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Magic of random matrix product states
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Magic, or nonstabilizerness, characterizes how far away a state is from the stabilizer states, making it an
important resource in quantum computing, under the formalism of the Gotteman-Knill theorem. In this paper,
we study the magic of the one-dimensional (1D) random matrix product states (RMPSs) using the L1-norm
measure. We first relate the L1 norm to the L4 norm. We then employ a unitary four-design to map the L4 norm
to a 24-component statistical physics model. By evaluating partition functions of the model, we obtain a lower
bound on the expectation values of the L1 norm. This bound grows exponentially with respect to the qudit
number n, indicating that the 1D RMPS is highly magical. Our numerical results confirm that the magic grows
exponentially in the qubit case.
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I. INTRODUCTION

Quantum resources [1], including entanglement [2,3], co-
herence [4,5], magic [6], and uncomplexity [7,8], play a
crucial role in understanding various quantum effects. Among
these resources, magic, a quantity which characterizes the dis-
tance between a state (gate) and the stabilizer states (Clifford
gates), has been proposed as a resource in quantum com-
putation [9–14]. In recent years, various measures of magic
have been introduced to quantify the amount of magic in
quantum states and circuits [15–32]. They have also been used
to bound classical simulation times in quantum computation
[17–23,33]. The connection between magic and statistical
complexity in theoretical machine learning enables it to char-
acterize the capacity of quantum neural networks [24,25].

To realize quantum computation on a number of qubits,
one has to prepare quantum states with plentiful quantum
resources in a quantum many-body system. A feasible way to
do this is to exploit the states emergent from the ground states
of a gapped Hamiltonian with finite range interactions via a
cooling procedure [34]. The matrix product states (MPSs), a
type of tensor network, are powerful in studying the ground
states of gapped one-dimensional many-body Hamiltonians,
of which the AKLT ground state is a paradigmatic example
[35]. The ground states and some low-lying excited states of
many low-dimensional quantum many-body systems can be
approximated by MPSs, which is also known as the density-
matrix renormalization group (DMRG) [36–38]. Recently, the
magic of quantum many-body states has been studied [39–41],
including the translationally invariant (TI) MPSs [40]. The
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authors propose an efficient way to calculate the stabilizer
Rényi entropy [26], a magic monotone, and show that the
magic of the ground state of a one-dimensional (1D) trans-
verse field Ising model is extensive.

Random matrix product states (RMPSs), a random version
of MPSs, have been used as a tool to study properties of
many-body system, such as statistical properties, correlations,
and entanglement [34,42,43]. Recently, the RMPS has also
been proved to play an important role in overcoming barren
plateaus arising in quantum machine learning [44,45]. More-
over, since the RMPS is typical in the phase of quantum
matter, one can employ it to approximate the ground states of
some general disordered parent Hamiltonians [46]. One can
also understand whether such states provide ample quantum
resources for quantum computation applications through the
framework of the resource theory of magic [16].

We obtain a lower bound on the magic of RMPSs, in terms
of an L4 norm. In more detail, we bound the L1-norm measure
of magic for a RMPS, and transform the problem to a cal-
culation of the L4 norm. We employ a unitary four-design to
map it to a 24-component spin model in statistical mechanics.
By calculating partition functions of the model with different
nearest-neighbor interactions, we obtain an upper bound on
the L4 norm, and establish a lower bound on the magic of an
RMPS.

We find that with a high probability, RMPSs have an ex-
ponentially large magic with respect to the system size n.
Therefore, it is possible to experimentally prepare such states
from a disordered parent Hamiltonian with an ample amount
of quantum resource. In parallel with previous efforts [40,41],
our work provides another perspective to understand the non-
stabilizerness of many-body systems based on the typicality,
and we obtain the consistent extensive magic of the many-
body states [40]. From a quantum information perspective,
one would expect that a state is resourceful when it is ca-
pable of accomplishing some quantum computational tasks.
The RMPS is a model used in quantum machine learning;
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measuring its magic provides a step in understanding its learn-
ing capabilities [24,25,44,45].

We organize our presentation as follows. In Sec. II, we
investigate the magic of a one-dimensional RMPS, where we
employ a technique used in previous studies [34,47] to map
the local expectation values of unitary designs to the calcula-
tion of partition functions of the statistical physics model. This
produces an exponentially large lower bound on the magic. In
Sec. III, we present numerical calculations for the magic of
RMPSs composed of qubits, which grows exponentially with
the system size, consistent with our theoretical prediction. In
Sec. IV, we briefly summarize our work and propose some
further directions of study.

II. MAIN RESULTS

In this section, we provide definitions for the RMPS and
the magic monotone used in this work. We state our main
bound on the magic of an RMPS in Theorem 1. We establish
this result by assuming a bound (10) and later proving it.

A. Magic

For an n-qudit system with local dimension d in Hilbert
space H = (Cd )⊗n, the generalized Pauli group is

Pn = {P�a : P�a ≡ ⊗iPai}�a∈V n , (1)

where Pai = X ri Zsi for any ai = (ri, si ) ∈ V ≡ Zd × Zd and
�a = (a1, . . . , an). The qudit Pauli X and Z operators are de-
fined by X | j〉 = | j + 1 mod d〉, Z| j〉 = exp(i 2π j

d )| j〉. Clifford
unitaries are defined to map the Pauli group to itself. The Clif-
ford group is Cln = {U ∈ U (dn) : UPU † ∈ Pn,∀P ∈ Pn}.
The set of stabilizer states is composed of states gen-
erated by the action of a Clifford unitary on |0〉⊗n,
STAB := {U |0〉⊗n : U ∈ Cln}.

