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Stable many-body localization under random continuous measurements in the no-click limit
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In this work, we investigate the localization properties of a paradigmatic model, coupled to a monitoring
environment and possessing a many-body localized (MBL) phase. We focus on the postselected no-click limit
with quench random rates, i.e., random gains and losses. In this limit, the system is modeled by adding an
imaginary random potential, rendering non-Hermiticity in the system. Numerically, we provide evidence that
the system is localized for any finite amount of disorder. To analytically understand our results, we extend the
quantum random energy model (QREM) to the non-Hermitian scenario. The Hermitian QREM has been used
previously as a benchmark model for MBL. The QREM exhibits a size-dependent MBL transition, where the
critical value scales as Wc ∼ √

L ln L with system size and presenting many-body mobility edges. We reveal
that the non-Hermitian QREM with random gain-loss offers a significantly stronger form of localization, evident
in the nature of the many-body mobility edges and the value for the transition, which scales as Wc ∼ ln1/2 L with
the system size.
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I. INTRODUCTION

Generic closed quantum many-body systems tend to
thermalize under their own time evolution, erasing the mi-
croscopic details of their initial conditions [1–3]. In such
systems, the final steady state is characterized by a small set
of globally conserved quantities and the system obeys the law
of statistical mechanics.

The investigation of nonequilibrium phenomena in quan-
tum systems has unveiled new phases of matter. These phases
usually lack counterparts in equilibrium states and could be
crucial for enhancing the robustness of quantum comput-
ing. To enhance coherence, several mechanisms have been
suggested to impede thermalization, thus preserving critical
quantum correlations essential for quantum computing. A
prime example of this is the phenomenon known as many-
body localization (MBL) [4–7] which extends the Anderson
localization to the many-body case. The strong quenched dis-
order prevents many-body systems from thermalizing, leading
to localization. This ergodicity breaking manifests itself in the
system’s quantum dynamics [8–16]. The local memory of the
initial state is preserved during time evolution, attributed to a
“robust” form of an emergent integrability. Consequently, the
system can be fully described by an extensive set of quasilocal
integrals of motion [15–21]. Later, alternative mechanisms
for (weak) ergodicity breaking were suggested, ranging from
quantum many-body scars and Hilbert-space fragmentation
[22–26] to the localization in lattice gauge theories [27–30].
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Recently, there has been a growing interest in nonunitary
quantum dynamics, both from theoretical and experimental
perspectives. A notable instance is the recent exploration
of monitored quantum systems [31–34]. In these systems,
the unitary dynamics of typical quantum systems, which
scramble and increase the entanglement of the state, are
in competition with the continuous measurement of local
observables, which locally projects the system into the low-
entanglement states. This results in an intricate spreading of
entanglement and correlations during the dynamics. Numer-
ous studies have highlighted the existence of a distinct phase
transition triggered by measurements [33–37], dubbed the
measurement-induced entanglement transition. This transition
is commonly characterized by the scaling of entanglement
dynamics and distinguishes between a volume-law phase,
where entanglement scales with the volume of the system,
and an area-law phase, where it grows as the boundary of
the partition.

Static non-Hermitian quantum systems can describe some
of the nonunitary dynamics mentioned above. For example,
the non-Hermitian description arises naturally in the so-called
“no-click limit,” where the system is continuously monitored
[38–49]. Then one postselects the quantum trajectories cor-
responding to no-measurement events. Several many-body
systems, ranging from the transverse-field Ising model to the
long-range Kitaev chain, show the existence of the entangle-
ment transition, both in the dynamics and in the steady state
properties [39,41,50–53].

Generically, the study of non-Hermitian many-body sys-
tems has emerged as a new paradigm for describing open,
dissipative, and monitored systems. The non-Hermitian sys-
tems uncover a rich phenomenology and the study of them
is an active research front, describing unique effects, rang-
ing from generalized topological phases and new forms of
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quantum criticality [54] to entanglement transitions that are
not possible in the Hermitian counterparts. For instance, one
of the most celebrated effects is a so-called non-Hermitian
skin effect [55–57], where eigenstates of a non-Hermitian
system localize at the boundary of a lattice, arising due to
nonreciprocal hopping across the system with open boundary
conditions. This effect challenges the conventional wisdom
of the bulk-boundary correspondence in topological systems.
Furthermore, it has been shown that such a skin effect sup-
presses entanglement propagation and thermalization and
even induces an entanglement phase transition [58].

In general, non-Hermiticity is responsible for an increase in
decoherence and might break localization. Hatano and Nelson
in their seminal work [59] show that even in one dimension,
where the short-range Hermitian systems are localized for any
finite amount of disorder, strong nonreciprocity in hopping
breaks the Anderson localization, creating energy bands of
delocalized states. The fate of the Hatano-Nelson model in
the presence of interaction has been recently studied in several
works [60–65], showing the existence of a stable MBL phase
for both weak disorder and non-Hermiticity.

