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Surface quantum critical phenomena in disordered Dirac semimetals

Eric Brillaux,1 Andrei A. Fedorenko ,1 and Ilya A. Gruzberg 2

1Univ Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, F-69342 Lyon, France
2Department of Physics, Ohio State University, 191 West Woodruff Ave, Columbus, Ohio 43210, USA

(Received 17 December 2023; revised 5 March 2024; accepted 22 April 2024; published 7 May 2024)

We study a non-Anderson disorder driven quantum phase transition in a semi-infinite Dirac semimetal with
a flat boundary. The conformally invariant boundary conditions, which include those that are time-reversal
invariant, lead to nodal-like surface states on the boundary. In this case the boundary becomes metallic at a critical
disorder that is weaker than that for the semimetal-diffusive metal transition in the bulk. The latter transition
takes place in the presence of a metallic surface; in the language of surface critical phenomena this corresponds
to the so-called extraordinary transition. The lines of the surface and the extraordinary transitions meet at the
special transition point. To elucidate universal properties at different transitions on the phase diagram, we employ
renormalization group methods and compute the corresponding surface critical exponents using ε expansion.
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I. INTRODUCTION

Nodal semimetals such as Weyl and Dirac semimetals
have garnered substantial attention since their recent dis-
covery owing to their remarkable electronic properties and
potential applications in various fields. They represent a class
of three-dimensional materials characterized by gapless elec-
tronic excitations appearing when linear band crossings occur
at isolated points in the Brillouin zone and thus they can
be viewed as higher dimensional analogs of the celebrated
graphene [1]. In crystals where either the inversion or the time
reversal symmetry is broken, bands are generally nondegen-
erate so that the crossing gives rise to Weyl nodes without
fine-tuning [2,3]. If the symmetry under simultaneous inver-
sion and time reversal holds, the bands are twofold degenerate
so that the crossing leads to Dirac nodes [4–6]. The nodal
semimetals exhibit peculiar properties arising from their rela-
tivistic low-energy excitations. These include novel responses
to applied electric and magnetic fields, e.g., due to the chiral
anomaly, the appearance of unusual surface states which could
be topologically protected [7–9], and non-Anderson phase
transitions in the presence of disorder.

In a semi-infinite semimetal, scattering from the bound-
ary creates surface modes with energies near the bulk band
crossing. While the general properties of these emergent sur-
face states are dictated by the topology and symmetries, their
precise form is determined by the microscopic boundary con-
ditions (BCs), which describe how the different wave function
components mix upon reflection of the excitation from the
boundary [10–13]. In Weyl semimetals, topologically pro-
tected surface-bound states appear in the form of Fermi arcs
that connect the surface projections of Weyl nodes with oppo-
site chirality [2,3]. In Dirac semimetals, the surface sates may
consist of doubled arcs that bridge the surface projections of
Dirac nodes [14]. However, in this case, for some BCs, the
surface Fermi line can shrink down to a point producing a
Dirac cone in the surface spectrum [12,13,15].

The presence of quenched disorder can strongly mod-
ify the behavior of clean materials and lead to Anderson

localization [16] and continuous Anderson transitions, which
include metal-insulator transitions as well as transitions
between different topological phases such as the integer quan-
tum Hall plateau transitions [17]. Anderson transitions lack
a conventional order parameter: the average local density of
states (LDOS) is nonsingular across the transitions. Instead,
critical behavior at Anderson transitions is exhibited by trans-
port coefficients and the whole distribution of the LDOS.
Different moments of the LDOS have independent scaling
behavior reflecting the multifractal nature of critical wave
functions described by a continuum of critical exponents, the
so-called multifractal spectrum.

A different type of disorder-induced quantum phase tran-
sition was identified in nodal semimetals [18], wherein a
strong enough disorder drives the semimetal from the clean
(ballistic) behavior towards a diffusive metal. This transition
is described by the Gross-Neveu model in the replica limit
N → 0 [19,20] or its supersymmetric variant [21]. The av-
erage LDOS at the nodal point plays the role of an order
parameter, since it becomes nonzero above a critical dis-
order strength [22–31]. This transition has been intensively
studied using both numerical simulations [32–37] and an-
alytical methods [38–42]. Similar to Anderson transitions,
critical wave functions (at zero energy) are multifractal, but
the distributions of non-self-averaging quantities, such as the
LDOS, are much more narrow compared to those at Ander-
son transitions. Another difference is that the average LDOS
is smooth across many Anderson transitions contrary to the
typical LDOS, which vanishes in the localized phase [43]. At
the semimetal-diffusive metal transition, both the typical and
the average LDOS at the nodal point vanish in the semimetal
phase but grow in the metallic phase with different exponents
[44]. Effects of rare events have been also discussed and
the possibility for an avoided quantum criticality was much
debated [45–55].