The L1 norm is a magic monotone for an n-qudit quantum
state |ψ〉 and is defined as

M(|ψ〉) ≡ 1

dn

∑
�a∈V n

|tr[P�a|ψ〉〈ψ |]| = 1

dn

∑
�a∈V n

|tr[P�aρψ ]|. (2)

The L1 norm is also known as the 1/2-quantum Fourier Rényi
entropy (see Bu et al. [48]) and the 1/2-stabilizer Rényi
entropy (see Leone et al. [26]). This monotone is faithful,
i.e., M(|ψ〉) = 1 if and only if |ψ〉 ∈ STAB, and satisfies
M(|ψ〉) > 1 for a nonstabilizer state |ψ〉. Moreover, it is sta-
ble under free operations U ∈ Cln, i.e., M(U |ψ〉) = M(|ψ〉).
This quantity was first proposed by Rall et al. [49]. It is oper-
ationally meaningful in that it bounds the simulation cost of a
quantum circuit; namely, it lower bounds the sample complex-
ity of the Pauli propagation algorithm. It is also meaningful in
that it bounds robustness of magic (ROM) [27], a well-known
magic measure, which bounds the classical simulation over-
head of a quantum circuit via a Gottesman-Knill-type scheme
[19]. Especially, the ROM of magic states such as |T 〉⊗n is
exponentially large. The ROM also quantifies the maximal
advantage attainable by resource states in some subchannel
discrimination problems [50]. Since calculating ROM is an
intractable optimization problem in an exponentially large

space, this bound provides an efficient way to obtain ROM.
The 1/2-stabilizer Rényi entropy provides a lower bound on
the number of T gates (a resource gate) t (U ) required to
implement a certain unitary U by Clifford+T gate sets, known
as the “T count” [51,52].

We prove in Appendix A that the magic M(|ψ〉) satisfies

M(|ψ〉) � dn/2{∑
�a tr[(P�a|ψ〉〈ψ |)⊗4]

}1/2 , (3)

where the sum is taken over V n. Therefore, one can obtain a
lower bound on M(|ψ〉) by evaluating the sum over the fourth
moment of Pauli operators

∑
�a tr[(P�a|ψ〉〈ψ |)⊗4]. Since the

Clifford group is a unitary three-design [53,54], namely the
first three moments of the average over Haar random unitaries
can be well approximated by random Clifford unitaries, the
fourth moment is the lowest nontrivial moment one should
use to distinguish the Haar random ensemble from the Clifford
ensemble.

B. Random matrix product states

A matrix product state on n qudits is defined as

|ψ〉 =
∑

i j

tr
[
Ai1

1 Ai2
2 · · · Ain

n

]|i1i2 · · · in〉, (4)

where Aij are B × B matrices, and B denotes the bond
dimension. In (4), the i1, · · · , in are spin indices, with val-
ues 0, · · · , d − 1, to be contracted with the basis states
|i1, · · · , in〉, where d is the local dimension. Since each A is a
tensor with two indices, the MPS is represented graphically as

A1

i1

A2

i2

A3

i3

A4

i4

A5

i5

· · · An

in

(5)

where the bond indices are contracted. If the MPSs can be uni-
tarily embedded [55,56], each tensor is equipped with another
leg connected with a state vector |0〉 ∈ Cd

|ψ〉 = U1

i1

|0〉
U2

i2

|0〉
U3

i3

|0〉
U4

i4

|0〉
U5

i5

|0〉
· · · Un

in

|0〉

(6)

where the dashed line represents periodic boundary condi-
tions, and U1, · · · ,Un ∈ U (dB) are unitaries mapping the
input from Cd ⊗ CB to the output in Cd ⊗ CB. When
U1, · · · ,Un are i.i.d. Haar random unitaries sampled from the
unitary group, the MPS is called a random matrix product
state (RMPS), whose norm is proven to have exponential
contraction to 1 in the large n limit [34]. We assume the large
n limit in this work so that |〈ψ ||ψ〉|2 = 1. The measure is
denoted by μd,n,B, or more concisely μ.
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If we introduce the notation |ψ〉 ≡ |ψ〉∗, i.e., the complex
conjugate of |ψ〉, the RMPS in (6) produces

|ψ〉⊗4 ⊗ |ψ〉⊗4
=

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉

U1

|0〉

U2

|0〉

U3

|0〉

U4

|0〉

U5

|0〉
(7)

where the former and latter four RMPSs correspond to |ψ〉⊗4

and |ψ〉⊗4
, respectively.

