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Although it is recognized that Anderson localization takes place for all states at a dimension d less than or
equal to 2, while delocalization is expected for hopping V (r) decreasing with the distance slower or as r−d , the
localization problem in the crossover regime for the dimension d = 2 and hopping V (r) ∝ r−2 is not resolved
yet. Following earlier suggestions we show that for the hopping determined by two-dimensional anisotropic
dipole-dipole interactions in the presence of time-reversal symmetry there exist two distinguishable phases at
weak and strong disorder. The first phase is characterized by ergodic dynamics and superdiffusive transport,
while the second phase is characterized by diffusive transport and delocalized eigenstates with fractal dimension
less than 2. The transition between phases is resolved analytically using the extension of scaling theory of
localization and verified numerically using an exact numerical diagonalization.
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I. INTRODUCTION

Low-dimensional systems with a dimension d � 2 pos-
sessing the time-reversal symmetry are critical in the An-
derson localization problem [1]. All states there must be
exponentially localized at arbitrarily small disorder strength
as was shown using the scaling theory of localization [2], anal-
ysis of conductivity [3], and extensive numerical simulations
[4,5] (see also reviews [6–8]). This localization is originated
from the singular backscattering due to random potential dra-
matically enhanced in low dimension d � 2 where random
paths inevitably return to the origin [7].

The scaling theory of localization suggests the single-
parameter scaling for the dimensionless conductance C =
G/(e2/h̄) dependence on the size L in the form [2,3] (G is
the conductance)

d ln(C)

d ln(L)
= β(C), β(C) = −cloc

C
+ O(C−4), cloc = 1

2π2
, (1)

where the β function has been evaluated using expansion of
the equivalent nonlinear sigma model [8,9] valid at C � cloc.
Equation (1) predicts the reduction of conductance with the
system size L as C(L) = C0 − cloc ln(L) where C0 is the con-
ductance at the lower cutoff L = 1. Logarithmic reduction
of conductance with the system size results in the inevitable
localization at large sizes L.

This universal scaling is limited to systems with a short-
range hopping, while the hopping decreasing with the distance
as V (r) ∝ r−d or slower leads to delocalization of all
states [1,10–14] except for the marginal case of diverg-
ing Fourier transform of a hopping amplitude [15–26]. If
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disorder is strong, eigenstates of the problem with the long-
range hopping V (r) ∝ r−d possess a multifractal structure
and the time-dependent displacement of the particle r obeys
the law r ∝ t1/d , which is subdiffusive in 3D [11], diffu-
sive in 2D and superdiffusive in 1D [12]. The long-range
hopping V (r) ∝ r−2 is ubiquitous in pure two-dimensional
systems [27], where it can be originated from the vir-
tual exchange by two-dimensional photons leading to the
2D dipole-dipole interaction [28] or indirect exchange by
2D electron-hole pairs leading to 2D RKKY interaction
[29]. Power-law distant-dependent hopping is crucial for the
many-body localization problem [30–53], where long-range
interaction can result in localization breakdown at arbitrary
disorder.

For the hopping under consideration r−d and weak disor-
der, there is the transition in 3D to the standard delocalized
phase characterized by the diffusive transport and ergodic
dynamics [54], while in 1D eigenstates turns out to be mul-
tifractals with the dimension smaller than 1 [12]. 2D systems
are more complicated, because for the hopping V (r) ∝ r−d

the dimensionless classical Drude conductance diverges log-
arithmically with the system size as C0(L) = c∗ ln(L) [28].
Considering the balance of this logarithmic raise of con-
ductance and its logarithmic suppression by coherent back
scattering cloc ln(L) Eq. (1), it was suggested in Ref. [28] that
two delocalized phases can exist including the superdiffusive
(fast) phase at c∗ > cloc and the slow phase with diffusive
transport at c∗ < cloc and the phase boundary realized at c∗ =
cloc. Yet, it turns out that in systems possessing time-reversal
symmetry, for isotropic dipoles considered in Ref. [28] c∗ <

cloc and for an arbitrarily disorder strength, the fast phase does
not exist. This is in contrast to the systems with a broken time-
reversal symmetry, possessing the transition between fast and
slow phases, characterized by the unstable fixed point [28].
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These achievements motivated us to search for the su-
perdiffusive, fast phase using different hopping interaction
including anisotropic dipole-dipole interaction with identi-
cally oriented dipoles. Our preliminary estimates also show
emergence of a superdiffusive phase for the 2D RKKY in-
teraction at sufficiently weak disorder that needs a separate
consideration. These interactions differ from the isotropic
dipole model of Ref. [28] by the presence of dispersive
modes, with the mean free path increasing unlimitedly with
decreasing disorder, accompanied by a similar increase in
the logarithmic growth parameter c∗. This makes the appear-
ance of the fast phase with c∗ > cloc unavoidable, similar to
the anisotropy-mediated localization investigated in Ref. [20],
where the number of such modes is extensive, although they
are measure zero.

The transition between phases occurring at c∗ = cloc differs
qualitatively from the typical localization transition since in
the present case the renormalization group equation for the
conductance possesses the stable fixed point. Consequently,
conductance approaches infinity with decreasing disorder
strength in a continuous manner and the transition point can be
expressed analytically through the single-particle green func-
tion. Therefore, we can find the transition point analytically
for the model with the Lorentzian distribution of disorder
where Green’s functions can be evaluated exactly, which is
unprecedented for the localization problem.