The disorder-driven quantum phase transitions in a semi-
infinite geometry are less well studied. In the theory of
conventional continuous phase transitions in semi-infinite spin
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systems one distinguishes three boundary universality classes:
the ordinary, the extraordinary, and the special [56]. For the
ordinary transition the bulk and the boundary order simultane-
ously, while at the extraordinary transition the bulk orders in
the presence of already ordered boundary. The special transi-
tion corresponds to a multicritical point where the lines of the
ordinary, the extraordinary, and the surface transitions meet
[57–59]. Anderson transitions in the presence of boundaries
were studied in Refs. [60–67], with the focus on multifractal-
ity of critical wave functions. Multifractal spectra were found
to be modified near boundaries. We note that this modification
was studied only at the ordinary boundary critical point. The
possibility of extraordinary and special boundary Anderson
transitions is an open issue that is interesting to consider and
study.

How disorder modifies surface states and affects the bulk
criticality in nodal semimetals is much less known. Numerical
simulations show that while Fermi arcs in Weyl semimetals
are robust against weak bulk disorder, they hybridize with
nonperturbative bulk rare states as the strength of disorder
gradually increases and completely dissolve into the emerg-
ing metallic bath at the bulk transition [68,69]. Perturbative
calculations also show that the surface states in generic Dirac
materials are protected from surface disorder due to a slow
decay of the states from the surface [12].

In Ref. [13] two of us studied effects of weak disorder on
the surface states produced by generic boundary conditions in
nodal semimetals using a local version of the self-consistent
Born approximation (SCBA) [42]. We investigated the full
phase diagram in the presence of a surface and found that for
the BCs leading to the Fermi arcs on the surface of Weyl and
Dirac semimetals the disorder driven transition belongs to the
extraordinary class, i.e., the bulk becomes metallic when the
surface is already metallic, with a finite LDOS at the Fermi
energy. However, contrary to the bulk criticality where in the
replica limit N → 0 there is no difference between Weyl and
Dirac fermions, the surface criticality can be different for
Weyl and Dirac fermions. In particular, for Dirac fermions
there is a class of time-reversal invariant BCs, which can be
parametrized by the angle θ , where the Fermi surface shrinks
to a point on the boundary which hosts single-cone Dirac
surface states. It turns into a metallic state at a finite strength
of disorder which is lower than the critical strength of disorder
in the bulk. This leads to a much richer phase diagram shown
in Fig. 1 which exhibits the special transition where the lines
of extraordinary transition and surface transition meet.

In the present paper we study universal properties at var-
ious transitions in this phase diagram using renormalization
group (RG) methods. Recently the surface critical behavior of
interacting fermions in the Gross-Neveu universality class has
been studied using conformal field theory methods in [70,71].
However, as we will show, unlike the bulk case, the critical
theory describing the behavior of disordered Dirac fermions
in the presence of a surface is not the Gross-Neveu model in
the replica limit N → 0. Thus the critical exponents obtained
in Refs. [70,71] are different from those found by us below
and given in Eqs. (98)–(101).

The paper is organized as follows. In Sec. II we introduce
the model of a semi-infinite Dirac semimetal, discuss the
BCs satisfying different symmetries, and compute the Green’s
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FIG. 1. Phase diagram in the (�̃, θ ) plane of a semi-infinite
Dirac semimetal, where �̃ is the dimensionless strength of disorder
and θ is the angle parametrizing the time reversal boundary condi-
tions (see Sec. II). The surface transition line and the extraordinary
transition line are given by �̃S = cos2 θ and �̃c = 1, respectively.
For �̃ < �̃S both the surface and the bulk are in the semimetal phase,
for �̃S < �̃ < �̃c metallic eigenstates populate the surface, and for
�̃ > �̃c the bulk becomes a diffusive metal as well. The lines of
surface and extraordinary transitions meet at the multicritical point
of the special transition.

function and the LDOS profile in a clean system. Section III
summarizes the phase diagram of a disordered semi-infinite
Dirac semimetal for time-reversal invariant BCs computed
using the SCBA and RG methods. In Sec. IV we construct the
corresponding replicated effective field theory averaged over
different disorder distributions and discuss its renormalization
and define the surface critical exponents. In Secs. V–VIII we
study the bulk, special, extraordinary, and surface transitions.
Section IX summarizes our results. Some technical details are
presented in the Appendixes.

II. SEMI-INFINITE DIRAC SEMIMETAL

A. Hamiltonian and boundary conditions

The low-energy Hamiltonian which describes noninter-
acting electrons in a clean three-dimensional (3D) Dirac
semimetal can be written as

Ĥ0 = −ih̄vF αi∂i, (1)

where the 4 × 4 Dirac matrices αi satisfy the anticommutation
relations: αiα j + α jαi = 2δi j [i, j = 1, 2, 3 and (x1, x2, x3) =
(x, y, z)]. In what follows we set the Fermi velocity h̄vF = 1,
choose the Weyl representation α j = τ3 ⊗ σ j , where τ j and
σ j are Pauli matrices, and use τ0, σ0 for the identity matrix or
leave it implicit.