The average over U ⊗4 ⊗ U
⊗4

is evaluated using the Wein-
garten calculus [57–59]

EU∼μU ⊗4 ⊗ U
⊗4 =

∑
σ,π∈S4

Wg(σ−1π, q)|σ 〉〈π |, (8)

where Wg(σ−1π, q) is the Weingarten function defined in
terms of the local dimension q (in our case, q = dB) and
σ, π are permutations in the permutation group S4 on (Cq)⊗4.
We define the state |σ 〉 = [I ⊗ r(σ )]|�〉, where r is the rep-
resentation of S4, and |�〉 = ∑qt

j=1 | j, j〉 is the maximally
entangled state vector (see Appendix B for further discussion
on the notation). The main result of this work is the following
theorem.

Theorem 1: Magic of RMPSs. Let |ψ〉 be an RMPS drawn
from μd,n,B. Then the magic of |ψ〉 grows exponentially with
respect to the system size n with overwhelming probability:

Pr[logd M(|ψ〉) � �(n)] � 1 − e−�(n). (9)

We remark that the widely utilized 1/2-stabilizer Rényi
entropy, discussed in Leone et al. [26] and subsequently ex-
plored in the context of matrix product states (MPSs) [40],
is congruent to the logarithm of our L1-norm measure, up to
an additive constant. Therefore, our result implies that the T
count of an RMPS |ψ〉 grows linearly with respect to n with
high probability; this saturates the upper bound for any MPS
[60]. Moreover, since the L1-norm measure lower bounds the
robustness of magic (i.e., D(ρ) � R(ρ) in Refs. [19,49]), and
the latter is exponentially large for some magic states, e.g.,
|T 〉⊗n, we can conclude that an RMPS is highly probable to
contain a large amount of magic. See Sec. III for more details.

Let us assume an upper bound for the expectation value of
summing over the fourth moments of Pauli operators,∑

�a
E tr[(P�a|ψ〉〈ψ |)⊗4] � Cn, with C < d. (10)

By Markov’s inequality

Pr[X � aE (X )] � 1

a
, (11)

where E (X ) is the expectation value of a random variable X ,
and a > 0. Then using (3)

Pr

(
M(|ψ〉) �

(
d

C

)n/2 1√
a

)
� 1

a
. (12)

Once C < d , we can pick a positive number 0 < c1 <

ln(d/C) and let a = ec1n, to obtain

Pr(M(|ψ〉) � e
1
2 [ln(d/C)−c1]n) � e−c1n, (13)

which gives us

Pr(M(|ψ〉) � e�(n) ) � 1 − e−�(n). (14)

By taking the ln, we obtain (9). The remainder of this paper
(including the Appendixes) is a proof of the upper bound in
(10), which completes the proof of Theorem 1.

C. Partition functions and interaction blocks

If we introduce the notation |ψ〉⊗4,4 ≡ |ψ〉⊗4 ⊗ |ψ〉⊗4
,

by employing the Weingarten calculus introduced in (8)
and Table I, the expectation value of the fourth moment
tr[(P�a|ψ〉〈ψ |)⊗4] is

Eψ∼μtr (P�a |ψ〉 〈ψ|)⊗4 =

∑

{S4}2n

P�a

|0〉⊗4,4 |0〉⊗4,4 |0〉⊗4,4 |0〉⊗4,4 |0〉⊗4,4

(15)

where the P�a block is the shorthand notation for the operator
(I ⊗ P�a)⊗4, and the black dots represent one of the elements
in S4, so the summation {S4}2n is over all configurations of the
2n black dots. The wavy lines are the Weingarten functions
Wg(σ−1π, q) for each pair of black dots with permutation
(σ, π ). The red lines and blue lines are contractions over
Cd and CB, respectively. In (15), the n contractions between
permutations and the state |0〉⊗4,4 are

〈π ||0〉⊗4,4 = 〈0||0〉4 = 1. (16)

Since P�a ∈ {I, X, Z, XZ, · · · , X d−1, Zd−1}n, we can de-
compose the P�a into local operators at each site, so for a
randomly chosen P�a, (15) becomes (where we omit the sub-
script of E)

E tr[(P�a |ψ〉 〈ψ|)⊗4] =

∑

{S4}2n

|I〉 |O1〉 |O1〉 |O2〉 |O2〉

(17)

where |I〉 = (I ⊗ I)|�〉, |O1〉 = (I ⊗ O1)|�〉, |O2〉 =
(I ⊗ O2)|�〉, with I, O1, O2 acting on (Cd )⊗4. Here we
distinguish the two nonidentity operators O1 and O2 by
their different contractions with permutations σ ∈ S4. For
an operator O, the contractions 〈σ ||O〉 are summarized
in Table II and discussed in Appendix B. If we write the
contraction 〈σ ||O〉 of a Pauli operator O in terms of the five
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TABLE I. The list of permutations s = σ−1π and their corresponding numerator of Wg(s, q), with the common denominator q2(q2 −
1)(q2 − 2)(q2 − 3). The label represents their positions in the basis.

s = σ−1π label numerator of Wg(s, q) Permutations

{1, 1, 1, 1} 1 q4 − 8q2 + 6 I

{2, 1, 1} 2–7 −q3 + 4q (12),(13),(14),(23),(24),(34)

{2, 2} 8–10 q2 + 6 [(12),(34)],[(13),(24)],[(14),(23)]

{3, 1} 11–18 2q2 − 3 (123),(132),(124),(142),(134),(143),(234),(243)

{4} 19–24 −5q (1234),(1243),(1324),(1342),(1423),(1432)

rows in Table II into a vector, we have

〈σ ||O〉 = (0, 0, a, 0, b), (18)

with a = d2 or 0 and b = d or 0 for different local dimensions.
There are three different cases: (i) d is odd, (ii) d = 2k for odd
k, (iii) d = 4k for integer k.

