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In this paper, the interplay between non-Hermiticity, quasidisorder, and repulsive interaction is studied
for hard-core bosons confined in a one-dimensional optical lattice, where non-Hermiticity is induced by the
nonreciprocal hoppings and the on-site gain and loss breaking the time-reversal symmetry. Although the energy
spectra of the static system are fully complex, with the evolution of the initial state, the real part of the expectation
value of the Hamiltonian under the time-evolved wave function changes stably. By means of the entanglement
entropy and its dynamical evolution, as well as the inverse participation ratio, the many-body localization (MBL)
is found to play the key role in the stability of the dynamical behavior of the real part of the expectation value,
independent of whether the spectrum of the static Hamiltonian is real or complex. In the delocalization phase,
the dynamical evolution of the real part of the expectation value is unstable. Meanwhile, the nearest-neighbor
level spacings statistics shows the MBL transition accompanied by the transition from the Ginibre distribution
to the complex Poisson distribution, different from the one in the time-reversal invariant system. In addition,
the dynamical stability of the real part of the energy and the MBL transition can be characterized by the
winding number, indicating that the MBL transition and the topological transition occur simultaneously, and

the realization of the Hamiltonian is discussed.
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I. INTRODUCTION

The eigenstate thermalization hypothesis [1-6] is a widely
accepted concept that explains the thermalization of the
eigenstates. It refers to the fact that the eigenstates of
the Hamiltonian of an isolated system will themselves exhibit
the properties of heating, resulting in these thermalized eigen-
states being ergodic. However, the many-body localization
(MBL) violates this hypothesis, making it an active field in
condensed physics over the past decade. In the thermalization
phase, spectral statistics indicates that the energy spectrum
follows the Wigner-Dyson distribution while in the MBL
phase it follows the Poisson distribution [6,7]. The difference
in statistical distributions before and after the MBL transition
attracts wide interest in the study of spectral properties of
Gaussian and Poisson ensembles [8—13].

In fact, spectral statistics is one of the tools to under-
stand the thermalization to MBL from the energy perspective.
The MBL transition can be characterized by the many-body
eigenstate as well. The half-chain entanglement entropy is
obtained from the subspace decomposition of eigenstates.
It has been shown that for the thermal phase where eigen-
states are delocalized the entanglement entropy follows the
volume law, while in the MBL phase it follows the area
law [14-29]. Additionally, the MBL transition is observed
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through diagonal entropy [30-32]; local parameter, which
weighs the stability of the eigenstates under local perturba-
tions, and grows with system size in the delocalized phase
and decreases in the MBL phase [33]; many-body inverse
participation ratio (IPR) [34], or normalized participation ratio
[35]; quantum Fisher information [32,36—-39]; and particle im-
balance [40-53]. Experimentally, the MBL has been realized
in various controllable platforms, such as the ultracold atomic
systems [40-46,54], trapped ions [36,37], superconducting
processors [55-60], nuclear spins [61], and solid material
[62].

Similarly to the Hermitian systems, the level statistics can
be applied to non-Hermitian systems as well. Differently, the
non-Hermiticity leads to a new level statistics distribution,
namely the Ginibre distribution [63]. Due to the emergence of
non-Hermiticity, the originally Hermitian tenfold topological
classifications [64—66] have been generalized to the 38-fold
topological classifications [67—69]. Accordingly, the Ginibre
distribution is widely studied in the open quantum systems
with various symmetries [70-80]. However, it is constrained
by the symmetry of non-Hermitian systems. In general, the
level statistics in the systems with transposition symmetry
(classes AI" and AII") will deviate from the Ginibre distri-
bution [70,71,81].