In the case of a semi-infinite semimetal filling the half
space z > 0 the Hamiltonian (1) has to be supplemented with
a boundary condition (BC) for spinor wave functions ψ at the
surface z = 0. In the general case it can be written as [12]

Mψ |z=0 = ψ |z=0, (2)
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where M is a unitary Hermitian matrix, i.e., M2 = 1, con-
strained by the condition that Hamiltonian (1) is Hermitian
in a semi-infinite space z � 0, i.e., 〈ψ1|Ĥ0ψ2〉 = 〈Ĥ0ψ1|ψ2〉
for arbitrary ψ1 and ψ2 satisfying the BC (2). This gives that
α3 anticommutes with M,

{α3, M} = α3M + Mα3 = 0. (3)

The condition (3) implies that the z component of the current
Ji = ψ†αiψ (normal to the boundary) vanishes at z = 0. As
we demonstrate in Appendix A, the most general matrix satis-
fying Eq. (3) can be parametrized by four angles θ ∈ [−π

2 , π
2 ],

γ ∈ [0, π
2 ], and φ,ψ ∈ [−π, π ) as follows:

Mgeneral = cos θ cos γ τ0 ⊗ (cos ψ σ1 + sin ψ σ2)

− sin θ cos γ τ3 ⊗ (sin ψ σ1 − cos ψ σ2)

− sin θ sin γ (sin φ τ1 − cos φ τ2) ⊗ σ0

+ cos θ sin γ (cos φ τ1 + sin φ τ2) ⊗ σ3. (4)

This can be considered as a generalization to three dimensions
of the BCs derived for graphene in Refs. [72,73]. Here we
limit our consideration to the case of BCs which are rotation-
ally invariant in plane (x, y). As shown in Appendix B, such
BCs are also conformally invariant and are given by Eq. (4)
with γ = π

2 , which reduces to a two-parameter family (after
the shift φ → φ + π )

M3D conf = sin θ (sin φ τ1 − cos φ τ2) ⊗ σ0

− cos θ (cos φ τ1 + sin φ τ2) ⊗ σ3. (5)

The BCs (2) with Mgeneral and γ �= π
2 lead to the emergence of

surface states forming the so-called Fermi rays which connect
the projection of the Dirac point on the surface with infinity
similar to the Fermi arcs in Weyl semimetals, where they
connect the projection of the two Weyl points on the surface.

The family of conformally invariant BCs with matrices
M given by Eq. (5) contains the time-reversal invariant BCs
which satisfy [T , M] = 0. They can be obtained by setting
φ = ±π/2 and without loss of generality written as

Mθ = sin θ τ1 ⊗ σ0 − cos θ τ2 ⊗ σ3. (6)

The matrix (6) can be rotated to (5) by M3D conf = UφMθU −1
φ

with the unitary matrix

Uφ =
[

cos

(
π

4
− φ

2

)
τ0 + i sin

(
π

4
− φ

2

)
τ3

]
⊗ σ0. (7)

Since this leaves the Hamiltonian unchanged, all the results
which we will derive for the matrix (6) can also be applied to
BCs with matrix (5), e.g., the DOS profiles and the critical
exponents in both cases are the same. Note that the only
conformal invariant BCs which satisfy the charge-conjugation
symmetry, [C, M] = 0, are Mθ=0 which, as we will see later,
corresponds to the special transition.

B. Dirac surface states

We now solve the time-independent, massless Dirac equa-
tion Ĥ0ψ = εψ with Hamiltonian (1) and BC (6). We can
use the translational invariance along the boundary to perform
the Fourier transform in the directions parallel to the surface,

�r = (x, y) → �k = (k1, k2), and look for solutions in the form

ψ (r) = ψ�k (z)ei�k·�r . (8)

Introducing �α = (α1, α2), we get

(−i α3∂3 + �α · �k)ψ�k (z) = εkψ�k (z), (9)

Mθψ�k (0) = ψ�k (0). (10)

We look for solutions that are localized on the surface z = 0
and, therefore, substitute the ansatz

ψ�k (z) = χ�ke−μkz. (11)

Rotation invariance in the x − y plane ensures that the eigen-
values εk and the inverse decay lengths of the surface states
μk � 0 depend only on k = |�k|. The Fourier transformed
equation and the boundary condition become a system of
algebraic equations:

(iμkα3 + k cos ϕ α1 + k sin ϕ α2 − εk )χ�k = 0, (12)

(Mθ − 1)χ�k = 0, (13)

where we denoted by ϕ the angle specifying the direction of
the vectors �k in the x − y plane:

k1 = k cos ϕ, k2 = k sin ϕ. (14)

Then the eigenstates of the Dirac equation (9) with BC (6)
which are localized on the surface read