This is in a sharp contrast with the standard localization
transition in 3D systems with the short-range hopping [2,6]
and the transition in the system similar to the present one
but with a violated time-reversal symmetry [28]. For those
models, conductance instantaneously jumps from a critical
value to infinity at the transition point, that can can only be
approached numerically.

Recent experimental realizations of 2D Anderson local-
ization [55] and long-range hopping [56] represent the steps
towards generating the settings targeted in the present paper.
Consequently, we believe that its experimental realization is
possible and it is strongly encouraged. Two dimensional r−2

dipole-dipole interaction emerges in high dielectric constant
films in a limited distance range where superdiffusive behav-
ior can be observed as discussed in the end of Sec. IV.

In addition to the dipole-dipole interaction, there exists a
long-range elastic r−2 interaction in isolated dielectric films
with a similar angular dependence to that for a dipole-dipole
interaction. Similar phase transition is expected for that inter-
action without constraints like for a dipole-dipole interaction
because elastic field is located fully inside the material. This
is also true for an indirect exchange RKKY interaction within
two-dimensional metals. Of course, for all interactions the
consideration is limited to a subwavelength transport [31].

We investigate two phases for two-dimensional Ander-
son model, described in Sec. II with a long-range hopping,
formulated below, using the extension of scaling theory of
localization for the long-range hopping developed in Secs. III
and IV and exact numerical diagonalization in Sec. V. The
Lloyd model with the Lorentzian distribution of random
site potentials is used since the Green’s functions can be
evaluated exactly in this model [57], and using them we
can find analytically the transition between fast and slow
phases.

The phase boundary c∗ = cloc and a finite-size scaling of
conductance are identified analytically in Secs. III and IV.
The numerical study of Sec. V is targeted to check a con-
sistency of the analytical theory with the results obtained by
means of exact numerical diagonalization. Our investigation
of level statistics in Sec. V A shows the consistency of the
analytically predicted phase boundary with the behavior of
the level statistics changing from the Wigner-Dyson statistics
in the fast phase to the intermediate one between Poisson and
Wigner-Dyson otherwise. The finite-size scaling of an eigen-
state fractal dimensions reported in Sec. V B is consistent
with the analytical theory under the assumption of a linear
dependence of a fractal dimension on the inverse conductance,
although the proportionality coefficient differs from the earlier
theoretical predictions. Finally, we demonstrate that a time-
dependent displacement of a particle initially localized in a
single site shows super diffusive behavior in accord with the
theoretical expectations, although the direct comparison of
analytical and numerical results is problematic because of an
insufficient maximum size of the system and the contribution
of all eigenstates to the transport including the “slow” ones in
the spectrum tails. All numerical results would not be fully
conclusive for the infinite-size limit without the analytical
theory, which is the main outcome of the present paper.

II. MODEL

The Anderson model in 2D is investigated. The
Hamiltonian of the model has the form

Ĥ = 1

2

∑
i, j

Vi jc
†
i c j +

∑
i

φic
†
i ci, (2)

where the summation is performed over N = L2 lattice sites
enumerated by indices i with coordinates ri = (xi, yi ) occu-
pying the periodic square lattice with a period equal to unity
placed onto the surface of torus characterized by the radii R =
L/(2π ). Independent random energies φi obey the Lorentzian
distribution

P(φ) = 1

π

W

W 2 + φ2
, (3)

having the width W characterizing the disorder strength, while
hopping amplitudes are given by the exchange of the dipolar
excitations between interacting dipoles, oriented along the x
axis, via the interaction [28]

V (ri j ) = V0

x2
i j − y2

i j

r4
i j

, ri j = (xi j, yi j ). (4)

These hopping terms are formed similarly to the interaction
(3x2 − r2)/r5 in three dimensions [58].

The present model is different from that of Ref. [28] be-
cause all transition dipole moments are oriented along the
x axis. To reproduce the settings of Ref. [28] we need to
consider two degenerate states with identical random poten-
tials in each site with perpendicular transition dipole moments
and introduce the dipolar hopping between them accordingly.
Also a short-range hopping can be added between states with
identical transition dipole moments. As noticed in the Intro-
duction, in the present model there is the transition between
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FIG. 1. Classical (a) and quantum (b) and (c) contributions to the dimensionless conductance.

fast and slow phases while it lacks in the isotropic model of
Ref. [28].

For the Lorentzian distribution of random potentials the
Green’s functions, averaged over the random potential re-
alizations, can be evaluated exactly [57] in the momentum
representation because averaging of local Green’s functions
1/(E − φi − iδ) with the distribution Eq. (3) yields 1/(E −
iW ), so averaging replaces all random potentials with the
imaginary constant iW . Thus the configurationally averaged
Green’s function takes the form

G(E , q) = 1

E − V (q) − iW
, V (q) =

∑
k

Vjkeiqr jk , (5)

where V (q) expresses the Fourier transform of the hopping
Vik . For small wavevectors q � 1 it can be approximated by
the continuous limit of the dipole-dipole interaction Fourier

transform with subtracted self-interaction, given by

V (q) ≈ 2πV0
q2

y − q2
x

q2
. (6)

as verified in Appendix A numerically, see also Ref. [20].
The Green’s functions are needed for the calculation of a
classical conductance given below. There we set V0 = 1 and
use the effective disorder strength parameter W to distinguish
different phases.

