regime, as it is known that static replicated theories
can be connected to off-equilibrium dynamics as well [22,58].

As a final technical remark we note that upon pass-
ing from restricted to unrestricted replica summations the
corresponding coefficients considerably simplify. This can
be seen comparing the coefficients Wi in the free-energy
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expansion (70) with the ωi in Eq. (74) and comparing the Yi with the υi in Eq. (104). It turns out that one can find a simple set
of diagrammatic rules to directly compute the unrestricted coefficients, i.e., the ωi, the υi, and those at higher orders, without the
lengthy intermediate passages.2

APPENDIX: FOURTH-ORDER CUMULANTS

The fourth-order coefficients of the free energy read as follows:

Y1 = N3〈δQabδQbcδQcdδQda〉c

= 1

N

∑
i jkl

〈sis j〉〈s jsk〉〈sksl〉〈sl si〉 − 4q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉

+ 2Nq2
∑

i j

〈si〉2〈s j〉2 + 4Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − 2NG2
2 − NG2

3 (A1)

Y2 = N3〈δQ4
12

〉
c

= 1

N

∑
i jkl

〈sis jsksl〉2 − 4q
∑
i jk

〈sis jsk〉2 + 6Nq2
∑

i j

〈sis j〉2 − 3q4N3 − 3NG2
1 (A2)

Y3 = N3
〈
δQ2

abδQ2
bc

〉
c

= 1

N

∑
i jkl

〈sis j〉〈sis jsksl〉〈sksl〉 − 4q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉

+ 4Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + 2Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG2
1 − 2NG2

2 (A3)

Y4 = N3〈δQabδQbcδQ2
ac

〉
c

= 1

N

∑
i jkl

〈sis jsk〉〈sis jsl〉〈sksl〉 − 2q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉 − 2q
∑
i jk

〈sis j〉〈s jsk〉〈sksi〉

+ 5Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG1G2 − 2NG2
2 (A4)

Y5 = N3
〈
δQabδQ2

bcδQcd
〉
c

= 1

N

∑
i jkl

〈si〉〈sis jsk〉〈s jsksl〉〈sl〉 − 2q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉 − 2q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉

+ Nq2
∑

i j

〈si〉2〈s j〉2 + 4Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − 2NG2
2 − NG1G3 (A5)

Y6 = N3〈δQabδQbcδQcaδQcd〉c

= 1

N

∑
i jkl

〈sis j〉〈sisksl〉〈sksi〉〈sl〉 − q
∑
i jk

〈sis jsk〉〈si〉〈s j〉〈sk〉 − 2q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈sis j〉〈s jsk〉〈sksi〉

+ Nq2
∑

i j

〈si〉2〈s j〉2 + 5Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − 2NG2
2 − NG2G3 (A6)

Y7 = N3
〈
δQabδQ3

bc

〉
c

= 1

N

∑
i jkl

〈sis jsksl〉〈si〉〈s jsksl〉 − q
∑
i jk

〈sis jsk〉2 − 3q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉

+ 3Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + 3Nq2
∑

i j

〈sis j〉2 − 3q4N3 − 3NG1G2 (A7)

2L. Leuzzi and T. Rizzo (unpublished).
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Y8 = N3〈δQabδQ2
bcδQbd

〉
c

= 1

N

∑
i jkl

〈sis jsksl〉〈si〉〈s jsk〉〈sl〉 − 2q
∑
i jk

〈sis jsk〉〈si〉〈s j〉〈sk〉 − 2q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉

+ 5Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − 2NG2
2 − NG1G2 (A8)

Y9 = N3
〈
δQ2

abδQbcδQcd
〉
c

= 1

N

∑
i jkl

〈sis j〉〈sis jsk〉〈sksl〉〈sl〉 − 2q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉

−q
∑
i jk

〈sis j〉2〈sk〉2 − q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉

+ 2Nq2
∑

i j

〈si〉2〈s j〉2 + 3Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG1G2 − 2NG2G3 (A9)

Y10 = N3〈δQabδQacδQadδQae〉c

= 1

N

∑
i jkl

〈sis jsksl〉〈si〉〈s j〉〈sk〉〈sl〉 − 4q
∑
i jk

〈sis jsk〉〈si〉〈s j〉〈sk〉 + 6Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − 3NG2
2 (A10)

Y11 = N3〈δQabδQbcδQbdδQde〉c

= 1

N

∑
i jkl

〈si〉〈sis jsk〉〈si〉〈sksl〉〈sl〉 − 2q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈sis jsk〉〈si〉〈s j〉〈sk〉