(i) d is odd. When d is odd, for any l �= 0 (mod d ), m �=
0 (mod d ), the square and fourth power of a Pauli opera-
tor O = X lZm, namely O2 = X 2l Z2m and O4 = X 4lZ4m (with
unimportant phase factors) are always nonidentity operators,
so trO2 = 0 and trO4 = 0. We have

〈σ ||O〉 = (0, 0, 0, 0, 0), (19)

for all nonidentity operators.
(ii) d = 2k, for odd k. In this case, only the Pauli operators

O = X k, Zk, X kZk have O2 = I and O4 = I , so the contrac-
tion 〈σ ||O〉 is

〈σ ||O〉 =
{

(0, 0, d2, 0, d ), O = X k, Zk or X kZk,

(0, 0, 0, 0, 0), otherwise.
(20)

(iii) d = 4k, for integer k. In this case, the Pauli operators
O = X k, Zk, X kZk satisfy O2 �= I and O4 = I , and the oper-
ators O = X 2k, Z2k, X 2kZ2k satisfy O2 = I and O4 = I . All
other operators have a nonidentity square and fourth power,
so the contraction 〈σ ||O〉 is

〈σ ||O〉 =

⎧⎪⎨
⎪⎩

(0, 0, 0, 0, d ), O = X k, Zk or X kZk,

(0, 0, d2, 0, d ), O = X 2k, Z2k or X 2kZ2k,

(0, 0, 0, 0, 0), otherwise.
(21)

Therefore, from the three cases, we can classify the
Pauli operators with nonzero contraction into two types:
O1 with 〈σ ||O1〉 = (0, 0, d2, 0, d ), and O2 with 〈σ ||O2〉 =
(0, 0, 0, 0, d ). The blue lines in (17) are contractions between
two different permutations σ, π ∈ S4, which are listed in

Table III, where the calculation is simply checking the number
of closed permutations in s = σ−1π , which is the correspond-
ing power of q.

Combining all of the results, we can define the following
interaction blocks [34]:

σ π =
∑

{S4}

σ π

I

(22)

(23)

(24)

where the permutation τ at the black dot is summed over.
The three blocks are 24 × 24 matrices with explicit expres-
sions given in the Mathematica notebook in the Supplemental
Material [61].

With the interaction blocks, (17) is simplified to

(25)

which can be understood as: at each black dot (or namely
at each site), there is a 24-component spin, corresponding to

TABLE II. The list of permutations σ ∈ S4 and their corresponding inner product 〈σ ||O〉. The label represents their positions in the basis.
The fourth column summarizes the contractions for O being single Pauli operators with local dimension q = d .

σ label 〈σ ||O〉 Pauli(q = d) Permutation list

{1, 1, 1, 1} 1 (trO)4 0 I

{2, 1, 1} 2–7 trO2(trO)2 0 (12),(13),(14),(23),(24),(34)

{2, 2} 8–10 (trO2)2 d2 or 0 [(12),(34)],[(13),(24)],[(14),(23)]

{3, 1} 11–18 trO3trO 0 (123),(132),(124),(142),(134),(143),(234),(243)

{4} 19–24 trO4 d or 0 (1234),(1243),(1324),(1342),(1423),(1432)
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TABLE III. The contractions 〈σ ||π〉 for σ, π ∈ S4 and their corresponding s = σ−1π . The label represents their positions in the basis.

s = σ−1π label Inner product of 〈σ ||π〉 Permutation list

{1, 1, 1, 1} 1 q4 I

{2, 1, 1} 2–7 q3 (12),(13),(14),(23),(24),(34)

{2, 2} 8–10 q2 [(12),(34)],[(13),(24)],[(14),(23)]

{3, 1} 11–18 q2 (123),(132),(124),(142),(134),(143),(234),(243)

{4} 19–24 q (1234),(1243),(1324),(1342),(1423),(1432)

the 24 group elements of S4, and the nearest-neighbor spins
are interacting through the blocks. The summation over all
spin configurations maps the expectation value to a parti-
tion function, as discussed in Ref. [47]. From the partition
function perspective, the 24 × 24 interaction block matrices
are treated as the transfer matrices in statistical mechanics,
so the expectation value in (25) is easily obtained by taking the
trace after doing matrix multiplication. The mapping simpli-
fies the calculation of the summation

∑
�a E tr[(P�a|ψ〉〈ψ |)⊗4]

to the summation of dn partition functions.

D. Lower bound of magic

By explicitly solving the spectrum, we can establish an
upper bound on the spectral radius ρ of the interaction blocks
(see Appendix C for details). When d � 2 and B � 2, we have

(26)

When d = 2 and B � 2, we have a better bound as

(27)

Another useful inequality is

ρ(M1 + M2) � ρ(M1) + ρ(M2), (28)

where M1 and M2 are square matrices with the same size. In
this section, we calculate the C for (10) in the three cases in
Sec. II C, and we show that C < d to prove Theorem 1.