In this work, we focus on a paradigmatic model, hosting
the MBL transition under random continuous monitoring in
the so-called no-click limit. In this limit, the model maps to
a non-Hermitian Hamiltonian having complex random fields,
which can be seen as random gain and loss terms or cou-
pling to local inhomogeneous baths of random strength. We
inspect several probes to the extension and the entanglement
properties of their eigenstates. We provide numerical evidence
that the critical disorder amplitude scales down with the sys-
tem size, implying that the system is localized for any finite
amount of disorder in the thermodynamic limit. To grasp
an analytical understanding of this robust localization, we
inspect a non-Hermitian version of the MBL proxy, namely,
the quantum random energy model (QREM). The Hermitian
QREM is a “mean-field” model describing more realistic and
local MBL systems. Generalizing the self-consistent theory
of localization to the non-Hermitian QREM, we show that the
non-Hermiticity results in parametrically stronger localization
than in its Hermitian counterpart. This effect is mainly based
on the increase of the effective dimensionality of the diagonal
disorder, leading to a parametric increase in the level spacing
and, thus, reducing the number of resonances responsible for
the delocalization.

The rest of the work is organized as follows. In Sec. II
we describe the non-Hermitian modification of a paradigmatic
MBL model, followed by the numerical results in Sec. III.
Section IV provides the analytical consideration of a non-
Hermitian version, Sec. IV A, of a proxy QREM model for
both finite, Sec. IV C, and zero, Sec. IV D, energy density. We
conclude our consideration in Sec. V.

II. MODEL AND METHODS

We consider the random-field Heisenberg chain of size L,

H0 =
L∑
x

S+
x S−

x+1 + H.c. + �Sz
xSz

x+1 + W
L∑
x

μxSz
x, (1)

subject to a random monitoring environment in the “no-click”
limit. −1 � μx � 1 is the random field and we use periodic
boundary conditions SL+1 = S1. We set the interaction � to
be � = 1 and W is the strength of the random field. The
model conserves the total magnetization M = ∑

x Sz
x, and we

consider the largest sector with zero magnetization (M = 0).
Without monitoring, the model is known to exhibit an MBL

transition, separating an ergodic phase from a localized one,
around WMBL ≈ 4–6 in the middle of its spectrum [66–74].
For � = 0, the system is Anderson localized for any finite
amount of disorder W > 0 [75,76].

We consider the limit of postselection, also called the
forced measurement phase or no-click limit [38–45], in which
the system is modeled by a non-Hermitian Hamiltonian,

H = H0 + iW ′ ∑
x

γxL†
x Lx, (2)

where Lx are Kraus operators Lx = 2Sz
x + 1 from the Lind-

bladian formalism. We consider coupling amplitudes γx to be
random |γx| � 1 [77], having in mind a system, coupled to
the set of L local baths of random size and coupling. In the
last sentence, we appeal to physical argumentation beyond
the Lindblad formalism, where the bath size is assumed to
be infinite from the outset. In experimentally feasible setups
with several local baths, the coupling typically depends on the
number of modes in the corresponding bath (see, e.g., [78]).
W ′ represents the strength of the random dissipation term.

Through the Jordan-Wigner transformation, the above non-
Hermitian Hamiltonian is equivalent to the fermionic hopping
model with the local density-density interaction between
nearest-neighbor sites, subject to random on-site disorder and
random gain and loss terms. The monitored system in the
noninteracting limit, � = 0, is also localized under the effect
of random gain and loss in both the short-range Anderson
[79,80] and long-range [81,82] settings. In Ref. [60] a similar
model with staggered but nonrandom gain and loss has been
considered to confirm the existence and the stability of an
MBL phase at strong disorder.

To understand the fate of the MBL transition under moni-
toring of the model in Eq. (2), we investigate the localization
properties of the right eigenvector belonging to the middle of
the spectrum of H [83],

H |En〉 = En |En〉 . (3)

Similarly to the Hermitian case, the choice of the middle of the
spectrum is related to the fact that there the density of states,

ρ
(
E0 = ER

0 + iE I
0

) =
∑

n

δ
(
ER

0 − Re En
)
δ
(
EI

0 − Im En
)
,

(4)

is maximal, which implies the smallest mean level spacing
and the most delocalized states in the disordered systems to
be in that part of the spectrum. In our numerical considera-
tions we have focused on the localization transition of those
most delocalized states in the system, and therefore consider
|E0|/L → 0.

With this aim, we consider the half-chain bipartite entan-
glement entropy,

S(L/2) = −Tr[ρL/2 ln ρL/2], (5)
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with the reduced density matrix ρL/2 of the state in a half
chain. The ergodic behavior of S in Hermitian systems is
known to be represented by the so-called Page value SPage =
(L ln 2 − 1)/2 [84], with some finite deviations, claimed later
[85–89]. Here and further, we omit the argument (L/2), focus-
ing only on the half-chain partitions. In general, we indicate
the disorder and eigenstate average with an overbar on the
considered quantity, i.e., S. As a further probe, we consider
fluctuations over a few eigenstates and disorder configurations
δS2 ≡ S2 − S

2
.