+ 2Nq2
∑

i j

〈si〉2〈s j〉2 + 4Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − NG2
2 − 2NG2G3 (A11)

Y12 = N3〈δQabδQbcδQcdδQde〉c

= 1

N

∑
i jkl

〈si〉〈sis j〉〈s jsk〉〈sksl〉〈sl〉 − 2q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉 − 2q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 + 3Nq2
∑

i j

〈si〉2〈s j〉2

+ 3Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − NG2
2 − NG2

3 − NG2G3 (A12)

Y13 = N3
〈
δQ2

abδQ2
cd

〉
c

= 1

N

∑
i jkl

〈sis j〉2〈sksl〉2 − 4q
∑
i jk

〈sis j〉2〈sk〉2 + 4Nq2
∑

i j

〈si〉2〈s j〉2 + 2Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG2
1 − 2NG2

3 (A13)

Y14 = N3〈δQ2
abδQcdδQde

〉
c

= 1

N

∑
i jkl

〈sis j〉2〈sk〉〈sksl〉〈sl〉 − 2q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − 2q
∑
i jk

〈sis j〉2〈sk〉2

+ 4Nq2
∑

i j

〈si〉2〈s j〉2 + Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG1G2 − 2NG2
3 (A14)

Y15 = N3〈δQabδQbcδQdeδQe f 〉c

= 1

N

∑
i jkl

〈si〉〈sis j〉〈s j〉〈sk〉〈sksl〉〈sl〉 − 4q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉

+ 4Nq2
∑

i j

〈si〉2〈s j〉2 + 2Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − NG2
2 − 2NG2

3 (A15)
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Y16 = N3
〈
δQ3

abδQcd
〉
c

= 1

N

∑
i jkl

〈sis jsk〉2〈sl〉2 − q
∑
i jk

〈sis jsk〉2 − 3q
∑
i jk

〈sis j〉2〈sk〉2

+ 3Nq2
∑

i j

〈si〉2〈s j〉2 + 3Nq2
∑

i j

〈sis j〉2 − 3q4N3 − 3NG1G3 (A16)

Y17 = N3〈δQabδQbcδQcaδQde〉c

= 1

N

∑
i jkl

〈sis j〉〈s jsk〉〈sksi〉〈sl〉2 − 3q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈sis j〉〈s jsk〉〈sksi〉

+ 3Nq2
∑

i j

〈si〉2〈s j〉2 + 3Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − 3NG2G3 (A17)

Y18 = N3
〈
δQ2

abδQbcδQde
〉
c

= 1

N

∑
i jkl

〈sis j〉〈sis jsk〉〈sk〉〈sl〉2 − 2q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈sis j〉2〈sk〉2 − q
∑
i jk

〈sis j〉〈sis jsk〉〈sk〉

+ 3Nq2
∑

i j

〈si〉2〈s j〉2 + 2Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG1G3 − 2NG2G3 (A18)

Y19 = N3〈δQabδQbcδQcdδQe f 〉c

= 1

N

∑
i jkl

〈si〉〈sis j〉〈s jsk〉〈sk〉〈sl〉2 − 2q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈si〉2〈s j〉2〈sk〉2 − q
∑
i jk

〈si〉〈sis j〉〈s jsk〉〈sk〉

+ 4Nq2
∑

i j

〈si〉2〈s j〉2 + 2Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 − 3q4N3 − 2NG2G3 − NG32 (A19)

Y20 = N3〈δQabδQacδQadδQe f 〉c

= 1

N

∑
i jkl

〈sis jsk〉〈si〉〈s j〉〈sk〉〈sl〉2 − 3q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − q
∑
i jk

〈sis jsk〉〈si〉〈s j〉〈sk〉

+ 3Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + 3Nq2
∑

i j

〈si〉2〈s j〉2 − 3q4N3 − 3NG2G3 (A20)

Y21 = N3
〈
δQabδQcdδQ2

e f

〉
c

= 1

N

∑
i jkl

〈si〉2〈s j〉2〈sksl〉2 − 2q
∑
i jk

〈si〉2〈s jsk〉2 − 2q
∑
i jk

〈si〉2〈s j〉2〈sk〉2

+ 5Nq2
∑

i j

〈si〉2〈s j〉2 + Nq2
∑

i j

〈sis j〉2 − 3q4N3 − NG1G3 − 2NG2
3 (A21)