χ�k = 1√
2

(1,∓ei(θ+ϕ),−i eiθ ,∓i eiϕ )T. (15)

Their energy and inverse penetration length are

εk = ∓k cos θ, (16)

μk = ±k sin θ. (17)

Notice that the solutions are confined to the surface only when
μk > 0 and thus the eigenstates with the upper sign exist
only for 0 < θ < π

2 and have only negative energy, while the
solutions with the lower sign exist only for −π

2 < θ < 0 and
have only positive energy. Thus these surface states form a
single cone with the Fermi velocity vF cos θ (smaller than
the Fermi velocity in the bulk vF ) that extends in either the
electron or hole side for negative and positive values of θ ,
respectively. These surface cones are schematically depicted
in Fig. 1 for negative and positive θ together with the bulk
Dirac cone.

The surface states completely dissolve in the bulk Dirac
continuum and disappear for θ = 0 that is a 3D general-
ization of the armchair edge of graphene. On the contrary,
for θ = ±π

2 , the surface states form nondispersing flat bands
with εk = 0 but a finite penetration length μ−1

k = k−1. This
can be viewed as a generalization of a flat band of spin-
polarized states localized at zigzag edges of graphene [74]. In
Appendix C we show that these surface states survive in a slab
geometry of thickness L once kL sin θ � 1.

C. Green’s function

The boundary breaks translational invariance along the
perpendicular direction. Consequently, the retarded Green’s
function G0(x, x′, ε + i0+) depends not only on the distance
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x − x′ between the points but also on the distances of the
points to the surface, i.e., z and z′. Performing the Fourier
transform in the directions parallel to the surface and keeping
the real space coordinates in z direction we define the Green’s
function as

(Ĥ0 − ε)G0(�k, z, z′, ε) = δ(z − z′) (18)

and impose the BC

MθG0(�k, 0, z, ε) = G0(�k, 0, z, ε). (19)

Notice that in Eq. (18) we change the sign of G with respect
to the standard notation to match our definition of the Green’s
function in the field theory. The Green’s function can be split
into bulk and surface parts,

G0 = Gb + Gs, (20)

where

Gb(�k, z, z′, ε) =
( �α · �k + ε

2qk,ε

+ i

2
sgn(z − z′)α3

)
e−qk,ε |z−z′ |, (21)

Gs(�k, z, z′, ε) = − e−qk,ε (z+z′ )

2(qk,ε cot θ + ε)

[
k2

qk,ε

+
(

ε

qk,ε

+ iα3 + τ2 ⊗ σ3

sin θ

)
(�α · �k) + qk,ετ1 ⊗ σ0 + ετ2 ⊗ σ3

sin θ

]
, (22)

and we introduced qk,ε = √
k2 − ε2. For k < |ε| we need to

distinguish the retarded and advanced GFs by shifting the
energy ε off the real axis. If we denote by s = ±1 the sign
in the shift of the energy: ε → ε + is0+, then the appropriate
analytic continuation of the GFs (21) and (22) is achieved by
the replacement

qk,ε → −isεt, t ≡
√

1 − k2/ε2 ∈ [0, 1]. (23)

The surface part of the Green’s function (22) can be ex-
pressed in terms of the bulk part (21) in two limiting cases:
(i) in the limit of zero energy ε = 0; (ii) in the limit of θ = 0
when there are no surface states. In both cases the Green’s
function reduces to

G0(�k, z, z′, ε) = Gb(�k, z, z′, ε) + UθGb(�k,−z, z′, ε), (24)

where we introduce

Uθ = − 1

cos θ
τ2 ⊗ σ3 − i tan θ τ3 ⊗ σ3, (25)

such that Uθ=0 = Mθ=0. Note that the Green’s function at zero
energy ε = 0 can be expressed in the real space as

G0(x, x′) = i

S3

[
α j (x − x′) j

|x − x′|d + Uθ

α j (x̄ − x′) j

|x̄ − x′|d
]
, (26)

where we defined x = (�r, z), x̄ = (�r,−z) and Sd =
2πd/2/[�(d/2)] is the area of the unit sphere in d dimensions.
The Green’s function similar to Eq. (26) was derived in [75]
for the BC of the form (2) with a Hermitian M such that
M2 = 1 and M commutes with α1, α2 and anticommutes
with α3.

D. Profile of the density of states

We are now in the position to compute the LDOS profile
using the standard relation between the LDOS and the re-
tarded Green’s function which reads

ρθ (z, ε) = 1

π
Im

∫
d2k

(2π )2
lim
z′→z

Tr G0(�k, z, z′, ε + i0+). (27)

Substituting the Green’s function (20) we obtain

ρθ (z, ε) = 2

π
Im

∫
d2k

(2π )2

[
ε

qk,ε

− k2e−2qk,εz

qk,ε (qk,ε cot θ+ε)

]
ε→ε+i0+

.