From the Hermitian systems’ point of view, in an extended
phase, we expect S to scale linearly with system size L,
while in the localized, S should have an area-law scaling,
S ∼ O(L0). Instead, the fluctuations decay exponentially with
system size in the ergodic phase and do not scale with L in
the localized phase. These two behaviors are interpolated by
diverging fluctuations, δS2 ∼ L2, around the transition (W ≈
WMBL). It is widely known that due to the entanglement and
the correlations to the bath(s), the open quantum system is
in a mixed state, where the entanglement entropy contains
the correlations of a chosen subsystem not only to the rest
of the system itself, but also to the corresponding baths. In
the non-Hermitian setup (no-click limit), the dephasing of the
system due to the measurement backaction is formally absent
in the framework, keeping the system in a pure state. We will
focus on the localized part of the phase diagram, where S
obeys an area law and estimates the area-law growth of the
entanglement between subsystems themselves. In such a way
we will get a good estimate of the critical disorder amplitude
WMBL.

In the Hermitian case, it has been observed that the finite-
size estimate of the critical point WMBL shifts to the larger
values with increasing system sizes L. Several numerical
works using finite-size techniques have shown that this shift is
consistent with the existence of a genuine MBL transition at
a finite value [67,73,90–93]. However, recently, other works
have questioned these results [94–96], proposing that only a
finite-size transition is possible, whose critical value is pro-
portional to the system size WMBL ∼ L.

We also investigate the spread of eigenstates in the Hilbert
space, quantified by the inverse participation ratio

IPR2 =
∑

σ

|〈σ |En〉|4, (6)

where {|σ 〉} is the full set of the σ z basis states and |En〉 is the
eigenstate of the above Hamiltonian with the eigenvalue En.
From IPR2, we extract its fractal dimension D2,

IPR2 ∼ (dim H)−D2 , (7)

where dim H = ( L
L/2

)
is the dimension of the Hilbert space in

the zero-magnetization sector. For ergodic states, D2 → 1 in
the thermodynamic limit, while generic nonergodic states will
have fractal behavior, meaning 0 < D2 < 1. For the Hermitian
case, it has been shown that D2 ≈ 1 in the thermal phase
and 0 < D2 < 1 in the MBL phase [67,90,92,97]. It has also
been argued that D2 exhibits a jump at the transition. The
fluctuations of D2 over eigenstates and disorder configura-
tions, δD2

2 = D2
2 − D2

2
, provide a remarkable fingerprint of

the transition. δD2
2 should be exponentially suppressed with

(a) (b)

(c) (d)

FIG. 1. MBL model: Entanglement entropy and its fluctuations
in a non-Hermitian setting of Eq. (2). (a) S and (b) S/SPage as
functions of W for several system sizes L. (c) Bare entanglement
fluctuations δS2 and (d) their value, normalized by the maximum
value. In panel (d) the disorder strength has been renormalized
by multiplying by ln L. Dashed lines in panels (b), (c) show the
corresponding measures for the equivalent Hermitian Hamiltonian,
Eq. (8).

L in the ergodic phase [δD2
2 ∼ O(e−αL )], only algebraically

in the MBL phase [δD2
2 ∼ O(L−1)], and δD2

2 stays finite
[δD2

2 ∼ O(1)] at the critical point, due to the above jump in
D2 [97]. Further, we focus on the fluctuations of ln IPR2,
δ ln IPR2

2 = δD2
2L2.

III. NUMERICAL RESULTS

We start our investigation with the examination of the
entanglement entropy and its fluctuations as a function of
disorder strength W = W = W ′, focusing on the right eigen-
vectors from the middle of the spectrum of H in Eqs. (1)
and (2).

Figures 1(a) and 1(b) depict the average half-partition en-
tanglement entropy, Eq. (5), and the ratio S/SPage (represented
by solid lines), respectively. Here, the Page value SPage will
be used as a reference value, being the expected value for
ergodic states at infinite temperature (middle of the spectrum).
The rest of the figure, Figs. 1(c) and 1(d), showcases the
fluctuations of S.

Notably, S/SPage decreases as the system size increases,
and the peak of its fluctuations also appears to systemati-
cally move to a smaller value of W ; see Fig. 1 [98]. This
behavior may suggest the presence of a finite-size crossover
between a volume-law phase and an area-law phase. However,
the volume-law phase seems to vanish in the thermodynamic
limit.

To support these observations, it is valuable to compare
them with the Hermitian case, which is believed to exhibit the
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MBL transition at finite W = WMBL. For a fair comparison be-
tween the Hermitian and the non-Hermitian settings described
in Eq. (2), we examine the Hamiltonian, where the complex
disorder is replaced by the real one of the same amplitude,

Hh = H0 + W ′ ∑
x

γxL†
x Lx, (8)

as depicted by dashed lines in Figs. 1(b) and 1(c). First, we
observe that in the Hermitian case the finite-size crossover
between the thermal and the ergodic phases happens at larger
disorder, indicating that the non-Hermitian part tends to local-
ize the system. This is particularly evident in Fig. 1(b), where
the dashed lines present a crossing point in the proximity
of the putative MBL transition. Indeed, S/SPage → 1 as the
system size grows for the weak disorder, while S/SPage → 0
at larger disorder. However, for the non-Hermitian case, we
have S/SPage → 0 with growing L for all available W . The
enhancement of localization due to non-Hermiticity is also
visible in the fluctuation of S; cf. dashed and solid lines in
Fig. 1(c). First, the maximum of δS2 is higher in the Hermitian
case; second, it happens at larger disorder; and finally, we
observe the typical shifting of the maximum to the larger
values of disorder only in the Hermitian case, but not in its
non-Hermitian counterpart. We can conclude that this non-
Hermiticity enhanced its localization properties.