Y22 = N3〈δQabδQcdδQe f δQ f g〉c

= 1

N

∑
i jkl

〈si〉2〈s j〉2〈sk〉〈sksl〉〈sl〉 − 2q
∑
i jk

〈si〉2〈s j〉〈s jsk〉〈sk〉 − 2q
∑
i jk

〈si〉2〈s j〉2〈sk〉2

+ Nq2
∑

i j

〈si〉〈sis j〉〈s j〉 + 5Nq2
∑

i j

〈si〉2〈s j〉2 − 3q4N3 − NG2G3 − 2NG2
3 (A22)

Y23 = N3〈δQabδQcdδQe f δQgh〉

= 1

N

∑
i jkl

〈si〉2〈s j〉2〈sk〉2〈sl〉2 − 4q
∑
i jk

〈si〉2〈s j〉2〈sk〉2 + 6Nq2
∑

i j

〈si〉2〈s j〉2 − 3q4N3 − 3NG2
3 (A23)

Counting the multiplicity of each apart term, the above coefficients in Eq. (104) recombine according to the following
formulas (they are equal to those of Appendix B in Ref. [41], taking into account the different naming convention):

υ1 = 3(Y1 − 4Y12 + 2Y15 + 4Y19 − 4Y22 + Y23) (A24)
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υ2 = 1
2 (6Y1 − 12Y10 − 48Y11 − 48Y12 + 3Y13 − 24Y14 + 60Y15 + 4Y16 − 48Y18

+ 96Y19 + Y2 + 48Y20 + 24Y21 − 144Y22 + 36Y23 − 6Y3 + 12Y5 − 8Y7 + 24Y8 + 24Y9) (A25)

υ3 = 3(−2Y1 + Y10 + 4Y11 + 12Y12 − Y13 + 6Y14 − 13Y15 + 4Y18

− 16Y19 − 4Y20 − 4Y21 + 24Y22 − 6Y23 + Y3 − 2Y8 − 4Y9) (A26)

υ4 = 6(8Y11 + 6Y12 + Y14 − 6Y15 + 2Y17 + 2Y18 − 14Y19

−4Y20 − Y21 + 16Y22 − 4Y23 + Y4 − Y5 − 4Y6 − 2Y9) (A27)

υ5 = 6(−4Y11 + 2Y15 − 2Y18 + 6Y19 + 4Y20 + Y21 − 12Y22 + 4Y23 + Y5) (A28)

υ6 = 12(−2Y11 − 2Y12 + 2Y15 − Y17 + 6Y19 + Y20 − 7Y22 + 2Y23 + Y6) (A29)

υ7 = 4(2Y10 + 12Y11 + 6Y12 + 3Y14 − 12Y15 − Y16 + 12Y18 − 24Y19

−14Y20 − 6Y21 + 42Y22 − 12Y23 − 3Y5 + Y7 − 3Y8 − 3Y9) (A30)

υ8 = 6(−Y10 − 2Y11 − 2Y12 − Y14 + 5Y15 − 2Y18 + 8Y19 + 4Y20 + 2Y21 − 18Y22 + 6Y23 + Y8) (A31)

υ9 = 12(−Y11 − 2Y12 − Y14 + 3Y15 − Y18 + 4Y19 + Y20 + Y21 − 7Y22 + 2Y23 + Y9) (A32)

υ10 = Y10 − 3Y15 − 4Y20 + 12Y22 − 6Y23 (A33)

υ11 = 12(Y11 − Y15 − 2Y19 − Y20 + 5Y22 − 2Y23) (A34)

υ12 = 12(Y12 − Y15 − 2Y19 + 3Y22 − Y23) (A35)

υ13 = 3
4 (Y13 − 4Y14 + 4Y15 + 2Y21 − 4Y22 + Y23) (A36)

υ14 = 3(Y14 − 2Y15 − Y21 + 3Y22 − Y23) (A37)

υ15 = 3(Y15 − 2Y22 + Y23) (A38)

υ16 = Y16 − 6Y18 + 6Y19 + 4Y20 + 3Y21 − 12Y22 + 4Y23 (A39)

υ17 = 2(Y17 − 3Y19 + 3Y22 − Y23) (A40)

υ18 = 6(Y18 − 2Y19 − Y20 − Y21 + 5Y22 − 2Y23) (A41)

υ19 = 6(Y19 − 2Y22 + Y23) (A42)

υ20 = 2(Y20 − 3Y22 + 2Y23) (A43)

υ21 = 3
4 (Y21 − 2Y22 + Y23) (A44)

υ22 = 3
2 (Y22 − Y23) (A45)

υ23 = 1
16Y23 (A46)
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