1. Case of odd d

In this case, the contraction 〈σ ||O〉 is always zero for
nonidentity Pauli operators O, as in (19). Therefore, there is
only one term in the summation

∑
�a E tr[(P�a|ψ〉〈ψ |)⊗4] when

P�a = I as

(29)

as ‖A‖1 � D‖A‖∞, where D is the dimension. Therefore, for a
1D RMPS with odd local dimension d , we have C = 241/n <

d in (10), so we have proved Theorem 1.

2. Case d = 2k, for odd k

In this case, the contraction 〈σ ||O〉 is given in (20), so there
are two types of interaction blocks: the green block for a local

identity operator and the blue block for local Pauli operators
X k, Zk, X kZk . So the summation

∑
�a E tr[(P�a|ψ〉〈ψ |)⊗4] is

obtained by taking all possibilities to put l blue blocks (each
contains three possibilities X k, Zk, X kZk) over n blocks as

(30)

By (28), we have

(31)

Therefore, in this case, we have

C =
{

241/n(1 + 3/d2) < d, d = 2,

241/n(1 + 6/d2) < d, d � 6,
(32)

which completes the proof of Theorem 1. When the system is
composed of qubits, namely d = 2, by (3), one can check that

log2 EM(|ψ〉) � 0.1n, (33)

which is the lowest bound in this case.

3. Case d = 4k, for integer k

In this case, the contraction 〈σ ||O〉 in (21) introduces the
third purple block for local Pauli operators X 2k, Z2k, X 2kZ2k .
The upper bound can be obtained correspondingly as

(34)

where in the last line we have used d � 4 and (26)–(28).
Therefore, C = 241/n(1 + 9/d2) < d in this case, which com-
pletes the proof of Theorem 1. When d = 4, one can check
that the bound is

log4 EM(|ψ〉) � 0.34n, (35)

which is the lowest bound of the expectation value of magic
in this case.

III. NUMERICAL RESULTS

We numerically compute the average E M(|ψ〉) of a d = 2
(qubit) RMPS with bond dimensions of B = 2, 4, 8. The ex-
pectation is sampled over 100 RMPSs; namely, we generate
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FIG. 1. The log2[E M(|ψ〉)] in terms of n for an RMPS |ψ〉,
where n = 2 ∼ 8, d = 2, and B = 2, 4, 8. The expectation value is
sampled over 100 RMPSs by sampling local unitaries via the Haar
random measure. The linear behavior of log2[E M(|ψ〉)] confirms
the exponential growth of E M(|ψ〉).

100 RMPSs whose unitaries are drawn from the Haar measure
on the unitary group. The logarithm of E M(|ψ〉) versus n is
plotted in Fig. 1, where the linear behavior indicates that the
average magic E M(|ψ〉) grows exponentially with n, which is
consistent with our theory. In the plot, the slope of the B = 2
line is ∼0.46, which is greater than ∼0.10 in (33). Since
D(ρ) � R(ρ), and previous studies [19,62] have numerically
shown that R(|T 〉⊗n) ≈ 1.387n, lower bounded by 1.366n, the
B = 2 line with D(ρ) ≈ 1.376n implies that the low bond
dimension qubit RMPS is as magical as the |T 〉⊗n state. For
larger B, the saturated D(ρ) ≈ 2n/2 = 1.414n seems to imply
that the RMPS is more magical than the |T 〉⊗n state, but this
may suffer from finite-size effect as in Ref. [62], so we leave
the comprehensive analysis to future studies. This implies
that, although MPSs may be efficiently simulated classically,
RMPSs may still nevertheless be useful as ancilla states to
introduce magic in computational problems. The details of the
numerical methods are summarized in Appendix D.

IV. SUMMARY AND OUTLOOK

In this paper, we explicitly calculate the magic of one-
dimensional random matrix product states. We obtain an
exponentially large lower bound for different local dimen-
sions, suggesting the potential use of RMPSs in quantum
computation applications such as quantum machine learning
[24,25,44,45]. The weak dependence of the magic on the bond
dimension in our theoretical study and numerical results is not
a result one should expect a priori, because entanglement and
magic can generally be independent resources. This depen-
dence differentiates RMPSs from global random Haar states
and random tensor product states.

In this work, we calculate the magic of a RMPS, thus
exploring the typical behavior of this quantum resource of
matrix product states. It is possible to prepare such states
experimentally by a cooling procedure, suggesting this as a
feasible way to obtain considerable quantum resources. More-
over, we believe that this study can help us understand the

quantum information properties of many-body systems more
clearly. Research has focused on using entanglement to clas-
sify quantum phases, where two states are in the same phase
if they are connected by finite-depth local unitaries (FDLU)
[63]. In a parallel manner, one can also consider using magic
as a criterion for state classification, where two states are in
the same phase if they are connected by Clifford unitaries.
Indeed, two of the authors of this work, Bu and Jaffe, have
studied that by a newly developed convolution group (CG)
method to label quantum states by magic class [64]. Our work
shows that an RMPS is a state in the highest magic class,
which can converge to the same CG fixed point as random
product states and Haar random states.