Recently, non-Hermitian spectral statistics has been em-
ployed to analyze the MBL transition. In a class of non-
Hermitian many-body disordered or quasidisordered systems
with a complex-real transition in energy, level statistics in
the delocalized phase (with complex energies) presents the
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Ginibre distribution, while it presents the real Poisson distri-
bution in the MBL phase (with real energies) [70,82—-84]. Just
as in the Hermitian case, the half-chain entanglement entropy
can still be used to extract the transition point and the scaling
exponent of the MBL transition. Additionally, for the delo-
calized states, the entanglement entropy follows the volume
law, while for the MBL states it follows the area law [70,82—
85]. It is worth noting that, for the delocalized phase, i.e., the
complex energy regime, the real part of the energy is unstable
during the time evolution, while for the MBL phase, i.e., the
real-energy regime, the dynamical process is stable [70,82].
This raises the question of whether MBL or real energy plays
the key role in maintaining the stable dynamical behavior,
which is not addressed in the previous works [70,82]. In
this paper, we attempt to study a non-Hermitian many-body
system with a fully complex energy spectrum and with MBL
to answer this question and give a clear understanding on the
stable dynamical behavior. We note that for the non-Hermitian
many-body systems with complex-real-energy transition the
winding number [86,87] can be used to characterize the MBL
transition (where nonzero winding number corresponds to the
delocalized phase whereas the zero winding number corre-
sponds to the MBL phase) [82,83]. However, the topological
transition in a complex spectral case is not uncovered [83].
Whether the topological transition occurs in complex spectral
systems, and, if the topological transition exists, whether it
follows the MBL transition, demand the answer. Additionally,
we will discuss the relationship between the topological and
MBL transitions. Some research showed that the exceptional
point [88-91] leads to nontrivial topology [92-94]. We will
go into the topological origin of the complex energy spectrum
system and investigate the connection between topological
transitions and exceptional points.

The paper is organized as follows. Section II introduces the
model and Hamiltonian. Section III analyzes and discusses
the properties of the energy spectrum, including the com-
plex energy spectrum and the energy evolution. Section IV
analyzes and discusses the MBL transition, including the
spectrum statistic, half-chain entanglement entropy, entropy
evolution, scaling exponent of entropy, the many-body IPR,
and the time-dependent density imbalance. Section V studies
the topological transition and introduces how to realize the
Hamiltonian. Section VI presents the summary.

II. MODEL AND HAMILTONIAN

Here, we study a non-Hermitian one-dimensional hard-
core bosonic system and the Hamiltonian is

L
A =Y "[—J(e 8!, ¢ + el ) + Unjij + Vi),
=1

ey

where ¢; (6;) is the particle annihilation (creation) operator

and 7; = éjé, is the particle-number operator. Mismatched

hopping strengths —Je™# and —Je® form nonreciprocal hop-
pings with J the unit of energy and g the dimensionless
parameter. U is the repulsive interaction between nearest-
neighbor sites. Here, the quasidisordered on-site potential V;
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FIG. 1. Energy spectra in the complex plane. (a) V =2J.
b)V =5J.(c) V =8J.(d) V = 14J. Other parameters are L = 12,
y =0.1J,and ¢ = 7 /4.

with odd-site gain (4iy) and even-site loss (—iy) is consid-
ered, i.e.,, V; =V cosQraj+¢) — iy(—1)/, where V is the
strength of the quasidisorder potential, ¢ is a random phase,
and « is the incommensurate parameter.

The non-Hermiticity of this system is controlled by the
parameters g and y together. When y = 0, if we perform a
transformation, i.e., ¢; — e & ¢j and éj — o8l é;, the Hamil-
tonian presented in Eq. (1) can go back to a Hermitian
many-body interacting model [95], in which the authors give
the numerical estimates for the MBL transition point. For
nonzero y, the model in Eq. (1) breaks the time-reversal
symmetry. In the following, we take U = 2/ and g = 0.5 as an
example to reveal the MBL property and its relationship with
topological transition in the absence of time-reversal symme-
try. The strength of the quasidisorder potential V is chosen
as the control parameter for the underlying transitions. The
incommensurate parameter is chosen at o = V5-1) /2 and
the periodic boundary condition is considered in the following
analyses. All the calculations are performed in the subspace
with particles N = L/2.

III. ENERGY SPECTRUM PROPERTIES

At first, the energy spectrum characteristic is discussed.
In the presence of time-reversal symmetry, i.e., y =0, we
have known that the energy spectra present a complex-to-
real transition [82]. However, in the absence of time-reversal
symmetry, i.e., ¥ # 0, we find that there is no complex-
to-real transition. Taking y = 0.1J, ¢ = 7 /4, and various
V, the resulting spectra are plotted in in Figs. 1(a)-1(d).
Intuitively, with the increase of the strength of quasidis-
order potential, there is always a nonvanishing imaginary
part of the energy spectrum in the complex plane. It means
that the time-reversal symmetry is essential for the sys-
tem to have a static real-energy spectrum. Meanwhile, we
note that for the systems with time-reversal symmetry the
energy spectra characterized by the evolution of the real
part of the energy are dynamically stable in the real-energy
regime [70,82]. It raises a question whether the real energy
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FIG. 2. Time evolution of E®(¢) for V. =2J,3J,5J, and 8J. The
system size is L = 12 and the initial state is taken as | (t = 0)) =
[101010 - - -). We take y = 0.1J and 512 samples in the calculation.