(28)

We can split the LDOS into the bulk and surface parts result-
ing from the states delocalized and localized at the surface,
respectively:

ρθ (z, ε) = ρB
θ (z, ε) + ρS

θ (z, ε). (29)

The first term under the integral on the right-hand side (RHS)
of (28) gives the z-independent LDOS in the bulk far from the
surface:

ρB
θ (z → ∞, ε) = 2

π

∫ |ε|

0

k dk

2π

|ε|√
ε2 − k2

= ε2

π2
. (30)

The second term under the integral on the RHS of (28) can
be split into two parts. The integration over 0 < k < |ε| gives
the correction to the bulk LDOS resulting from the distor-
tions of the bulk states near the surface, i.e., the so-called
Friedel oscillations. Then the full bulk LDOS can be written
as ρB

θ (z, ε) = ε2

π2 f B
θ (εz) with

f B
θ (z̃) = 1 + Im

∫ 1

0
dt

(1 − t2)e2it z̃

t cot θ + i
. (31)

The integration over k > |ε| yields the surface states
contribution to the LDOS and can be evaluated using the
Sokhotski-Plemelj theorem. The pole on the integration con-
tour exists only if ε tan θ < 0 and the corresponding residue
yields ρS

θ (z, ε) = ε2

π2 f S
θ (εz) with

f S
θ (z̃) = π | tan(θ )|

cos2 θ
[1 − �H(z̃ tan θ )]e2z̃ tan θ , (32)

where �H(x) is the Heaviside step function. Restoring the
physical units we obtain

ρA
θ (z, ε) = ε2

(π h̄vF )2
f A
θ

(
εz

h̄vF

)
, A = B, S. (33)
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FIG. 2. Dimensionless LDOS as a function of z̃ = εz
h̄vF

and θ for ε > 0. (Left panel) f B
θ (z̃) is the contribution from the extended states

which exhibit the Friedel oscillations decaying for z̃ → ∞ so that f B
θ (∞) = 1. (Right panel) f S

θ (z̃) is the contribution from the surface states
localized at z = 0 whose energy is positive for θ < 0 and negative for θ > 0.

The typical value of the Fermi velocity in Dirac semimetals is
h̄vF � 1–10 eV Å. The bulk and surface contributions to the
LDOS profile for different θ and ε > 0 are shown in Fig. 2.
The time reversal symmetry implies that f A

θ (z̃) = f A
−θ (−z̃).

III. EFFECT OF DISORDER IN SELF-CONSISTENT
BORN APPROXIMATION

The presence of disorder creates a random time-
independent potential V (x), which is a scalar in the simplest
case, so that the low energy Hamiltonian becomes

Ĥ = −i αi∂i + V (x). (34)

We assume that the distribution of disorder potential is transla-
tionally invariant, isotropic, and Gaussian with the mean value
and variance given by

V (x) = 0, V (x)V (x′) = �δ(x − x′), (35)

where the overbar indicates the disorder average.
The self-consistent Born approximation (SCBA) is the

simplest approximation which captures the effects of disorder
on the Dirac semimetal, at least qualitatively. We now briefly
summarize the results of SCBA obtained by two of us for the
disordered Dirac semimetal in Ref. [13]. The resulting phase
diagram in the plane (�, θ ) is shown in Fig. 1.

Far from the surface, the semimetal bulk undergoes a phase
transition towards a diffusive metal at �̃c = 1, where �̃ =
��/(4π ) is the dimensionless disorder strength and � is a
UV cutoff. In the diffusive metal phase the LDOS at zero en-
ergy grows with disorder strength �̃ as ρ(z → ∞, ε = 0) =
(�̃ − �̃c)β , where the exponent β = 1 is independent of θ . In
the semimetal phase the bulk LDOS at zero energy vanishes;
however, depending on θ it can be finite on the surface for
�̃S (θ ) < �̃ � �̃c. In the later case the LDOS decays away
from surface exponentially, ρ(z, ε = 0) ∼ e−z/ξ , for �̃S (θ ) <

�̃ < �̃c and algebraically, ρ(z, ε = 0) ∼ (z�)−1, at critical-
ity �̃ = �̃c. Here the correlation length ξ ∼ |�̃ − �̃c|−ν can
be associated with the mean free path and the SCBA predicts
ν = 1. For weaker disorder �̃ < �̃S (θ ), the LDOS at zero
energy vanishes identically in the whole system and thus both
bulk and surface remain in the semimetal phase.

Using the local SCBA it was shown in Ref. [13] that
�̃S = (cos θ )2. Indeed, at θ = 0 there are no surface states
in the clean sample (see the previous section) and as a result
the surface becomes metallic simultaneously with the bulk. At
θ = ±π

2 there is a flat band at zero energy on the surface so
that it has nonzero LDOS even in the clean limit. Thus the line
of the surface transition, if it exists, has to pass through these
points.