III. CLASSICAL CONDUCTANCE

Long-range hopping results in a logarithmic divergence of
a classical conductance. To characterize this divergence, let us
consider the generalized definition of a wavevector-dependent
conductance [3,6,28] that is a target of the renormalization
group analysis. It reads

Cab(q) =
∫

dp
∫

dp1
∂V (p + k/2)

∂ pa
〈Img(p + k/2, p1 + k/2)Img(p1 − k/2, p − k/2)〉∂V (p1 − k/2)

∂ p1b
, (7)

where g(p, p1) stands for the Green’s functions taken at the
energy of interest E before the configurational averaging 〈...〉.

The conductance can be expressed using diagrams [3,6,59]
shown in Fig. 1, where solid lines for configurationally aver-
aged Green’s functions [Eq. (5)] and dashed lines indicating
correlations of two Green’s functions appearing due to the
contributions of identical sites to both Green’s function. This
series represents the conductance expansion in the ratio of
the wavelength and the mean free path thus giving the quan-
tum corrections Fig. 1(b) to the classical conductance shown
in Fig. 1(a). For the classical conductance input and output

wavevectors are identical p = p1. This classical conductance
has a logarithmic divergence, due to the squared group veloc-

ity terms like ∂V (p)
∂ pa

2 ∝ p−2, Eq. (6) lacking for the short-range
hopping.

For the quantum corrections to the conductance shown
in Fig. 1(b), p 	= p1 and, therefore, no logarithmic diver-
gence emerges. Consequently, the correlations between two
Green’s functions are neglected, when defining a positive
logarithmically diverging contribution to the conductance,
which we are interested in. This logarithmically diverging part
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is evaluated below exactly since in the present model exact
Green’s functions are known [Eq. (5)].

The classical dimensionless conductance tensor at given
energy E takes the form {see Eq. (7) and Refs. [3,7,28]}

C(0)
ab (q) =

∫
dp

π (2π )d

(
∂V (p + q/2)

∂ pa

)(
∂V (p − q/2)

∂ pb

)
×ImG(E , p + q/2)ImG(E , p − q/2), (8)

where G(E , q) is the retarded Green’s function at energy E
and wavevector q defined in Eq. (5).

The conductance in Eq. (8) diverges logarithmically at
small wavevectors p corresponding to long distances. This
divergence is caused by the divergence of the mean squared

displacement
∫

d2rV (r)2r2 within the Fermi golden rule ap-
proach. At long distances, the Fourier transform continuous
representation becomes exact, so the use of the hopping am-
plitude Fourier transform in the form of Eq. (6) is completely
justified. Below we evaluate analytically the diverging part
needed for the characterization of the phase transition for the
anisotropic dipole-dipole hopping.

For the dipole-dipole hopping Eqs. (4) and (6) the integral
for the classical conductance Eq. (8) diverges logarithmically
at p = 0. Since this divergence takes place within the do-
main q < p < 1 (for meaningful wavevectors q > 1/L), the
conductance tensor diverging components in Eq. (8) can be
evaluated with the logarithmic accuracy as Cxx = cx ln(1/q),
Cyy = cy ln(1/q), cxy = cyx = 0, where

cx = ∂C(0)
xx

∂ ln(L)
= 4

π

∫ 2π

0
dφ

cos(φ)2 sin(φ)4W 2

[(E − π cos(2φ))2 + W 2]2

= (π2 − W 2 − E2)Im(
√

E2 − (π − iW )2) + πW Re(
√

E2 − (π − iW )2)

4π3
√

(E + π )2 + W 2
,

cy = ∂C(0)
yy

∂ ln(L)
= 42

π

∫ 2π

0
dφ

cos(φ)4 sin(φ)2W 2

[(E − π cos(2φ))2 + W 2]2

= (π2 − W 2 − E2)Im(
√

E2 − (π − iW )2) + πW Re(
√

E2 − (π − iW )2)

4π3
√

(−E + π )2 + W 2
. (9)

In the middle of the band (E = 0) the conductance is
isotropic, Cxx = Cyy = c∗ ln(L), and the logarithmic growth
rate c∗ is given by

c∗ = 1

2W
√

π2 + W 2
. (10)

It is noticeable that in the weak-disorder limit (W → 0)
the rate parameter c∗ in Eq. (10) approaches infinity, so the
transition to the superdiffusive regime should take place at a
finite-disorder strength W where c∗(W ) = cloc = 1/(2π2) in
contrast with the isotropic dipole-dipole hopping [28].

The generalization to the arbitrary distribution of ran-
dom potentials can be made by the replacements E → E −
Re�(E , 0) and W → −Im�(E , 0) in Eqs. (9) and (10), where
�(E , 0) is the self-energy evaluated at energy E and wavevec-
tor q = 0. One should notice that �(0, 0) = 0. Finding the
self-energy for arbitrary distribution of random potentials re-
mains a challenge; yet this problem is much easier compared
to the localization problem itself. The classical conductance
serves as an input to the renormalization group equation for
the conductance derived below in Sec. IV.