(or the time-reversal symmetry) is essential in maintaining
the stably dynamical behaviors. Next, we discuss the dynam-
ical stability of the energy spectra, which is characterized
by the evolution of the real part of the energy ER(r) =

Re[(y (¢)|H |y (¢))], where | (¢)) is the wave function evolv-
ing from the initial state to time 7 [70] and - denotes the
ensemble average. We emphasize that the disorder configu-
ration of the random phase ¢ is determined at r+ = 0, and
does not change at 7 > 0. |y(t)) = e A" |y (t = 0)) /N
describes a quantum trajectory without any quantum jumps,
which is microscopically justified in the context of con-
tinuously measured systems [70,96]. Here, the initial state
| (t = 0)) is chosen as [101010---) and N is the normal-
ization coefficient, defined as N = (Y ()| e=H |y (1)).
According to the Baker-Campbell-Hausdorfff expansion, we
know that e/"'e~iH! contains the difference term H' — H and
the commutation term [H', H]. Due to the non-Hermiticity
of H, we have (H — H) # 0 and [HT, H] # 0. Therefore,
| (¢)) and N will change during the time evolution, and may
lead to the time dependence of ER(¢).

Taking L = 12, y = 0.1J, and ¢ = 7 /4, we plot the time
evolution of ER(¢) t under various V in Fig. 2. We take
256 samples in the calculations. We can see that when the
potential strengths are relatively weak, such as V = 2J (black
curve) and V = 3J (red curve), ER(t) is quite unstable and
evidently deviates from the initial state during the dynamical
process. However, It seems that there exists a phase transition
which leads to the different dynamical process of ER(¢). For
V =5J (blue curve) and V = 8J (green curve), the dynam-
ical processes are relatively stable, because during the time
evolution, E®(t) only slightly deviates from the initial state.
Even with a longer evolution time, such as ¢ € (102, 103), the
dynamical evolutions of E®(¢) under V = 5J and 8J are still
stable. Recall that in the presence of time-reversal symmetry
the energy spectra present complex-real transition, and the
complex energies lead to an unstably dynamical process of
ER(t), while the real energies result in a stable one [70,82].
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FIG. 3. The nearest-level-spacing distribution of the unfolded
energies for (a) V.=2J,(b) V=3J,(c) V=5J,and (d) V =8J.
The red curve is the Ginibre distribution function PS,, and the green
curve is the Poisson distribution function P (s) = ms/2e~ "/ b on
the complex energy plane. The energies used in the statistics are
taken from the middle of the energy spectra with a proportion of
20%. Other parameters are y = 0.1J, L = 14, and ¢ = 7 /3.

Here in our model without time-reversal symmetry, the en-
ergy spectra are all complex, but EX(¢) presents two types
of dynamical behaviors. It indicates that the stable dynamical
evolution of EX(t) is independent of time-reversal symmetry
and real-energy spectrum.

IV. MANY-BODY LOCALIZATION TRANSITION

Inspired by an early estimate on the location of the MBL
point of a Hermitian system [95] and recent works on non-
Hermitian MBL [70,82-85], we are aware that the stable
dynamical behavior of ER®(¢) in the system without time-
reversal symmetry and real-energy spectrum may be caused
by the MBL. We first study the nearest-level-spacing statistic
to check the mentioned point. If a non-Hermitian many-body
system exists MBL transition, there are different spectral
statistic laws before and after MBL transition [70,71]. For an
energy Eg, the nearest-level spacing is defined by the minimal
distance in the complex energy plane, i.e., ming |Eg — Eg|.
For the delocalized phase, it is known that the statistical
distribution obeys the Ginibre distribution Pgin(s) = cp(cs)
[97,98], in which