The methods employed in this work can be applied to study
random tensor networks, higher moments of Haar random
unitaries, and Pauli operators. For example, the entangle-
ment entropy in measurement-induced entanglement phase
transitions [65–67] is typically obtained from evaluating the
Rényi entropies with indices n and extrapolating them to the
n → 1 limit. By generalizing our technique, researchers can
calculate and bound the nth information theoretic quantities
such as conditional entropy, KL divergence by evaluating
the n-design Weingarten calculus and bounding the resulting
partition function, without going to the B → ∞ limit as most
of the current works do. This can help to understand the tran-
sition points at finite bond dimensions better. Furthermore, in
the study of barren plateaus in the quantum neural network
(QNN) [44,45] and the quantum convolution neural network
(QCNN) [68], and also in the study of classical shadows
[69–72], one evaluates and bounds the expectation values of
the second and third moments of Pauli operators in terms of
Haar random unitaries, similar to the techniques presented
here. The techniques may also be useful in computing aver-
ages of higher point out-of-time-ordered correlators (OTOCs)
[73] at finite bond dimension, which can be used to study the
magic of chaotic systems. We also expect that one can use
these techniques to bound the sample complexity of direct
fidelity estimation [52], since it is shown to be connected
to the nonstabilizerness and higher point OTOCs. Recently,
researchers have studied the entanglement entropy in higher-
dimensional random tensor networks such as the random
projected entangled-pair state (PEPS) [74], and it is natural
to apply our technique to bound the nonstabilizerness in those
random tensor networks. Finally, other magic measures, such
as the OTOC magic [75], may also be taken into consideration
and studied using our method.

Note added. Recently, we became aware of a paper that
presents a counterexample showing that the 1/2-stabilizer
Rényi entropy is not a magic monotone under stabilizer
measurements and Clifford operations conditioned on the
measurement results [27]. In our study, we focus on unitary
processes without midcircuit measurement, as in the QNN
setting [44,45], in which case the L1-norm measure is still a
magic monotone.
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APPENDIX A: DERIVATION OF THE FOURTH
MOMENT INEQUALITY

The summation of absolute values in (2) is tedious to
evaluate, so we transform it to the evaluation of the fourth
moment of Pauli strings as follows. The Pauli strings form a
complete basis on n qudits, so an operator O can always be
expanded as

O =
∑

�a
c�aP�a, (A1)

where c�a are the expansion coefficients defined as

c�a = 1

dn
tr[OP�a]. (A2)

If we define a dn-dimensional vector C = {c�a}, the magic
in (2) is the one-norm ‖C‖1 of C when we take O = ρψ =
|ψ〉〈ψ |. Then we define a properly normalized vector V =
{v�a} with v�a = dn/2c�a, whose two-norm ‖V ‖2 = 1 because

‖V ‖2
2 =

∑
�a

|v�a|2 = dn
∑

�a
|c�a|2 = tr

[
ρ2

ψ

] = 〈ψ ||ψ〉2 = 1.

(A3)

The normalized vector V satisfies the following relation
between its one-norm and four-norm:

‖V ‖1 � 1

‖V ‖2
4

. (A4)

The above inequality is proven as follows: for a normalized
vector V = vi, we have the following decomposition:

1 =
∑

i

|vi|2 =
∑

i

|bici|, (A5)

where the second equality is an assumption, and bi, ci should
be determined later. From the Cauchy-Schwarz inequality, we
have

∑
i

|bici| �
(∑

i

|bi|3
) 1

3
(∑

i

|ci| 3
2

) 2
3

. (A6)

Then we assume bi and ci satisfy the following:

bi = |vi|a, ci = |vi|b, (A7)

thus a and b should satisfy

a + b = 2, 3a = 4,
3

2
b = 1, (A8)

where the first equality is from the decomposition, and the
second and third ones relate the one-norm and four-norm. We
can check that they are satisfied, so we have

1 �
(∑

i

|vi|4
) 1

2
(∑

i

|vi|
)

= ‖V ‖2
4‖V ‖1. (A9)

By considering the explicit form of ‖V ‖2
4 as

‖V ‖2
4 = dn

(∑
�a

|c�a|4
)1/2

= d−n

(∑
�a

tr[(P�a|ψ〉〈ψ |)⊗4]

)1/2

,

(A10)

one can obtain the lower bound of magic in (3), which is also
equivalent to an inequality relating the 1/2-stabilizer Rényi
entropy and the two-stabilizer Rényi entropy [26].

APPENDIX B: WEINGARTEN CALCULUS
AND INNER PRODUCTS

In Sec. II C, we define the tensor network at a single site as

(B1)

where the summation is over all permutations in S4 and the
integration is over the Haar measure. The wavy line represents
the Weingarten function Wg(σ−1π, q). In our paper, we only
require the t = 4 case, i.e., σ, π ∈ S4, in which the Weingarten
function is listed in Table I. The “label” column represents
the position of each permutation in the basis |σ 〉, namely
|σ 〉 = {|I〉, |(12)〉, |(13)〉, · · · , |(1423)〉, |(1432)〉}. In this ba-
sis, the fourth moment operator of Haar random unitaries can
be written as a 24 × 24 Weingarten matrix as given in the
supplemental Mathematica notebook [61]. In Eq. (17), the
local operator is defined as