IV. RENORMALIZATION GROUP EQUATION

Here we derive the β function determining the size depen-
dence of conductance in Eq. (1) within the one-loop order.
The derivation below is given for the isotropic regime of
symmetric conductances cxx = cyy while for the anisotropic
regime we give the results in the end of the present section.
The isotropic regime is approximately valid for the system
under consideration at zero energy [see Eq. (10) in Sec. III].

We examine the renormalization of conductance C(q, p1)
for the orthogonal (possessing the time-reversal symmetry)
sigma model within the one-loop order assuming that the
conductance is much greater than one, which is true near
the transition point, where it approaches infinity. Here q is
the current momentum and p1 is the maximum momentum
[9] reduced during renormalization procedure. The renormal-
ization of the conductance is associated with the reduction
of the maximum momentum to the new value p2 � p1. This
renormalization can be expressed as [9,12] (q � p)

q2(C(q, p2) − C(q, p1))

≈ −
∫ ′ dk

π (2π )2

C(|k + q|, p1)(k + q)2 − C(k, p1)k2

C(k, p1)k2
,

(11)

where integration
∫ ′ is taken over the domain of momenta

p2 < p < p1 that is getting excluded during the renormaliza-
tion procedure. This is the one-loop order correction to the
conductance similar to Eq. (25) in Ref. [12], where it was
considered for a one-dimensional model with the long-range
hopping. The terms C(k, p1)k2, C(|k + q|, p1)(k + q)2 in the
denominators are identical to the terms |q + k|σ and |k|σ in
Ref. [12].

The initial conditions to Eq. (11) at large p1 = O(1) are set
using the classical order conductance as

C(q, 1) = c∗ ln(1/q), (12)

where the inverse wavevector q serves as the cutoff radius in
the definition of the conductance. The long-range interaction
enters into the consideration through this initial condition.
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In the limit q � p1 one can expand the expression in the
numerator to the second order in q as (the first-order disap-
pears because of the integration over angles)

C(q, p2) − C(q, p1)

≈ −
∑

α,β=x,y

qαqβ

2q2

∫ ′ dp
π (2π )2

∂2(C(p, p1)p2)
∂ pα∂ pβ

1

C(p, p1)p2
.

(13)

Evaluating derivatives and averaging over angles of vector p
we get

C(q, p2) − C(q, p1)

= −
∫ ′ dp

π (2π )2

[
C(p, p1) + ∂C(p, p1)

∂ ln(p)
+ 1

4

∂2C(p, p1)

∂ ln(p)2

]
× 1

C(p, p1)p2
. (14)

Assuming that the logarithmic derivatives of the conductance
are smooth functions [this is justified by the logarithmic size
dependence of conductance in the initial condition Eq. (12)
and can be verified using the solution of the equation], one
can perform logarithmic integration in the right-hand side of
Eq. (14) and express this equation in the standard differential
form similarly to Ref. [9],

∂C(q, p)

∂ ln(p)
= 1

2π2

[
1 + 1

C(p, p)

∂C(p1, p)

∂ ln(p1)

∣∣∣∣
p1=p

+ 1

4C(p, p)

∂2C(p1, p)

∂ ln(p1)2

∣∣∣∣
p1=p

]
. (15)

Since the right-hand side of Eq. (15) is independent of the
wavevector q one can evaluate logarithmic derivatives using
the initial condition Eq. (12) as

∂C(p1, p)

∂ ln(p1)

∣∣∣∣
p1=p

= −c∗,
∂2C(p1, p)

∂2 ln(p1)

∣∣∣∣
p1=p

= 0.

Then Eq. (15) takes the form

∂C(q, p)

∂ ln(p)
= 1

2π2

[
1 − c∗

C(p, p)

]
. (16)

The renormalized conductance at the given momentum p
can be determined with the logarithmic accuracy as C(p, p)
and it can be denoted as C(p) for the convenience. Using the
initial condition Eq. (12) for the derivative with respect to
the first argument we end up with the renormalization group
equation in the form

dC(p)

d ln(p)
= −c∗ + 1

2π2

[
1 − c∗

C(p)

]
. (17)

For the size L dependent conductance one can express the
relevant wavevector p as η1/L for η1 = O(1). This leads to
the renormalization group equation for the size-dependent

conductance in the form

dC

d ln(L)
= c∗ − cloc + c∗cloc

C
+ O(C−2),

cloc = 1

2π2
. (18)

Assuming that C � cloc, we can ignore higher-order terms.
Then for cloc > c∗ the steady-state solution reads

C = c∗cloc

cloc − c∗
. (19)

It is a stable fixed point. This solution is applicable in the
infinite-size limit and for cloc − c∗ � cloc where higher-order
terms in 1/C can be neglected. In the opposite case c∗ > cloc

the solution approaches infinity for L → ∞.
Formally Eq. (18) goes beyond the one-loop order expan-

sion since the term inversely proportional to the conductance
is comparable to the two-loop order contributions. However,
since there are no contributions to the conductance up to four-
loop order [9], we believe that we do not need to go beyond
the one-loop order.