M-1 9 g2m+1

M—1
p(s) — A}E)Iloo {l:[l em(sz)e_s ] Z] W

n=

with e, (s?) =) 5%/ and ¢ = [; sp(s)ds =
1.1429.... In our numerical computing, energies used
in the statistics are taken from the middle of the energy
spectra with a proportion of 20%. For parameters V taken
before V., such as V =2J and 3J, the corresponding
statistical distributions are shown in Figs. 3(a) and 3(b),
respectively. The distributions match with the Ginibre
distribution (the red curve shows). For larger parameters
exceeding V., such as V =5J and 8J, the corresponding
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statistical distributions are plotted in Figs. 3(a) and 3(b),
respectively. Intuitively, the distributions are matched with the
Poisson distribution Ppco(s) on the complex plane [70,82,83],
satisfying P, (s) = ms/2e~ "/ s? According to the symmetry
classes of non-Hermitian random matrices, here our model
shall belong to the A class [71]. Although the A class and
the complex-conjugation symmetry (or say time-reversal
symmetry) class [70,82,83,85] are members of the Ginibre
symmetry classes [71], the corresponding statistical
characteristics are different. To be specific, in our model,
the spectral statistics present a transition from the Ginibre
distribution to the complex Poisson distribution (which
has the same distribution function as the Wigner-Dyson
distribution), whereas in the complex-conjugation symmetry
class the spectral statistics display a transition from the
Ginibre distribution to the real Poisson distribution. In
the complex-conjugation class, the statistic distribution
transition is accompanied by the MBL transition. The
different statistical rules of the energy spectrum suggest that
the system has experienced the MBL, and also imply that the
MBL plays a leading role in maintaining the stable dynamic
evolution of ER(¢).

To further check the presence of MBL, we study the half-
chain entanglement entropy and the IPR, which are based
on the many-body eigenstate. The half-chain entanglement
entropy is defined as

§=—=Tr(p"Inp"), @

where p” = Tryp»[|¥") (¢"[] is the reduced density matrix
with |") the right eigenstate. It is known that for the delocal-
ized phase entanglement entropy obeys the volume law and
for the localized phase it obeys the area law [70]. Therefore,
the entanglement entropy for the delocalized phase is visibly
larger than that of the localized phase [70,82,83,85]. In view
of this characteristic, entanglement entropy is usually used to
distinguish the delocalized phase from the MBL one.

Under different system sizes and y = 0.1J, we take the
eigenstates from the middle 4% spectrum to calculate the
corresponding entanglement entropy. The ensemble-averaged
entropy S over the system size L, i.e., S/L, is plotted in Fig. 4.
Generally speaking, it is a common and effective method to
determine the location of MBL transition by the the cross-
ing of entanglement entropy curves. But there are exceptions
where the crossing shifts with system size, so that the exis-
tence of the absolutely stable MBL is under debate [99-101].
For the current studied model, the crossing of entanglement
entropy curves does not shift with system size. Therefore, it
is feasible to determine the localization of MBL transition
from the crossing of the entanglement entropy curves. As
can be seen, the entropy exhibits a system size independent
crossover at the transition point VMBL ~ 4.5 + 0.1J. We note
that the MBL transition point of our system is less than that
of the system with time-reversal symmetry [82]. It means that
the absence of the time-reversal symmetry can suppress the
delocalization, and cause the MBL to occur earlier in the
system. Additionally, the entropy presents a transition from
the volume law to the area law. Before VMBL the entropy is
larger than that after VMBL. Meanwhile, the entropy shows
an L dependence. When V is less than VMBL the entropy
increases as L increases, and when V is larger than VMBL the

0.05
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FIG. 4. Ensemble average of the half-chain entanglement en-
tropy over system size S/L as a function of the on-site potential
strength V. With the increase of V, S/L shows crossover at VMBL =
4.5 £0.1J, signaling the appearance of the MBL transition. Here,
the right eigenstates are taken from the middle of the energy spectra
with a proportion of 4%. The inset shows the slope of S. We take
500 samples for L = 10, 12, and 200 samples for L = 14, and 96
samples for L = 16. The other parameter is y = 0.1J.

entropy decreases as L increases. Additionally, we can employ
the slope of S to estimate the MBL transition point. Because
S decays with the increase of V, the definition of the slope
of S,i.e.,dS/dV = [S(V) — S(V + §V)]/8V, is beneficial for
visualization. In the calculation, we take 8V = 0.1J and the
slopes for different L are plotted in the inset of Fig. 4. It shows
that the slopes peak near the MBL transition point, and the
feature is more evident for larger system sizes.