Realizing that the system tends to the localization with
increasing L, we analyze a finite-size scaling of δS2 as a
function of W . As shown in Fig. 1(d), we have found a
remarkably good collapse of the left wing of the δS2 max-
imum by rescaling the disorder strength, W → W ln L. This
collapse provides evidence that the parameter space hosting
an extended phase shrinks with systems size as ∼1/ ln L.
As the considered entanglement entropy S provides only an
estimate of the entanglement between subsystems themselves,
the above results provide the critical disorder WMBL. As this
estimate goes toward zero in the thermodynamic limit, we
have to conclude that the critical disorder also does that.

To bolster our findings, we delve into the wave-function
Hilbert-space spreading via the fractal dimension D2, defined
by Eq. (7), as depicted in Fig. 2. Indeed, in Figs. 2(a) and 2(c),
we display the results for D2 and the fluctuations δ ln IPR2

2 of
the IPR as functions of W for various values of L. Consistently
with the above entanglement entropy data, the fractal dimen-
sion D2 is significantly below its ergodic value, D2 = 1, and
the data show only a mild dependence on L, and mostly for
relatively small values of W . The IPR fluctuations, δ ln IPR2

2

in Fig. 2(c), diverge with increasing L, approximately at the
same W value as δS2 in Fig. 1. Analogously to δS2, the peak
of δ ln IPR2

2 flows to lower W values, as L increases. More-
over, while δ ln IPR2

2 ∼ L is evident in the presence of strong
disorder, as expected in a localized phase, there is no observed
exponential suppression at weak-disorder values. This further
justifies the probable absence of an extended phase in the
thermodynamic limit.

As we previously did by analyzing the entanglement en-
tropy in Fig. 1, it is crucial to compare this result with the
results of the Hermitian case in Eq. (8). The corresponding
data are presented in Fig. 2(b), illustrating δ ln IPR2

2, while

(a) (b)

(c) (d)

FIG. 2. MBL model: Fractal dimension D2 and its fluctuations
in a non-Hermitian setting of Eq. (2). (a) D2 as a function of W
for several L, Eq. (7). (b) shows the fluctuations of ln IPR2 in the
Hermitian case of Eq. (8); inset shows the corresponding D2 vs W .
(c) Bare fluctuations −δ ln IPR2

2 of − ln IPR2 and (d) their value,
normalized by the maximum value. In panel (d) the disorder has been
renormalized as follows: W → W ln L.

the inset shows D2 vs W . Supporting the insights from the en-
tanglement entropy, the IPR data underscore the propensity of
non-Hermitian components to enhance the system’s localiza-
tion. Conclusively, a robust convergence for the fluctuations
of the fractal dimension is evident in Fig. 2(d), attesting that
the extended phase diminishes in the thermodynamic limit,
scaling as 1/ ln L.

Finally, Fig. 3 shows entanglement entropy and its fluctua-
tions for eigenstates in the middle of the spectrum for different
real and imaginary disorder strengths W = 2W ′. Although the
dissipation term has half strength of the random potential,
W = 2W ′, we do not see qualitative difference and all its
eigenstates are area law in the limit L → ∞.

In summary, through the examination of multiple com-
plementary indicators, we present numerical proof that our
monitored random-field Heisenberg model exhibits the lo-
calization in the thermodynamic limit, irrespectively of the
disorder magnitude.

Entanglement dynamics

Here we provide further investigation considering dy-
namical probes. In particular, we consider the entanglement
dynamics

|ψ (t )〉 = e−itH |ψ (0)〉
‖e−itH |ψ (0)〉‖ , (9)

starting from a random pure state |ψ (0)〉. Here ‖ . . . ‖ is
the norm of the corresponding vector. Figure 4 shows the
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(a) (b)

(c) (d)

FIG. 3. MBL model: Entanglement entropy and its fluctuations
in a non-Hermitian setting with W = 2W ′. (a) S and (b) S/SPage

as functions of W for several system sizes L. (c) Entanglement
fluctuations δS2 and (d) δS2 normalized by the maximum value. In
panel (d) the disorder strength has been renormalized by multiplying
by ln L.

dynamics of the entanglement entropy S, as a function of
time t of |ψ (t )〉, for two values of W = 0.75, 1.25. At t = 0,
S(0) = SPage, and as one can observe, the averaged entan-
glement entropy shows area-law scaling, S(t )/SPage ∼ 1/L;
see inset in Fig. 4. This is in agreement with the numerical
analysis presented in the previous section.

IV. ANALYTICAL CONSIDERATION

The aim of this section is to provide some analytical con-
siderations that will help us to understand the enhancement of
localization that we have observed numerically above.