The renormalization group equation for the anisotropic
conductance can be derived similar to the isotropic regime.
In the one-loop order we got

dCx

d ln(L)
= c∗

x − cloc
Cx√
CxCy

+ 2c∗
x√

Cx(
√

Cx + √
Cy)

+ Cyc∗
x − Cxc∗

y

4
√

CxCy(
√

Cx + √
Cy)2

+ O(C−2),

dCy

d ln(L)
= c∗

y − cloc
Cy√
CxCy

+ 2c∗
y√

Cy(
√

Cx + √
Cy)

+ Cxc∗
y − Cyc∗

x

4
√

CxCy(
√

Cx + √
Cy)2

+ O(C−2). (20)

Similar to the isotropic case Eq. (19). this equation has
a stable fixed point at c∗

x c∗
y < c2

loc. In the infinite-size limit
the steady-state solution for conductance at that point can be
approximated by(

Cx

Cy

)
= 2c2

loc

c2
loc − c∗

x c∗
y

(
c∗

x
c∗

y

)
. (21)

Conductance approaches infinity in the infinite-size limit for
c∗

x c∗
y � c2

loc. Consequently, the transition to the superdiffusive
regime is defined as

c2
loc = c∗

x c∗
y . (22)

The solid line shows the analytical predictions for the
phase boundary in the infinite system determined using
Eq. (22).

According to Eq. (18), conductance diverges logarithmi-
cally for L → ∞ under the condition c∗ > cloc (the fast
phase), while it remains finite otherwise (the slow phase). Set-
ting c∗ = cloc one can find critical disorder separating phases.

For the dipole-dipole interaction the isotropic regime is
realized only for the band center E = 0, where the criti-

cal disorder is given by Wc = π/

√
(1 + √

5)/2 ≈ 2.47. With
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FIG. 2. Phase diagram of the 2D interacting dipoles model and
the color code shows the average level-spacing ratio 〈r〉, Eq. (23)
characterizing the level statistics [60], evaluated for the system size
L = 201 and averaged over 1000 realizations separately for each
value of W .

decreasing disorder the fast phase emerges first at that energy.
For the anisotropic regime realized at E 	= 0 the transition
emerges at c∗

x c∗
y = c2

loc, Eq. (22). Using the analytical results,
Eq. (9), for the logarithmic growing rates c∗

x and c∗
y we deter-

mine the phase diagram depicted in Fig. 2, where solid lines
indicate analytical predictions for the boundary between slow
and fast phases determined using Eq. (22).

The dipole-dipole hopping distance dependence r−2

emerges in high-dielectric-constant films. For the film of
the thickness h possessing a dielectric constant ε sub-
stantially exceeding that of the environment (εenv), 1/r2

hopping amplitude distance dependence emerges for distances
r belonging to the domain h < r < Lmax = hε/εenv [61,62].
If the system is in the fast phase the conductance will
grow within this domain reaching its maximum C(Lmax) ≈
(c∗ − cloc) ln(ε/εenv). At longer distances L > Lmax there
is no long-range hopping contribution so the renormaliza-
tion group equation takes the form dC/d ln(L) = −cloc as
for the short-range hopping. Then at distances exceeding
Lmax, a weak localization behavior of conductance is ex-
pected C(L) = C(Lmax) − cloc ln(L/Lmax) until reaching the
length l ≈ h(ε/εenv)

c∗
cloc where C(L) = 0. At that scale two-

dimensional Anderson localization is expected, so the size l
determines the localization length. It seems to be an exciting
experimental challenge to investigate the excitation displace-
ments vs time in high-dielectric-constant films to observe
all three regimes. For the hopping associated with elastic or
RKKY interactions in isolated films there is no constraints
like that for the dipole-dipole interaction so the superdiffusive
behavior can be seen there at longer distances.

V. NUMERICAL RESULTS

Fast and slow phases should be distinguishable numeri-
cally and below we investigate the transition between them
using exact diagonalization and considering the level statistics
(Sec. V A), fractal dimension (Sec. V B), and transport kinet-
ics (Sec. V C). Since the Hamiltonian matrix is not sparse,
i.e., most of its elements are different from zero, the recently
developed advanced diagonalization methods of large matri-
ces [63] are not applicable to our problem of interest and the
maximum size of the system is limited to 300 × 300. Yet,

-5 0 5

0.4

0.45

0.5

FIG. 3. Level spacing ratio r statistics vs energy for different dis-
order strengths W . The vertical-dashed lines at E = ±2.7 (V0 = 1)
indicate the fast phase borders for the smallest disorder strength
W = 1.

our results are quite consistent with the expectations of the
analytical renormalization group theory.

A. Level statistics

Energy level statistics is different for localized and delo-
calized states [64]. For delocalized states it approaches the
Wigner-Dyson random matrix energy level statistics due to
energy level repulsion, while energies of localized states are
independent of each other and can be characterized by a Pois-
son statistics. Usually, Wigner-Dyson level statistics indicates
ergodic behavior [60,65]; see, however, Ref. [66].