The MBL transition can be characterized by the dynamical
behaviors of the entanglement entropy as well. Still taking
¥ (t =0)) =1]101010 - - -) as the initial state, we calculate the
ensemble average of the time-dependent entropy S(¢) under
the system size L = 14, and the results are shown in Fig. 5(a).
It can be seen that when evolution time 7 is short S(z) values
for different V' synchronously grow with 7, soon enter their
own evolutionary trajectories, and finally tend to steady val-
ues. For parameters V = 2J and 3J chosen in the delocalized
phase, we can see that S() is larger than that chosen from the
MBL phase (V = 5J and 8J cases). Moreover, the entangle-
ment entropies of the steady states gradually decrease with the
increase of V, and this variation tendency is consistent with
that of the static entanglement entropy. From the entangle-
ment entropy and its dynamical behaviors, we know that there
actually exists a delocalization to MBL transition behind the
complex energy, two types of different dynamical phenomena
of ER(t), and the transition from Ginibre’s distribution to
complex Poisson distribution. To reveal the critical exponent
of the MBL transition, we will study the scaling behavior of
the entanglement entropy near the MBL transition point. For
a finite-size system, the entanglement entropy around VMBL
satisfies the following scaling behavior [70]:

S/L = f(v = VML, 3
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FIG. 5. (a) Ensemble average of the time-dependent half-chain
entanglement entropy S(¢) for various V. We take |y (r = 0)) =
[101010- - -) as the initial state, and use L = 14 and 512 samples
in the calculations. (b) Finite-size scaling collapse of the entropy as
a function of (V — VMBL)LL/ where we take VMBL) = 4.55/ and
v = 0.6. The associated eigenstates are taken from the middle 4%
spectrum. We take 512 samples for L = 10, 12, and 256 samples
for L = 14, and 32 samples for L = 16. The other parameter is
y =0.1J.

where v is the critical exponent and f(x) is the scaling
function. With VCMBL = 4.55J and different system size, the
corresponding ensemble averages of the entropy over the
system size S/L are plotted in Fig 5(b). It shows that S/L
values for different L collapse onto a single curve with
v =~ 0.6, different from the scaling exponent v = 1.3 in the
complex-conjugation symmetry class [70,83], v = 1.8 in the
transposition symmetry class [70], and v = 1 and 1.5, corre-
sponding to the cases with nonreciprocal hopping parameters
g = 0.3 and 0.6, respectively [83].

Theoretically, the IPR plays the role of indicator to reveal
the properties of the eigenstates in the noninteracting sys-
tems. The IPR of extended eigenstates scales like 1/L and
approaches finite constant for the localized states [102]. We
try to employ this single-particle feature (i.e., IPR o 1/L) to
estimate the MBL transition point (marked by V'R). The IPR
of a many-body eigenstate reads

Dim

IPR = Z [ (k)| 4)
k

where ¥ (k) is the amplitude of the eigenstate |¢) in the Fock
basis {|k)} with (k) = (k|i), and “Dim” is the size of the
Hilbert space. Under different system sizes, we can obtain the
corresponding ensemble averaged IPR, i.e., IPR as a function
of V, and the V solution to IPR = 1/L is the estimated VR
Taking L = 10, 12, 14, and 16, IPR values as a function of
V are plotted in Figs. 6(a)-6(d). For various system sizes,
IPR increases from a near-zero constant to a finite constant as
V increases, presenting the delocalization to MBL transition.
Meanwhile, there is always a solution VPR to IPR = 1/L.
VIFR presents a dependence on the finite-size effect. When
L is small, as shown in Figs. 6(a)-6(c), VPR deviates from
VMBL Until a larger system size L = 16, the estimated MBL
transition point VPR = 4.47-4.5J is much closer to VMBL.
The slight deviation can be attributed to the finite-size effect. It

0.4
04! @ (b)
‘oﬁ —— =8 ~ 02l |FL=10
Eo2l|--1L = e B
4 6
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e
=16
-- 1L
s
4 6
V/J

FIG. 6. Ensemble averaged IPR, i.e., IPR as a function of V. We
take 1000 samples for (a) L = 8, (b) 10, and (c) 12, and 100 samples
for (d) L = 16. The other parameter is y = 0.1J.

shows that the solution to IPR = 1/L can be used to estimate
the MBL transition point.

In experiments, the dynamics of the density imbalance
[denoted by I(¢)] is an observable measurement to detect the
many-body localization [40—46,58,59], which is defined as

ny(t) — ne(t)
—N s

where n,(¢) and n,(t) are the time-dependent densities (par-
ticle populations) at odd and even sites, respectively. It was
studied that in the long-time evolution limit, for the delocal-
ization phase, /(¢) is stable at a finite value, implying that
some initial information is preserved, while for the many-
body localized phase I(¢#) approaches zero, implying that
the initial formation is lost [40-46,58,59]. Next, we employ
the quantity /(¢) to detect the non-Hermitian many-body
localization.