In terms of surface critical phenomena the semimetal
exhibits the so-called extraordinary transition at �̃ = 1 for
θ ∈ [−π

2 , 0) ∪ (0, π
2 ]. The line of the extraordinary transition

meets the line of the surface transition at the multicritical point
(�̃ = 1, θ = 0) which corresponds to the special transition.
Note that the surface transition can only exist on the bound-
ary of a disordered three-dimensional semimetal, where the
surface states have a small overlap with impurities in the bulk
and the electrons can bypass them in three dimensions. This
is not the case for strictly two-dimensional disordered Dirac
materials where there is no such freedom and even weak dis-
order becomes relevant [76–78]. Below we will recover this
phase diagram and study the corresponding critical properties
using RG methods.

IV. EFFECTIVE FIELD THEORY AND RG EQUATIONS

A. Effective action

Disordered Dirac fermions in a semi-infinite space are
described by the Hamiltonian (34) with the BCs (2). This
boundary condition may also be incorporated into the Hamil-
tonian of the problem by adding a boundary term of the form
M̃δ(z). Then the Schrödinger equation

[−iα · ∇ + V (x) + M̃δ(z)]ψ = i∂tψ (36)

can be integrated across the boundary and assuming ψ = 0
for z < 0 this gives

[−iα3 + M̃]ψ |z=0 = 0. (37)

Thus including the surface term is equivalent to the explicitly
imposed boundary condition (2) if we identify

M̃ = iα3M. (38)
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Let us construct the corresponding Euclidean action. Since we
are studying noninteracting fermions, the action can be written
at a fixed Matsubara frequency ω as [10]

S =
∫

z>0
d3x ψ̄ (x)[−i αi∂i − iω + V (x)]ψ (x)

+
∫

d2r ψ̄ (�r)M̃ψ (�r), (39)

where ψ̄ and ψ are spinor Grassmann fields. The last term in
the action (39) implies that the corresponding Green’s func-
tions satisfy the boundary condition (2). In particular, for the
BCs with matrix M given by Eq. (6) in the clean limit of V = 0
we recover the one particle Green’s function (20)–(22) with
ε = iω.

In what follows we will use a dimensional regularization
of integrals, so we need to generalize the action (39) to an
arbitrary dimension d . We introduce coordinates x = (�r, z),
z � 0 in a semi-infinite d-dimensional space, where �r lies
in the (d − 1)-dimensional surface z = 0. We keep the or-
bital Pauli matrices τ j , j = 1, 2, 3, but generalize the spin
Pauli matrices σ to a d-dimensional Clifford algebra σμ,
μ = 1, . . . , d and call σd = σz. This generates αμ = τ3 ⊗ σμ,
μ = 1, . . . , d .

We now apply the replica trick and introduce N copies
of the system denoted by indices a, b = 1, . . . ,N , which are

summed over when repeated. The effective replicated action
averaged over disorder reads

S =
∫

z>0
dd x ψ̄a(x)(−i αμ∂μ − iω)ψa(x)

+
∫

dd−1r ψ̄a(�r)M̃ψa(�r)

− �

2

∫
z>0

dd x ψ̄a(x)ψa(x)ψ̄b(x)ψb(x). (40)

The observables averaged over disorder can be computed us-
ing the action (40) in the limit of N → 0.

B. Renormalization and RG equations

The correlation functions computed perturbatively in the
disorder strength � using the action (40) are UV divergent
in d = 2, which is the lower critical dimension of the model:
while any disorder is relevant for d � 2, weak disorder is irrel-
evant for d > 2. We will employ dimensional regularization
and compute correlation functions in d = 2 + ε dimensions,
thereby converting UV divergences into poles in ε. To renor-
malize the theory, we will use the minimal subtraction scheme
within the context of dimensional regularization and collect
all poles in ε in the Z factors Zψ , Zψs, Zω, and Z�, so that the
renormalized action reads

SR =
∫

dd−1k

(2π )d−1

∫ ∞

0
dz ψ̄α (−�k, z)[Zψ (�α · �k − iαz∂z ) − Zωiω]ψa(�k, z) +

∫
dd−1k

(2π )d−1
ψ̄s a(−�k)M̃ψs a(�k)

− μ−ε�

Kd

∫ 3∏
i=1

dd−1ki

(2π )d−1

∫ ∞

0
dz ψ̄a(�k1, z)ψa(�k2, z)ψ̄b(�k3, z)ψb(−�k1 − �k2 − �k3, z). (41)

Here we have introduced the renormalized bulk and surface fields ψ (�k, z) and ψs(�k, z) and the notation Kd = Sd/(2π )d . The
engineering (momentum) dimensions of the fields ψ (x) and ψs(x) in real space are equal, as can be seen from the first line in
Eq. (40):

d0
ψ = 1

2 (d − 1). (42)

The Fourier transforms in the d − 1 directions along the surface [between ψ (x) and ψ (�k, z), as well as between ψs(r) and ψs(�k)]
change the engineering dimensions of the fields and introduce delta functions that reflect the conservation of momentum in
correlators of the fields.