Eigenstates in the slow phase, characterized by a finite
conductance, are expected to have a fractal dimension D
reduced compared to a system dimension d = 2 [11,12]. Con-
sequently, the level repulsion should be reduced and we do
not expect Wigner-Dyson statistics and, consequently, ergodic
behavior in the slow phase. However, one can expect it to
appear in the fast phase similarly to the counterpart transition
in 3D [54]. This expectation turns out to be consistent with the
numerical studies reported below.

The level statistics is represented in terms of the average
ratio of the minimum to maximum of adjacent energy level
splittings defined as [60]

〈r〉 =
〈

min(δn, δn+1)

max(δn, δn+1)

〉
, δn = En+1 − En, (23)

where En represent energies of eigenstates arranged in the as-
cending order. In the localized phase one has 〈r〉 = 2 ln(2) −
1 ≈ 0.386, while in the delocalized, ergodic phase character-
ized by the Wigner-Dyson statistics 〈r〉 ≈ 0.531 [65].

In Fig. 3 we show the level statistics for the system of
the size L = 291 with the anisotropic dipole-dipole hop-
ping Eq. (4) and different disorder strengths averaged over
200 realizations.with the energy resolution δE = 0.1. For the
minimum disorder strength W = 1, a substantial fraction of
states with energies |E | < 2.7V0 indicated by the dashed line
should belong to the fast phase (in all graphs we set V0 = 1).
The average level spacing ratio parameter 〈r〉 approaches the
Wigner-Dyson limit 0.53 in this domain as we expected for
the fast phase. The intermediate disorder strength W = 2.5
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approximately corresponds to the last moment when the fast
phase is present at E = 0. For the strongest disorder W = 4
all states suppose to belong to the slow phase. It is visually
clear in Fig. 3 that our numerical findings are consistent with
the assumption of ergodic behavior in the fast phase and its
lack in the slow phase. The data for the level statistics are
also presented in the phase diagram Fig. 2. They are consistent
with the analytical results shown by the solid line. The results
are shown for the maximum probed system size L = 251. The
results for smaller sizes are quite similar to those in Fig. 2 so
we do not see any remarkable scaling of the level spacing ratio
similarly to the earlier study [20]. This is in contrast with the
fractal dimension scaling reported below.

B. Fractal dimension

The numerical investigation of a fractal dimension reported
in this section is targeted to verify a finite-size scaling of a
conductance. predicted by the renormalization group theory
Eq. (18) taking the advantage of the earlier predicted connec-
tion of conductance and dimension [67]. We define the fractal
dimension using the informational dimension D1 [68,69] that
can be expressed in terms of the average eigenstate wavefunc-
tion Shannon entropy ξ (L) = −〈∑i |ci|2 ln(|ci|2)〉, where the
amplitudes ci represent eigenstate coefficients of the problem
in the real-coordinate basis of sites i with the energy E close
to zero (−0.1 < E < 0.1) and averaging is performed over all
such states and different realizations of random potentials.

The informational dimension is connected to the fractal
dimension Dq of the multifractal eigenstate defined for the
specific exponent q as [20,70]〈∑

i

∣∣ci

∣∣2q

〉
∝ L(1−q)Dq . (24)

It corresponds to the limit of q → 1, where the geometric
averaging emerges naturally after both sides expansion in
1 − q [70]. In this limit the fractal dimension is less sensitive
to fluctuations thus reflecting a typical wavefunction behavior,
which is our target.

For numerical calculations we define a size-dependent
informational dimension as D1 = dξ/d ln(L), cf. Ref. [71].
The dimension is estimated calculating the functions ξ for
the sequence of lengths L1, L2,... Ln arranged in ascending
order and then numerically differentiating them. This yields
n − 1 estimates for fractal dimensions D1(lk ) = (ξ (Lk+1) −
ξ (Lk ))/ ln(Lk+1/Lk ) assigned to geometrically average sizes
lk = √

LkLk+1 for k = 1, 2...n − 1.
Numerical results should be compared with analytical esti-

mates for fractal dimensions obtained using the generalized
theory Eq. (18) and the connection between the dimension
and the system conductance. established within the nonlinear
sigma model in Refs. [8,59,67,72]. It was shown there that
the informational dimension D1 of a two-dimensional system
with a finite conductance smaller than the system dimension
2. The difference of dimensions is inversely proportional to
the dimensionless conductance at large conductance C � cloc.
Consequently, the fractal (informational) dimension can be
expressed as D1 = 2 − ηd cloc/C at C � cloc. Theory suggests
[8,67] ηd = 1 for the nonlinear sigma model with a short-
range hopping.

0 0.1 0.2 0.3 0.4
1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

FIG. 4. Finite-size scaling of the fractal dimension vs the pre-
dictions of the modified scaling theory of localization (see the text).
The number of realizations is 40 000 for the minimum size L = 11
decreasing with increasing the size to 2000 for the maximum size
L = 251.