FIG. 4. MBL model: Entanglement dynamics. The entanglement
dynamics of S/SPage starting from a random state for (a) W = 0.75
and (b) W = 1.5. The insets show non-normalized S(t ) as a function
of time.

A. Non-Hermitian QREM

Following the analysis presented in Ref. [99], we consider
the QREM as a toy model that exhibits an MBL transition.
The Hermitian QREM [100–106] is defined as

HhQREM =
L∑
i

σ x
i + W

2L∑
σ

ER
σ |σ 〉 〈σ | , (10)

where σ x
i is the x Pauli matrix at site i, {|σ 〉} are the 2L product

states, forming a basis in the σ z Hilbert space, and ER
σ are

independent identically distributed (i.i.d.) Gaussian random
variables N (0,

√
L). From a Fock space point of view, the first

term in Eq. (10) introduces jumps between z-spin configura-
tions, which differ by one spin flip. Instead, the second term
is composed of independently distributed random energies
whose width scales as

√
L to mimic the many-body density

of states, see Eq. (13) below, given by the diagonal disorder
and interaction terms. We can decompose the second term in
Eq. (10) in a string composed by σ z Pauli matrices,

2L∑
σ

ER
σ |σ 〉 〈σ | =

L∑
n

∑
i1,··· ,in

Ji1···inσ
z
i1

· · · σ z
in
. (11)

After this decomposition, we can interpret the QREM as a
quantum Ising type chain subject to all possible n-body σ z

interactions, with n from 1 to L. The main difference of the
QREM model from the quantum Ising model [17] is that in
the latter sum, Eq. (11), only the terms with n = 1 and 2 sur-
vive, and coefficients Ji, Ji,i+1 ∼ O(1), leading to the strong
correlations between the many-body diagonal energies ER

σ .
The QREM phase diagram has been investigated in

Ref. [99], finding the existence of a finite-size metal-insular
transition of midspectrum states at E = 0, whose critical value
scales as Wc ∼ √

L ln L. Furthermore, HhQREM has stable en-
ergy mobility edges at finite W .

In this section, we inspect the fate of the QREM under the
presence of random non-Hermitian terms,

HnQREM =
L∑
i

σ x
i + W

2L∑
σ

ER
σ |σ 〉 〈σ | + iW ′

2L∑
σ

EI
σ |σ 〉 〈σ | ,

(12)

where EI
σ are also i.i.d. Gaussian random variables N (0,

√
L).

Now, we are studying the phase diagram of the non-
Hermitian QREM. In the following discussion, we will
demonstrate how the localization transition in the QREM,
at both finite and zero energy density, is influenced by non-
Hermitian gain-loss disorder.

For clarity, let us first revisit the Hermitian case.

B. Delocalization-localization transition in the Hermitian
QREM analysis and comparison with the non-Hermitian case

In the Hermitian case, EI
σ ≡ 0 and real part ER

σ is nor-
mally distributed. In particular, for the finite density energy
ε = E/L, we have for its probability

P

(
ER

σ

L
= ε

)
dε = e−Lε2

√
L

π
dε, (13)
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which gives the typical energy scale, given by

|E0| ∼Etyp ∼ L1/2. (14)

On the localized side of the transition at large enough W ,
to the leading order in 1/W the wave-function amplitude at a
certain Hilbert/Fock space node bn at the Hamming distance
n from the wave-function maximum ψ (0) is

ψ (bn) � W −n
∑
p∈�n

∏
σ∈p

1

E0 − Eσ

, (15)

where �n is the set of all n! shortest directed paths between
two Hilbert space nodes at the distance n, p runs over all such
paths, and σ runs over all nodes on the path p.

The main steps to find the phase diagram of HhQREM are the
following [99]:

(i) First, we find the probability p to have a resonance at
a node bn summed over all paths at the finite-energy density,
|E0|/L = ε > 0, or calculated for a certain path p for the zero
energy density, ε → 0.

(ii) Next, we calculate the probability Pn = (1 − p)N to
have no resonances in all N=(L

n) nodes bn for ε > 0 [all N=(L
n)n!

paths between 0 and bn for ε = 0].
(iii) Then, the saddle-point approximation for Pn ∼

e−eM f (σW )
is calculated over the large parameter M = L (M =

n) with the renormalized W via σ = ε (σ = √
πL/2) for

ε > 0 (ε = 0).
(iv) Finally, the localization transition or the mobility edge

is associated with the appearance of the first resonance when
f obtains the first positive value.

Here we repeat the same argumentation for the non-
Hermitian QREM model with gain-loss complex disorder
potential.

First of all, in the non-Hermitian case, the eigenvalue E0 =
ER

0 + iE I
0 ≡ L(εR + iεI ) has both real and imaginary parts.