The renormalized fields and the dimensionless coupling constant � at the mass scale μ are related to their bare values denoted
by circles as

ψ̊ = Z1/2
ψ ψ, ψ̊s = Z1/2

ψs
ψs, ω̊ = ZωZ−1

ψ ω, �̊ = 2μ−ε

Kd

Z�

Z2
ψ

�. (43)

The renormalized correlation function with n bulk fields ψ or ψ̄ and m surface fields ψs or ψ̄s is given by

G̊(n,m)(�ki, z j ; ω̊, �̊) = Zn/2
ψ Zm/2

ψs
G(n,m)(�ki, z j ; ω,�,μ), (44)

where �ki stands for n + m momenta of fields ψ , ψ̄ , ψs, ψ̄s such that
∑

i
�ki = 0 and z j stands for n z coordinates of the bulk fields

ψ , ψ̄ . The z coordinates of m fields ψs, ψ̄s are all 0. Using the fact that G̊(n,m) does not depend on the mass scale μ we derive the
RG equations [

μ
∂

∂μ
− β(�)

∂

∂�
+ n

2
ηψ (�) + m

2
ηψs (�) − γ (�)ω

∂

∂ω

]
G(n,m)(�ki, z j ; ω,�,μ) = 0, (45)

where we have introduced the scaling functions

β(�) = −μ
∂�

∂μ

∣∣∣∣
�̊

, ηi(�) = −β(�)
∂ ln Zi

∂�
(i = ψ,ψs, ω), γ (�) = ηω(�) − ηψ (�). (46)
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Dimensional analysis implies that for arbitrary rescaling factor λ > 0

G(n,m)(�ki, z j ; ω,�,μ) = λ(n+m−2)d0
ψ G(n,m)

(
λ�ki,

z j

λ
; λω,�, λμ

)
. (47)

The factor λ−2d0
ψ = λ−(d−1) comes from the delta function expressing the conservation of momentum. Equation (47) can be

rewritten in the infinitesimal form as[
μ

∂

∂μ
+

∑
i

�ki
∂

∂�ki

−
∑

j

z j
∂

∂z j
+ ω

∂

∂ω
+ (n + m − 2)d0

ψ

]
G(n,m)(�ki, z j ; ω,�,μ) = 0. (48)

Subtracting Eq. (45) from Eq. (48) we arrive at[
β(�)

∂

∂�
+

∑
i

�ki
∂

∂�ki

−
∑

j

z j
∂

∂z j
+ [1 + γ (�)]ω

∂

∂ω
+ n

(
d0

ψ − 1

2
ηψ (�)

)
+ m

(
d0

ψ − 1

2
ηs(�)

)
− 2d0

ψ

]
G(n,m) = 0. (49)

The linear partial differential equation (49) can be solved using the method of characteristics in which the general solution is
written as

G(n,m)(�ki, z j ; ω,�) = Anm(ξ ) fnm[�ki(ξ ), z j (ξ ); ω(ξ ),�(ξ )], (50)

with an arbitrary function fnm. The characteristics are the lines in the space of ki, z j , ω, and �, along which the solution of
(49) propagates. These lines can be parametrized by an auxiliary parameter ξ and are determined by the system of ordinary
differential equations

d�(ξ )

d ln ξ
= β[�(ξ )],

d�ki(ξ )

d ln ξ
= �ki(ξ ),

dz j (ξ )

d ln ξ
= −z j (ξ ),

dω(ξ )

d ln ξ
= (

1 + γ [�(ξ )]
)
ω(ξ ), (51)

with initial conditions �ki(1) = �ki, z j (1) = z j, ω(1) = ω, and �(1) = �. The solution along the characteristics propagates
according to

d ln Anm(ξ )

d ln ξ
= 2(n + m − 1)d0

ψ − n

(
d0

ψ + 1

2
ηψ [�(ξ )]

)
− m

(
d0

ψ + 1

2
ηs[�(ξ )]

)
, (52)

with initial condition Anm(1) = 1.
We assume that the β function has an unstable fixed point (FP) such that

β(�∗) = 0, β ′(�∗) > 0. (53)

In the vicinity of the FP the solutions of the RG equation (49) can be written as

G(n,m)(�ki, z j, ω) = ξ 2(n+m−1)d0
ψ−ndψ−mdψs fnm

(
�kiξ,

z j

ξ
; ωξ z, δξ 1/ν

)
, (54)

where we have introduced the critical exponents ν, z, dψ , dψs ,
and δ = � − �∗. The scaling ansatz (54) implies

ξ ∼ δ−ν,
1

ν
= β ′(�∗), (55)

so that we can identify ξ with the correlation length. The
dynamical critical exponent is

z = 1 + γ (�∗) = ηω(�∗) − ηψ (�∗) (56)

and the (renormalized) scaling dimensions of the fields ψ and
ψs are

di = d0
ψ + 1

2ηi(�
∗), i = ψ,ψs. (57)