We were unable to fit the numerical data using the analyti-
cal expression with ηd = 1 (see Appendix B), but obtained an
excellent agreement between analytical and numerical results
setting ηd = 1.3 (D1 = 2 − 1.3cloc/C). In Fig. 4 we present
analytical results for the fractal dimension (solid line) to-
gether with its numerical estimate for the zero-energy states
of the system with the hopping due to the anisotropic dipole-
dipole interaction. The conductance was evaluated integrating
Eq. (18) and solving numerically the resulting transcendental
equation that expresses size-dependent conductance as

C + C∞ ln

(
1 − C

C∞

)
= (c∗ − cloc) ln

(
L

L0

)
. (25)

Here C∞ = c∗cloc/(cloc − c∗) represents the infinite-size limit
of conductance in the slow phase c∗ < cloc and L0 is the
unknown integration constant. We define this constant for
each line shown in Fig. 4 minimizing the deviation of an-
alytical (2 − 1.3cloc/C) and numerical estimates of fractal
dimensions. at largest sizes where the theory is most relevant.

The failure of the expression for D1 with ηd = 1 in the
present model can be due to the long-range character of
hopping.

C. Transport

Finally, we consider the particle transport that is the main
distinction of two phases. Our goal here is just to demonstrate
that the superdiffusive transport, indeed, exists at small disor-
der strength in a reasonable agreement with the predictions of
the analytical theory. We do not attempt to compare the pre-
dictions of analytical theory with numerical results in detail
because the transport includes many eigenstates with different
energies and different transport rates that makes an accurate
analytical consideration overcomplicated.

As we explained earlier it is expected to be superdiffusive
in the fast phase and diffusive in the slow phase. For the
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initially localized particle its typical displacement R increases
with the time following a sort of diffusion law R2 ∝ C(R)t
since conductance and diffusion coefficient are synonyms
in two dimensions. In the fast phase a conductance C(R)
increases logarithmically with the size R leading to a superdif-
fusive behavior in contrast to the linear dependence expected
in the slow phase where conductance remains finite. This
expectation is consistent with Ref. [11], where the behavior
R ∝ t1/d was predicted for the slow phase in a d-dimensional
system. For d = 2 this is equivalent to the diffusive behavior
in contrast to the subdiffusive behavior for d = 3 [11] or the
superdiffusive behavior for d = 1 [12].

To verify these expectations we investigate the time evo-
lution of the state ci initially (t = 0) localized in the origin
i = 0 [ci(0) = δi0, where δi0 is the Kronecker symbol]. We set
a random potential in the origin to zero [φ0 = 0, see Eq. (2)]
to have the average energy of the state of interest equal to
zero 0, where delocalization emerges in the maximum extent.
Different strengths of random potentials were investigated
including W = 0.1, 0.5, and 1.5 for the fast phase, W = 2.5
for the transition point and W = 3.5 for the slow phase. For
W = 0.1, 0.5, or 1.5 the fast phase is realized for the majority
of the states, except for a small fraction of the “slow” states
in the tails of the spectrum that do not affect the particle
transport. The choice of a zero random potential in the origin
where the particle was placed at t = 0 reduces the contribution
of slow tail states to the wavefunction evolution.

The particle transport has been characterized using the
logarithmically average displacement Rlog(t ) (excluding the
origin), defined as

ln(Rlog(t )2) =
∑
i 	=0

|ci(t )|2 ln
(
R2

i

)
. (26)

We do not consider the most often used mean squared dis-
placement because the power-law tails of the wavefunction
can lead to the overestimate of the actual move. Indeed, even
at short times a mean squared displacement diverges with the
system size because of the wavefunction asymptotic behavior
ψ (R) ∝ R−2 emerging in the first-order perturbation theory in
a hopping. Although at short times the particle is localized
nearby the origin R = 0, the average squared displacement∫

d2R|ψ (R)|2R2 diverges logarithmically for ψ (R) ∝ R−2 for
the system of an infinite size, while logarithmic averaging
does not lead to any divergence, at a finite time.

The results of the calculations for Rlog(t )2 vs t are shown in
Fig. 5. Based on these results it is still difficult to characterize
the transport because at very short times t < 1, 1/W one
has |ci(t )| ≈ Vit (Vi is the coupling strength of the initial site
and the site i) leading to Rlog(t ) ∝ t , while the saturation at
around the system size takes place at long times t > 100.
To focus on the relevant time domain for the superdiffusive
transport we restrict our consideration to times tmin < t < tmax

with tmin = 1 and tmax = 100. The time dependence of the
relative conductance C∗(t )/C∗(1) [C∗(t ) = Rlog(t )2/t] in that
time domain is shown in Fig. 6 for various disorder strengths.
Relative conductance is used since we are interested in the
time dependence of the diffusion coefficient (conductance)
rather than its absolute value. If the transport is superdiffu-
sive this effective conductance should increase with the time,

10-1 100 101 102 103

t

10-1

100

101

102

103

104

R
lo

g
2

0.1
0.5
1.5
2.5
3.5

FIG. 5. Time dependence of typical squared displacement at dif-
ferent disorder strengths W indicated near each graph for the system
size L = 251, averaged over 300 realizations.

logarithmically, saturating at long times due to a finite-size
effects.