(B2)

where on the right-hand side, the vertical red lines are the
identity operator, and the O1 blocks are the O1 operators on
one qudit. The first and last four copies are in the |ψ〉⊗4 and

|ψ〉⊗4
subspaces, respectively. In this convention, the maxi-

mally entangled state |�〉 is

(B3)

Thus the state |O〉 is

(B4)

For convenience, we now draw the diagram vertically and use
different colors to represent the four legs. The left and right
four legs in the original diagram are moved to the upper and
bottom four legs in the new diagram, respectively. Therefore,
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some of the states are

(B5)

where the permutation state |σ 〉 = [I ⊗ r(σ )]|�〉 is obtained
by permuting the bottom legs according to σ . We can calcu-
late the inner product as (taking the 〈[(12), (34)]||O〉 as an
example)

(B6)

All other inner products 〈σ ||O〉 can be calculated similarly,
and we summarize them in Table II, where in the fourth
column we list the results for O being single Pauli operators
with local dimension d . Since Pauli operators are traceless, the
first, second, and fourth rows are 0. The third and fifth rows
are nonzero only when O2 = I or O4 = I , respectively, which
are a subset of the local Pauli operators, defined as O1 and O2

in Sec. II C.
The inner product of permutation states can be calculated

as [taking the 〈(1423)||(123)〉 as an example]

(B7)

Therefore, calculating 〈σ ||π〉 is simply getting s = σ−1π and
checking the number of closed permutations (loops) in s, and
we summarize the results in Table III.

APPENDIX C: MORE ANALYSIS ON THE UPPER BOUND

The explicit calculation of the eigenvalues for the three
blocks is in the supplemental Mathematica notebook [61]. In
the notebook, we check the eigenvalues of the three blocks
are non-negative when d � 2, B � 2. We also thoroughly
check (26) and (27) for each eigenvalue. All above statements
are also checked explicitly by the method described in this
section in Supplemental Material [61]. Here we provide a
simplified version of the proof. A useful fact is, when d �
2, B � 2, the common denominator B2d2(B6d6 − 6B4d4 +
11B2d2 − 6) of the eigenvalues (from the common denomi-
nator of the Weingarten function) is positive because

B6d6 − 6B4d4 + 11B2d2 − 6 � 10B4d4 + 11B2d2 − 6

� 1611B2d2 − 6 > 0, (C1)

where we have used B � 2, d � 2 to transform the higher-
order terms in B, d to lower-order terms and collect the terms
at the same order. This trick will be applied repeatedly in the
following sections.

1. Green block

As shown in the supplemental Mathematica notebook [61],
the spectral radius of the green block is

(C2)

To prove ρ1 � 1, we can equivalently prove

8B2d2 − 30 � 0, (C3)

which is satisfied when B � 2, d � 2, so ρ1 � 1.

2. Blue block

As shown in the supplemental Mathematica notebook [61],
the spectral radius of the blue block is

(C4)

where the A1, A2 and A3 are polynomials in terms of d, B,
which are

A1 = B6(d4 + d3) + B4(2d4 − 5d3 − 26d2 + d ) + B2(−8d3 + 23d2 + 65d + 18) − 18d − 54,

A2 = B12d6 + B10(4d6 + 6d5 + 2d4) + B8(4d6 − 36d5 − 213d4 − 158d3 + d2)

+ B6(−24d5 + 156d4 + 1078d3 + 1282d2 + 36d ) + B4(64d4 − 488d3 − 2075d2 − 2736d + 324)

+ B2(288d2 + 1836d + 648) + 324,

A3 = 2(B6d6 − 6B4d4 + 11B2d2 − 6). (C5)

Since A3 is positive, ρ2 � 2/d2 is equivalent to

d2(d − 1)
√

A2 � 2A3 − d2A1. (C6)
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One can check both sides are positive. As an example, we show A2 � 0 for d, B � 0. We first check when B � 3, d � 2

B12d6 � 9B10d6 (C7)

B10(4d6 + 6d5 + 2d4) � B10(4d6 + 6d5 + 2d4) (C8)

B8(4d6 − 36d5 − 213d4 − 158d3 + d2) � B8(4d6 − 36d5 − 213d4 − 158d3) (C9)

B6(−24d5 + 156d4 + 1078d3 + 1282d2 + 36d ) � B6(−24d5 + 156d4) (C10)

B4(64d4 − 488d3 − 2075d2 − 2736d + 324) � B4(64d4 − 488d3 − 3443d2) (C11)

B2(288d2 + 1836d + 648) + 324 � 0 (C12)

Therefore, when B � 3, d � 2, A2 satisfies

A2|B�3,d�2 � B8(121d6 + 18d5 − 195d4 − 158d3) + B6(−24d5 + 156d4) + B4(64d4 − 488d3 − 3443d2)

� 1508B8d3 + 3B6d5 + 1453B4d2 � 0. (C13)

Since d and B are integers, now we only need to focus on d � 2, B = 2 case, which gives us

A2|B=2 = 9216d6 − 4608d5 − 41472d4 + 20736d3 + 50256d2 − 34128d + 8100. (C14)

When d = 2, we have

A2|B=2,d=2 = 85572 � 0 (C15)

when d � 3, we have

A2|B=2,d�3 � 27648d4 + 116640d � 0. (C16)