This happens because in addition to the normal-distributed
real disorder ER

σ , there is an imaginary part, EI
σ , which is also

random and Gaussian distributed. Thus, the energy-density
distribution in this case,

P

(
ER

σ

L
= εR,

ER
σ

L
= εI

)
= e−L(ε2

R+ε2
I )

√
L

π
, (16)

has also the Gaussian profile, but in the 2d complex plane. It is
this distribution which controls the density of states, Eq. (4),
of the model; therefore, similarly to the Hermitian case, the
latter ρ(E0) has most of the states, concentrated at zero energy
density, εR = εI = 0 in the thermodynamic limit. Any finite
energy density (in εR or εI ) will exponentially reduce the
density of states with the system size. Following [99], we
consider the case of the finite energy density |E0|/L = ε > 0
first and then proceed to the most delocalized region of zero
energy density |E0|/L → 0. Further for simplicity we con-
sider W = W ′, if not stated otherwise, and return back to a
generic case W �= W ′ in the discussions later.

C. Finite energy density, |E0|/L = ε > 0

In the case of finite energy density, |E0| ∼ L, the typical
energy at the first n − 1 nodes of the path before the resonance
is of the order of ∼L1/2 � |E0| (14) and can be neglected in

(15) with respect to E0. Note that for this case the difference
between QREM and the quantum Ising model, given by the
correlations in (11), is not important, as the entire diagonal
term can be neglected with respect to the eigenenergy E0.
Thus, the results, derived below for QREM, should be the
same for the many-body problem, like the quantum Ising
model.

The above approximation gives the contribution from each
path to each of n neighbors an−1 of bn at the distance n − 1
from the wave-function maximum,

ψ (an−1, p) �
(

1

W εL

)−(n−1)

, (17)

which have the same sign and, thus, can be summed coher-
ently and the same for all an−1,

ψ (an−1) �
∑
p∈�n

ψ (bn, p) � n!

(
1

W εL

)−(n−1)

≡ ψn−1. (18)

For resonance at bn, one must assert that the resulting
contribution to

ψ (bn) � n

W δn
ψn−1 (19)

should be large |ψ (bn)| > 1. It can happen only if the energy
difference δn = |E0 − Ebn | is small enough,

δn < δc ≡ n

W
ψn−1 � 2Lε

√
2πn

( n

eεW L

)n
. (20)

Note that for all positive integers n the right-hand side of the
latter is small compared to the width (14) of the distribution
(16).

Thus, the probability p to have such a resonance is given
by the following expression:

p =
∫

δn<δc

P(En)dEn. (21)

Here the main difference between Hermitian and non-
Hermitian cases is in the order of the above integral over
En = ER

n + iE I
n : it is 1d integral over i.i.d. random numbers

in the Hermitian case (as EI
n ≡ 0) and 2d in its non-Hermitian

counterpart.
The 1d integral, corresponding to the Hermitian case of

[99], immediately gives

pH = P(ε)δc � 2
√

2xεL · e−Lε2−xL ln [eW ε/x], (22)

where x = n/L. Up to polynomial corrections in L, we will
focus on the leading saddle-point approximation and neglect
the prefactor.

The 2d integral in Eq. (21), corresponding to the non-
Hermitian case, is over independent ER

n and EI
n , distributed

according to (16). Thus, within the same approximation δn �√
L one straightforwardly obtains

pnH = p2
H . (23)

The probability Pn to not have resonances in all N=(L
n)

directed paths connecting the stating point with bn is given
by product

Pn = (1 − p)N � e−pN , (24)
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where

pN � eL f (x,p). (25)

The function f (x, p) differs for Hermitian and non-Hermitian
cases,

fH = −x ln x − (1 − x) ln(1 − x) − ε2 − x ln [eW ε/x]

= −(1 − x) ln(1 − x) − ε2 − x ln [eW ε], (26)

fnH = −x ln x − (1 − x) ln(1 − x) − 2ε2 − 2x ln [eW ε/x]

= x ln x − (1 − x) ln(1 − x) − ε2 − 2x ln [eW ε], (27)

and this provides a parametric difference between the maxima
of the above functions over x at small εW � 1,

x∗
H = 1 − 1

εW
, x∗

nH = 1 −
(

1

εW

)2

. (28)

The latter ones, as the solutions of the equation f (x∗, p) = 0,
lead the the parametrically different locations of the mobility
edges

W −1
H = ε +

√
2ε2 + O(ε3), W −1

nH = εe1+ε2
. (29)

This is the main result for the many-body mobility edge,
showing that at the same energy density, the critical disorder
in the non-Hermitian case is suppressed by a factor e1+ε2

.
The corresponding distance n∗ = x∗L, where the first reso-

nance to appear is also parametrically different,

x∗
H =

√
2ε + O(ε2), x∗

nH = 1 − e−2(1+ε2 ). (30)

Here, the main difference between the Hermitian and non-
Hermitian cases is that the first resonance at zero energy
density in the former case appears at very short distances,
where n∗/L → 0, and approaches zero, while in the lat-
ter case, it remains finite, resulting in sharper mobility
edges.

D. Zero energy density, |E0|/L = ε = 0

Unlike the previous case, here the terms of the different
paths to bn are not coherent due to the random signs (or
even complex phases) of the denominators in Eq. (15) and
this forces us to consider all N=(L

n)n! paths independently and
assume that the first resonance appears only on one of them
[107].