Taking the initial state [ (¢t =0)) =|101010---), y =
0.1J, and L = 12, the ensemble averaged density imbalance
1(r) as a function of the evolution time with different V is
plotted in Fig. 7. Intuitively, for V = 2J, I(¢) is a finite value
in the long-time evolution limit, which implies that the sys-
tem is in the many-body delocalized phase. In contrast, for
V = 8J, I1(t) approaches to zero in the long-time evolution
limit, denoting that the system is in the many-body localized
phase. Through the above research on the energy spectrum
and its statistical law, half-chain entanglement entropy, IPR,
and density imbalance, we have clearly understood that the
stable dynamic evolution of ER(¢) is attributed to the MBL of
the system, and has nothing to do with the real or complex
energy spectrum.

I(t) = &)

V. TOPOLOGICAL TRANSITION

We note that the complex-real transition and the non-
Hermitian MBL transition are found to be accompanied by
the topological transition in the time-reversal symmetric case
[82]. Meanwhile, there is no topological transition uncovered
in a many-body complex energy spectrum case [83]. It drives
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FIG. 7. Ensemble averaged density imbalance I(¢) with different
V. We take 512 samples, y = 0.1J,and L = 12.

us to investigate whether there is topological transition in
the current studied system with a complex energy spectrum,
and whether the topological transition is accompanied by the
MBL transition. To answer these questions, we calculate the
winding number [86,87]. We perform a gauge transformation
on the creation and annihilation operators, i.e., ¢; — eitie i

and éj — it éj Then the ¢-dependent Hamiltonian H (¢)
reads

L
A _ _Q A N Q N
H(@$) =) [—J(ebeTtIe], &5+ efeltieie )
j=1

+Unjhj o+ Vi, 6)

and accordingly the winding number is defined as

2
W = / d—¢_8¢ Indet{H (¢) — E}}, @)
0o 2mi

where E}, is just the base energy. In the calculation, E}, is taken
at £, = 0. We emphasize that here the topology is reflected
in the trajectory of det H(¢)/ det H(0) based on H(¢), and is
quantized by the winding number [86,87]. When the closed
trajectory of det H(¢)/ det H(0) encircles E;, once, the wind-
ing number accumulates by 1. If the closed trajectory does
not encircle E, or there is no closed trajectory, the winding
number is zero [82]. With system size L = 10 and a single
phase ¢ = m /3, the trajectories of det H(¢)/det H(0) for
different V are plotted in Figs. 8(a) and 8(b), respectively.
As shown in Fig. 8(a), the trajectory of det H(¢)/det H(0)
encircles the base energy seven times, leading to the winding
number W = 7. In Fig. 8(b), it is seen that although there is
a closed trajectory in the complex plane the trajectory does
not encircle the base energy, resulting in the winding number
W = 0. The results show that there actually exists topological
transition even if the energy spectra are all complex. Mean-
while, the results also show that the topological transition is
not intrinsically related to the real-complex transition of the
energy spectrum. It is noted that there is no tight connection
between the MBL transition and the real-complex transition of

v/)J v/J

FIG. 8. Trajectory of det H(¢)/det H(0) in the complex plane
for (a) V =3J and (b) V = 5J, where the parameters chosen are
L =10 and ¢ = /3. (c) The ¢ dependence of W under the system
size L = 10. (d) The average of W after 1000 ensemble averages.
The other parameter is y = 0.1J.

the energy spectrum, and we therefore believe that the MBL
transition is the main cause of topological transition.

Note that here the frequency of the on-site potential is
incommensurate, which leads to a ¢-dependent energy spec-
trum. Therefore, for different ¢, the corresponding winding
number at a specific V will be different. In Fig. 8(c), W values
as a function of V with ¢ = 0 (red), ¢ = /3 (blue), ¢ = /2
(black), ¢ = 37 /4 (green), and ¢ = 7 (magenta) are plotted.
Here, the system size is taken at L = 10. From this diagram,
we can see that although the winding number W presents a
¢ dependence there exists a feature that a critical potential
strength V. can divide the system into two parts. Before V,,
the system is nontrivial with nonzero W, and after V, the
system is trivial with W = 0. To extract the critical parameter
V., we perform the finite-size analysis. Figure 8(d) shows the
averages of W as the function of V with two different system
sizes. Here we have averaged 1000 ensembles. We can see
that the two curves intersect at about V = 4.4 & 0.1J, which
implies that the transition point of topological transition is
about V., = 4.4 £ 0.1J. The results show that the topological
transition actually exists in this current studied system without
real-energy spectrum and time-reversal symmetry. By com-
paring the transition points of MBL and topological transition,
we know that their transition points overlap, indicating that
the topological transition occurs synchronously with the MBL
transition.