So we complete the proof A2 � 0 for d � 2, B � 2. We have checked all other inequality like 2A3 − d2A2 can be proved by
this similar method. Those polynomials always have a highest-order term in B, d with positive coefficient, so when d and B are
large, for example d � k, B � l for some integers k, l � 2, we can always use the scaling method to prove their positivity. Then
we only need to check those polynomials are non-negative for some limited cases when 2 � d � k and 2 � B � l . So we can
square both sides in (C6) to transform the inequality to

B12(8d12 − 4d11) + B10(−16d12 + 36d11 + 8d10 − 12d9) + B8(72d11 − 552d9 + 176d8 + 104d7)

+ B6(−8d11 − 32d10 − 572d9 + 144d8 + 1388d7 − 1120d6 − 40d5)

+ B4(176d9 + 488d8 + 3092d7 − 416d6 − 344d5 + 256d4 + 48d3)

+ B2(−1224d7 − 2088d6 − 7008d5 + 3264d4 + 3120d3 − 1248d2) + 2592d5 + 2592d4 − 864d3 − 2592d2 + 576 � 0

(C17)

By appropriately using d � 2, one can obtain an lower bound on each term as

B12(8d12 − 4d11) � B12d6,

B10(−16d12 + 36d11 + 8d10 − 12d9) � B10(−16d12 + 36d10),

B8(72d11 − 552d9 + 176d8 + 104d7) � −264B8d9,

B6(−8d11 − 32d10 − 572d9 + 144d8 + 1388d7 − 1120d6 − 40d5) � B6(−167d11 + 144d8),

B4(176d9 + 488d8 + 3092d7 − 416d6 − 344d5 + 256d4 + 48d3) � 176B4d9,

B2(−1224d7 − 2088d6 − 7008d5 + 3264d4 + 3120d3 − 1248d2) � −4020B2d7,

2592d5 + 2592d4 − 864d3 − 2592d2 + 576 � 0. (C18)
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So we only need to prove

B12d6 − 16B10d12 + 36B10d10 − 264B8d9 − 167B6d11 + 144B6d8 + 176B4d9 − 4020B2d7 � 0. (C19)

By the same trick, we can prove

LHS � 20B8d9 + 89B6d11 + 3414B2d7, (C20)

where 20B8d9 + 89B6d11 + 3414B2d7 � 0, so we complete the proof, and we conclude that ρ2 � 2/d2 when d � 2, B � 2.

3. Blue block at d = 2

When d = 2, as given in (27), we have a better bound

ρ ′
2 = A1 + (d − 1)

√
A2

A3

∣∣∣∣
d=2

� 1/d2 = 1/4, (C21)

which is equivalent to prove

4
√

A2 � A3 − 4A2. (C22)

or

8192B10 + 111104B8 − 532096B6 + 813312B4 − 516288B2 + 115920 � 0. (C23)

By appropriate scaling using B � 2, one can prove the left-hand side of the above inequality satisfies

LHS � 43392B6 + 2736960B2 � 0, (C24)

which completes the proof.

4. Purple block

As shown in the supplemental notebook [61], the spectral radius of the purple block is

(C25)

To prove ρ3 � 3/d3, we can equivalently prove

2B6d6 + B4(−5d6 + 20d5 − 19d4) + B2(16d5 − 65d4

+ 33d2) + 36d3 − 18 � 0. (C26)

|0〉 |0〉 |0〉

U1

U2

U3

FIG. 2. The contraction of random unitaries in the RMPS for n =
3, B = 4, where the red lines are the auxiliary qubits being traced
out, and the blue lines are the qubits in our RMPS. The U1,U2,U3

are Haar random unitaries.

By the scaling method, one can show the left-hand side of the
above inequality satisfies

LHS � 2B6d6 − 5B4d6 + 16B2d5 − 65B2d4

� 3B4d6 − 33B2d4 � 15B2d4 � 0, (C27)

which completes the proof of ρ3 � 3/d3. So far we have
proved the inequalities in the main text (26) and (27).

APPENDIX D: MORE ON NUMERICAL CALCULATION

In constructing an RMPS, the contraction over the bonds
with dimension B in (6) is performed by introducing nB extra
auxiliary qubits on the bonds, so the bond dimension is B =
2nB . In Fig. 2, we choose nB = 2 (the red lines) as an example,
where the number n of qubits is 3 (the blue lines). If we read
from the bottom to the top, Fig. 2 is a quantum circuit with five
qubits, which is composed of swap gates and three random
unitaries U1,U2,U3. So one can realize those quantum gates
in the simulation, and trace out the two auxiliary qubits, to
finally generate the RMPS. This procedure can be generalized
to general n and B = 2nB by correspondingly modifying the
quantum circuit.

In our simulation, we choose nB = 1 ∼ 3 corresponding to
B = 2, 4, 8. For each n in n = 2 ∼ 8, we generate 100 RMPSs
and calculate the magic of them as in (2), and then take the
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average over the magic to get the expectation value E M(|ψ〉),
since the unitaries are drawn from Haar random (uniform)

measure. By taking the logarithm of E M(|ψ〉) and plotting
them versus the qubit number n, we obtain the result in Fig. 1.
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