Following [99], we introduce a random variable

yσ = ln(σ/|Eσ |) ⇔ |Eσ | = σe−yσ , (31)

where σ = √
πL/2 is chosen in such a way to make the

distribution P(yσ � 1) to be parameter free. Here again the
main difference between Hermitian and non-Hermitian cases
appears, due to the dimensionality of the distributions (13) and
(16). Indeed, for the Hermitian case one obtains

P(yσ = y) = P(ε)
dε

dy
= e−y− π

4 e−2y ⇔ P(y � 1) � e−y,

(32)

while in the non-Hermitian case, the results are more involved,

P(y) =
∫

e−(E2
R+E2

I )/L

πL
δ

(
y + 1

2
ln

[
E2

R + E2
I

σ 2

])
dERdEI

= e− π
4 e−2y

πL

∫ σe−y

−σe−y

∂ER(y, EI )

∂y
dEI

= 2e− π
4 e−2y

πL
σ 2e−2y

∫ 1

−1

dz√
1 − z2

= πe− π
4 e−2y−2y, (33)

where we used the expression ER(y, EI ) =
√

σ 2e−2y − E2
I and

z = EI ey/σ .
The first resonance appears at bn as soon as

ln |ψ (bn)| > 1 ⇔ Yn =
n∑

σ=1

yσ > Yc, (34)

where we have introduced the critical value as Yc ≡ n ln(σW )
and numbered the nodes σ via the distance from the wave-
function maximum.

In our approximation of |yσ | � 1, the distribution of P(Y )
reads slightly differently for Hermitian,

PH (Y ) � Y n−1

(n − 1)!
e−Y �

(
Ye

n

)n

e−Y , (35)

and non-Hermitian cases,

PnH (Y ) � (2Y )n−1

2(n − 1)!
e−2Y �

(
2Ye

n

)n

e−2Y . (36)

However, these are factors of 2 which parametrically change
the critical disorder amplitude, as they appear in front of the
logarithmic factors in Yc ≡ n ln(σW ).

For large enough Yc = n ln(σW ) � 1 the probability to
have a resonance (34) is given by

p = P(Yc)
[
1 + O

(
Y −1

c

)]
; (37)

thus, the probability to have no resonances for all N=(L
n)n!�Ln paths

reads exactly as (24), leading to the following saddle-point
approximation over n,

pN = en f (σW ), (38)

with f being different for the two above cases via the constant
c,

f (σW ) ≡ ln L + 1

n
ln [P(Yc)]

= ln(eL) − c ln (σW ) + ln [c ln (σW )]. (39)

c = 1 for Hermitian and c = 2 for non-Hermitian cases.
Again, such a tiny difference in the prefactors in front of the

logarithms leads to the parametric difference in critical disor-
der values between these cases as the leading in L solution
is

(σW )c � eL ln(eL) ⇔ W = 2√
π

L1/c−1/2[e ln(eL)]1/c.

(40)
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Here, the Hermitian case of c = 1 gives the standard result

WH ∼ L1/2 ln L, (41)

while the 2d nature, c = 2, of the diagonal disorder in the
gain-loss non-Hermitian case leads to the completely unex-
pected one:

WnH ∼ ln1/2 L. (42)

This comparison shows the drastic difference between Her-
mitian and non-Hermitian cases as in the limit of large L,
WnH � WH , and their ratio goes to zero.

The origin of this drastic change lies in the resonance
counting difference (see also [82]). Indeed, the probability
of a resonance to occur at the distance n is directly related
to the mean level spacing �n between the on-site energies
Eσ on all the Kn nodes σ , close to the maximum |σ | < n
(Kn is the number of such nodes). However, it is �n which
is parametrically different in Hermitian and non-Hermitian
cases.

In the Hermitian case the mean level spacing is given
by �H

n � W L1/2/Kn as in the typical 1d interval |Eσ | �
W L1/2 there are Kn i.i.d. random numbers. At the same
time, gain-loss non-Hermiticity allows Eσ = ER

σ + iE I
σ to be

distributed in the 2d complex plane in the typical range
|ER

σ | < W L1/2, |EI
σ | < W ′L1/2, leading to the mean area per

on-site energy, given by An � WW ′L/Kn. The mean radius of
such area estimates the mean level spacing as �nH

n ∼ A1/2
n �

(WW ′L/Kn)1/2 which decays with Kn parametrically slower
than �H

n . For more detailed discussion please see [82]. Here
we have returned back to the generic case of W �= W ′ to show
that the main claim is intact with respect to the ratio W/W ′ as
soon as the latter is finite.

The latter consideration as well as the entire derivation in
Sec. IV C are consistent with the generic consideration of the
Hermitian case, where the ratio W0/t of the standard deviation
of the diagonal 〈|Eσ |2〉1/2 = W0 and the hopping t terms at
the critical point is given by the function of the vertex degree
d � 1 of the corresponding graph(

W0

t

)
= d ln d. (43)

Without ln d this is related to the number of possibilities to
realize the resonance with any of d neighbors at n = 1 at large
W0; therefore the probability to have a resonance energy is
given by the inverse of the latter, i.e., by the first power t/W0.
The factor ln d appears due to the hierarchical structure of the
underlying graph; see, e.g., [99].