In addition, it was studied that the exceptional point
[88-91] could lead to the nontrivial topology [92-94].
Therefore, we will investigate the connection between the
uncovered topological phase transition and the exceptional
points. In order to determine whether there are exceptional
points in the system, we define the minimal energy gap AE,,,
as AEg, = ming g/|Eg — Eg/|, where Eg and Eg are two
different energies. At first, we study the y = 0 case. With
different V and ¢, the corresponding AE,,, values (shown
with the discrete data points) are plotted in Figs. 9(a), 9(b),
9(c), and 9(d) respectively. The red dashed lines are the fitting
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FIG. 9. Minimal energy gap AE,, as a function of the size of
system subspace D.(a) V =2J, 9 =0,andy =0.(b)V =2J,¢ =
w/3,and y =0.(c) V=8/,9=0,and y =0. (d) V =8/, 9 =
w/3,andy =0.(e) V=2J,¢p=0,andy =0.1. ) V =2J, ¢ =
w/3,and y =0.1. (g) V=8J, ¢ =0, and y =0.1. (h) V =8J,
¢ = m/3,and y = 0.1. The discrete data are the calculated minimal
energy gap and the red dashed lines are the corresponding fitting
curves.

curves, satisfying f(D) = aD? (where a and b are the fitting
parameters with a being a positive number and b being a
negative number, presented in Table I, and D is the size of
the system subspace). Here, we choose the inverse power
of the system subspace as the fitting function because the
system subspace grows exponentially with the system size
[95]. The fitting results show that when the system subspace
tends to infinite AE,,;, values under different V all approach
to zero, indicating that there exist exceptional points regard-
less of whether the potential strength V is small or large.
Meanwhile, the decreasing of AE i, as an inverse power of D
indicates that the system subspace is exponentially dependent
of the number of particles. We note that in the y = 0 case
V = 2J corresponds to nonzero winding number, and V = 8J
corresponds to zero winding number [82]. It means that the
topological transition followed by complex-real-energy tran-
sition in Ref. [82] is not caused by the exceptional points.
Next, we investigate whether the topological phase transition
in our complex energy model is related to exceptional points.
Taking different V, the corresponding AE,, values (shown
with discrete data points) as a function of the system size
are plotted in Figs. 9(e), 9(f), 9(g), and 9(h), respectively.
The fitting results (see Table I for details) show that AE,,,
decays with system size in a power-law form at chosen V,
and approaches to zero at larger system size. It indicates that

in our complex energy model there are exceptional points as
well, regardless of whether the potential strength is small or
large. Noting that when V is changed from V = 2J to 8J the
system undergoes a topological transition from nonzero W to
W = 0. As aresult, similar to that in the system with complex-
real-energy transition, the nontrivial topology in our complex
energy model is independent of the exceptional point and
originates from the nontrivial trajectory of det H(¢)/ det H(0)
surrounding the base energy.

Up to now, we have known that the topology origin of our
complex energy system and that the counterintuitive dynami-
cal behaviors are caused by the MBL and not the real-energy
spectrum. Meanwhile, the topological transition is found to
be simultaneous with the MBL transition, and the stability of
the time evolution of EX(t) can be predicted by the winding
number which is defined in the complex plane after a gauge
transformation. In the following, we introduce how to realize
the Hamiltonian presented in Eq. (1). The dynamical process
of the density matrix p for an open system is governed by a
Lindblad master equation [103]:

pe = —ilH, pl+ Y _DIL;lp, ®)

J

where H is a Hermitian Hamiltonian, which is just the H
when g =y =0, D[L;] = LjpL} — {L]L;, p}/2, and L; is
the Lindblad dissipator describing the quantum jump between
the system and the environment. Under the postselection [86]
or no-jump condition [96], the Lindblad dynamical evolution
can be governed by a non-Hermitian effective Hamiltonian
H.¢, which is expressed as