According to Fig. 6 the superdiffusive transport, indeed,
emerges for the weakest disorder at W � 1.5 in accord with
the theoretical expectations. At short times the conductance
time dependence is consistent with the expected logarith-
mic growing for W = 0.1 and W = 0.5, while for W = 1.5
the growing domain is too narrow to make any conclusions
possibly due to finite-size effects. For stronger disorder the
conductance slowly decreases with the time. At the transition
point W ≈ 2.5 corresponding to the zero energy, Eq. (18)
predicts the superdiffusive behavior C ∝ √

ln(L), that we do
not see, possibly because of dominating contributions of slow
states with energies different from 0. The reduction of the
diffusion coefficient (conductance) with the time (size) for
W > 1.5 can be due to the renormalization of coupling con-
stant occurring for the dipolar hopping and dipoles oriented
within the same direction for strong disorder [73]. Although

100 101 102

t

0

1

2

3

4

C
*/C

*(1
)

0.1

0.5

2.5
3.5

1.5

FIG. 6. Time dependence of relative conductance C∗/C∗(1)
(C∗(t ) = R2

log(t )/t) at different disorder strengths W indicated on the
right of each graph for the same conditions as in Fig. 5.
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disorder is not strong, some reduction of the effective coupling
constant can still take place.

VI. CONCLUSIONS

We show the emergence of a superdiffusive fast phase in
two-dimensional Anderson model with long-range hopping
V (r) ∝ r−2, possessing the time-reversal symmetry, at suf-
ficiently small disorder. The fast phase is characterized by
delocalized, ergodic eigenstates occupying the whole space
and fostering the superdiffusive transport. The complemen-
tary slow phase is nonergodic. In this phase eigenstates are
delocalized, while their fractal dimension is less than 2. The
transport there is expected to be diffusive but restricted to the
maximum displacement substantially smaller than the system
size.

The conductance of the system is finite in the slow phase
and infinite in the fast phase. It continuously approaches in-
finity in the transition point in contrast to the other known
localization-delocalization transitions [6,28]. The boundary
between two phases is determined analytically, which is un-
precedented for Anderson localization problem with the only
exception of the celebrated self-consistent theory of localiza-
tion valid for the Bethe lattice [74].
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APPENDIX A: FOURIER TRANSFORMS
OF HOPPING AMPLITUDES

The anisotropic dipole-dipole interaction, responsible for
the hopping in the model under consideration, is defined by
Eq. (4). Here we calculate numerically its Fourier transform
V (q) = ∑

j Vi jeiqri j needed to evaluate the classical conduc-
tance, Eq. (9).

It turns out that dipole-dipole interaction Fourier transform
can be well represented by its continuous limit given by

V (q) = 2V0π
q2

y − q2
x

q2
. (A1)

This approximation works reasonably well for the periodic
square lattice of the size L = 100 as illustrated in Fig. 7. It be-
comes exact for the system size approaching infinity since the
logarithmic divergence of the classical conductance emerges
at q → 0 corresponding to long distances. In this limit the
regular correction to Eq. (A1) disappears because the sum of
all dipole-dipole interactions is zero.
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FIG. 7. Comparison of analytical and numerical Fourier trans-
forms for dipole-dipole interaction (at fixed ratios ky/kx). Numerical
Fourier transform is evaluated for the system of the size L = 100.
Analytical results are shown by dashed lines and numerical results
are shown by solid lines.

APPENDIX B: CONNECTION OF CONDUCTANCE
AND INFORMATIONAL DIMENSION

Here we show that the numerically calculated fractal di-
mension D1 cannot be fitted by the analytical theory [67],
predicting the dependence of this dimension on the con-
ductance in the form D1 = 2 − cloc

C in contrast with the
dependence D1 = 2 − 1.3 cloc

C used in the main text. We evalu-
ated a conductance using the scaling equations derived in the
present paper and in Ref. [28], which can be both written in
the form

d ln(C)

d ln(L)
= c∗ − cloc

C
+ ζ

c∗cloc

C2
, (B1)

with ζ = 1 for the present paper and ζ = 1/2 for Ref. [28].
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FIG. 8. Comparison of the numerical estimate of eigenstate frac-
tal dimensions with the analytical theory of Ref. [28]. The only
exception is the case of W = 3 for the present graph, where we
cannot fit those data even choosing the minimum possible value
of L0 → 0, corresponding to the infinite-length limit of the fractal
dimension, as shown by the dashed line.
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FIG. 9. Comparison of the numerical estimate of eigenstate frac-
tal dimensions with the analytical theory of the present paper. We
always used L0 = 10.

The conductance C is found integrating Eq. (B1) as [see
Eq. (25) in the main text]

C + C∞ ln

(
1 − C

C∞

)
= (c∗ − cloc) ln

(
L

L0

)
, (B2)

C∞ = ζ
c∗cloc

cloc − c∗
.

We choose the optimum parameter L0 in Eq. (B2) as in the
main text, minimizing the deviation of analytical and numeri-
cal results at largest sizes.

In Figs. 8 and 9 we show the comparison of the numerical
results for the dimension D1 (the numbers of realizations are
as in Fig. 4) and the analytical theory 2 − cloc/C, for two
choices of the parameter ζ = 1/2 and 1, respectively. It is
clear from Figs. 8 and 9 that in both cases the analytical theory
does not provide an acceptable fit of the data. However, if
we set D1 = 2 − 1.3cloc/C, and employ Eq. (B1) with the
parameter ζ = 1, then we get an almost perfect agreement
between numerical and analytical results as reported in the
main text, Fig. 4.
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