In the non-Hermitian case with the same variances for real
and imaginary parts, 〈E2

n,R〉1/2 = 〈E2
n,I〉1/2 = W0, the above

probability of having small |En − E0| is given by (t/W0)2 as
each of real and imaginary parts should be in the vicinity t
from E0,R/I , respectively. Thus, in this case one should expect(

W0

t

)2

= d ln d. (44)

The case of W �= W ′ will correspond here to the additional
prefactor on the left-hand side given by W ′/W , but will not
change qualitatively the result.

(a) (b)

(c) (d)

FIG. 5. QREM model: Entanglement entropy and its fluctuations
in a non-Hermitian setting of Eq. (12). (a) S, as a function of W for
several L; (b) finite-size collapse of S/SPage. The panel shows that the
critical value shifts to larger values as ln1/2(L). (c) Fluctuations δS2 of
S and (d) finite-size collapse of δS2, normalized by its maximal value.
In both panels (b) and (d) the finite-size collapse gives Wc ≈ 0.5 and
ν ≈ 1.

The above estimates (43) and (44) are consistent with both
the above results (41) and (42), where d = L, t = 1, and
W0 = σW = √

πLW/2. At the same time, Eqs. (43) and (44)
give the correct result for the Rosenzweig-Porter model [81],
where d = N , t = N−γ /2, W0 = 1.

E. Numerical result for the non-Hermitian QREM

After providing an analytical perspective on the non-
Hermitian QREM, which reveals that the model is substan-
tially more localized compared to its Hermitian counterpart,
we proceed to the numerical validation of our hypotheses.
The probes employed for this validation are the same as those
utilized for the random-field Heisenberg model, Eq. (2), that
serve to distinguish extended and localized phases.

Figures 5 and 6 focus on the entanglement entropy and
fractal dimension, respectively, and their associated fluctu-
ations. Within both figures, panels (a) and (c) display the
raw data as a function of W across various system sizes. As
expected, the range in which the model exhibits delocaliza-
tion, denoted S/SPage → 1 and D2 → 1, broadens with the
system size L. Fingerprints of the transition are given to the
moving maximum of the fluctuations of S and D2 visible
in Figs. 5(c) and 6(c), respectively. To find the scaling of
the value of the critical point with system size, we perform
a finite-size scaling analysis, which is shown in Figs. 5(b),
5(d) and Figs. 6(b), 6(d). As expected from our analytical
considerations, we found with Wc ∼ ln1/2 L a good collapse
of the curves.
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(a) (b)

(c) (d)

FIG. 6. QREM model: Fractal dimension D2 and its fluctuations
in a non-Hermitian setting of Eq. (12). (a) D2 as a function of W

for several L; (c) fluctuations δ ln IPR2
2 of − ln IPR2. (b), (d) Finite-

size collapses of D2 and δ ln IPR2
2, normalized by its maximal value,

giving the same critical values Wc = 0.5 and ν ≈ 1 as in Fig. 5.

V. OUTLOOK AND CONCLUSION

In this work, we examine the phase of the random-field
Heisenberg model under monitoring in the no-click limit.
Without monitoring, the model is believed to exhibit a many-
body localization transition, which separates an ergodic phase
at weak disorder from a localized one at strong disorder.

Under random-space continuous monitoring in the no-click
limit, the model is mapped to a non-Hermitian system with
complex random diagonal disorder. Numerically, we inves-
tigate the localization properties of the model, in particular,
the entanglement entropy and the fractal dimension in the
Fock space. We found that the model exhibits a more robust
form of localization. We provide a finite-size scale analysis,
which suggests that the extended phase disappears in the
thermodynamic limit, leaving the system in MBL for any
finite amount of disorder. It is important to note that in the

case of continuous but nonrandom measurements in space,
the model is expected to exhibit the typical MBL transition,
as demonstrated in Ref. [46].

Although we do not have an analytical approach for
our random-field Heidelberg model, we consider the non-
Hermitian analog of the QREM as a toy and analytically
tractable model to test our conjectures. In the past, the Her-
mitian QREM has been used to describe the MBL transition,
providing evidence of MBL and the existence of many-body
mobility edges. We consider a non-Hermitian version of the
QREM, which mimics our random gain and loss terms. Us-
ing a self-consistent theory of localization, we show that
the non-Hermitian QREM exhibits sharp many-body mobility
edges, and the system is parametrically more localized than
its corresponding Hermitian counterpart. From the many-body
point of view, the QREM in Eq. (12) has more long-range
interaction terms, and therefore the Anderson transition as
well as the mobility edge in the non-Hermitian QREM should
provide upper bounds for the MBL transition and the many-
body mobility edge (at least for the quantum Ising model).
From Eqs. (29) and (42) and their comparison to the numerical
calculations in Figs. 1 and 2, one sees that this upper bound is
not strict.

Our work establishes the foundation for stabilizing phases
of matter through the application of random gain and loss
terms. Future studies will investigate the potential of this
measurement protocol to stabilize many-body localized topo-
logical phases and to induce localization in systems with
higher dimensions and long-range interactions. Additionally,
promising avenues of research include examining the effects
of non-Hermitian elements on the avalanche theory of delo-
calization, as well as their influence on real-time dynamics
[50,51].
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