[ ¥
Heﬁ:H—EXj: LiL;. 9)

We note that only considering the one-body loss can only
achieve the nonreciprocal hoppings, but not the odd (even)-
site gain (loss) [86]. To achieve both, we shall consider local

: loss . in
(or'say, site-dependent) one-body loss L™ and gain L}g.a ,
which are denoted as

Joss N . N
L™ = Jije; +iyKjmitjp,
gain __ AT . AT
Lj = ﬂjcj:FlV ﬂj+lcj+1’

where «; and B; are the strengths of the local one-body loss
and gain, respectively. This means that there are both gain and
loss of particles at two nearest adjacent lattice sites of the
system. Therefore, the summation in Hcg shall extend over
all lattice sites and the dissipators (i.e., including the loss and
gain).

(10)

TABLE I. The fitting parameters of the fitting curves presented in Fig. 9.

Fig. 9(a) Fig. 9(b) Fig. 9(c) Fig. 9(d) Fig. 9(e) Fig. 9(H) Fig. 9(g) Fig. 9(h)
a 154.20 1.582 75.92 39.64 17.58 1.00 36.03 11.03
b —2.865 —0.954 —2.125 —1.909 —1.654 —0.687 ~1.709 —1.194
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Employing the commutation relation of the hard-core
bosons [¢;, 6}:] =8 (1 — 26;61-), we arrive at Hqg as

Her =Y (JRel 6+ Theiein) + > Vi,

J J
+ Y Ui +iy iy —iy By, (1)
J j J

where

JE =g YING AP
2 2

oy STV VBB
2 2 '

Yi = Bj— k. (12)

The last term —i ) j Bj in Her denotes a background loss. If
the strengths of site-dependent loss and gain are staggered,
and satisfy the necessary condition, i.e., |8; — k;| =y, we
can realize the Hamiltonian in Eq. (1). Therefore, we believe
that with the help of current experimental techniques the non-
Hermitian MBL transition and topological transition we have
studied can be observed experimentally.

VI. SUMMARY

In this paper, we have investigated a non-Hermitian qua-
sidisordered many-body system that lacks real-energy spectra.
Through analysis of spectral statistics, entanglement entropy,
inverse participation ratio, and winding number, we have
discovered that the many-body localization transition, the
spectral statistics transition, and the topological transition
driven by quasidisorder occur simultaneously. In the many-
body delocalized phase, the energy spectra obey the Ginibre
distribution and the entanglement entropy obeys the volume
law. Meanwhile, the inverse participation ratio approaches
zero, accompanied by a nonzero winding number in the delo-
calized phase. In contrast, in the many-body localized phase,
the energy spectra obey the complex Poisson distribution,

and the entanglement entropy obeys the area law, accompa-
nied by the finite inverse participation ratio and zero winding
number. By analyzing the non-Hermitian energy gap, we find
that the energy gap decays exponentially with the system
size, signaling the existence of the exceptional point. How-
ever, the non-Hermitian many-body topology is independent
of the exceptional point based on our findings that the ex-
ceptional point exists in both the nonzero winding number
and zero winding number phase regions, regardless of the
presence or absence of real-complex transition. We argue
that this non-Hermitian many-body topology originates from
the nontrivial trajectory of detH (¢)/detH (0) surrounding the
base energy. In addition, the critical exponent of the MBL
transition is obtained. Furthermore, this many-body localiza-
tion transition can be experimentally observed by measuring
the density imbalance [40—46,58,59]. We have theoretically
calculated the dynamics of density imbalance and find that
under the long-time evolution limit the delocalization phase
corresponds to near-zero density imbalance, whereas the lo-
calized phase corresponds to finite density imbalance. It is
noteworthy that despite the absence of real energy in the
many-body localization transition phase the real part of the
complex energy exhibited relatively stable dynamical behav-
ior, indicating that the many-body localization transition plays
a critical role in maintaining this stability. We demonstrate that
the Hamiltonian of the studied model can be realized by the
Lindblad dynamical evolution under postselection or no-jump
condition. Recently, two works have studied non-Hermitian,
disorder-free many-body systems that exhibit complex-to-
real-energy transitions [104,105]. It would be interesting to
investigate whether the many-body localization transition or
the real energy is the crucial factor in maintaining the stable
dynamical behavior of the real part of the energy in such
disorder-free systems.
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