Thus, for example, two-point functions at the transition be-
have as follows: in the bulk

G(2,0)(r) ∼ 1

rd−1+η
, η = ηψ (�∗), (58)

on the surface

G(0,2)(r) ∼ 1

rd−1+η‖
, η‖ = ηψs (�

∗), (59)

and in the direction z (perpendicular to the surface)

G(1,1)(z) ∼ 1

zd−1+η⊥
, η⊥ = 1

2
(η + η‖). (60)

C. Renormalization of composite operators

To calculate the LDOS we have to consider the renormal-
ization of the composite operators O(x) := ψ̄ (x)ψ (x) in the
bulk and Os(r) := ψ̄s(r)ψs(r) on the surface. We define the
Z factors which make their insertions in the renormalized
Green’s function finite,

O̊ = ZωZ−1
ψ O, O̊s = ZOs Z

−1
ψs

Os. (61)
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The functions with l insertions of the composite operator O and p insertions of operator Os renormalize as

G̊(n,m,l,p)(�ki, z j ; ω̊, �̊) = Zn/2−l
ψ Zm/2−p

ψs
Zl

ωZ p
Os

G(n,m,l,p)(�ki, z j ; ω,�,μ). (62)

By analogy with Eq. (49) it is easy to obtain an RG equation for G(n,m,l,p). Then we specialize to the LDOS in the bulk by setting
n = m = p = 0, l = 1, and integrating over �k, which gives[

β(�)
∂

∂�
− z

∂

∂z
+ [1 + γ (�)]ω

∂

∂ω
+ ηω(�) − ηψ (�) − 2d0

ψ

]
ρ(z, ω,�) = 0. (63)

The solution of Eq. (63) in the vicinity of the FP (53) gives the LDOS at the distance z from the surface

ρ(z, ω, δ) = ξ z−d f

(
z

ξ
, ωξ z, δξ 1/ν

)
, (64)

where we have used the relation (56). The LDOS at the Fermi energy far in the bulk (z → ∞) is given by

ρ(δ) ∼ δβ, β = ν(d − z). (65)

The RG equation for the LDOS on the surface is obtained by choosing n = m = l = 0, p = 1, and z = 0, which gives[
β(�)

∂

∂�
+ [1 + γ (�)]ω

∂

∂ω
+ ηρs (�) − ηψs (�) − 2d0

ψ

]
ρs(ω,�) = 0, (66)

where we defined the scaling function

ηρs (�) = −β(�)
∂ ln ZOs

∂�
. (67)

The solution of Eq. (66) in the vicinity of the FP (53) gives
the surface LDOS

ρs(ω, δ) = ξ−2d0
ψ+ηρs −ηψs fs(ωξ z, δξ 1/ν ), (68)

where

ηρs = ηρs (�
∗), ηψs = ηψs (�

∗). (69)

The surface LDOS at the Fermi energy is

ρs(δ) ∼ δβs , βs = ν(d − 1 − ηρs + ηψs ), (70)

where we defined a new surface exponent βs.

V. RENORMALIZATION IN THE BULK

The bulk critical exponents have been computed to two-
loop order in Refs. [19–21] using different RG schemes. Here
we repeat these calculations within our RG scheme to get the
renormalization constants which we will need to study the
surface properties.

To renormalize the theory far from the surface we can
take the limit z, z′ → ∞ keeping z − z′ finite. This allows
us to perform the Fourier transform also with respect to z
and switch from the correlation functions G to irreducible
vertex functions � [79]. In order to renormalize the theory
it is enough to consider only the one-particle vertex function
�(2)(k) at a finite external momentum k and the two parti-
cle vertex function �(4)(ki = 0) at zero external momenta.
The one- and two-loop diagrams contributing to these vertex
functions and the corresponding integrals computed using di-
mensional regularization within a minimal subtraction scheme
are shown in Appendix D. For the one-particle bare vertex

function we obtain

�̊(2)(k, ω̊) = αμkμ

[
1 + K2

d

4
ω̊2ε�̊2 1

ε

]

− iω̊

[
1 − Kd

2
ω̊ε�̊

2

ε
+ K2

d

4
ω̊2ε�̊2

(
6

ε2
+ 4

ε

)]
,

(71)

while the two-particle bare vertex function reads

�̊(4)(ki = 0, ω̊) = �̊ − Kd

2
ω̊ε�̊2

(
4

ε
+ 6

)

+ K2
d

4
ω̊2ε�̊3

(
16

ε2
+ 54

ε

)
. (72)

Using the minimal subtraction scheme we require

Zψ�̊(2)(k, ω̊, �̊) = finite, (73)

Z2
ψ�̊(4)(ki = 0, ω̊, �̊) = finite, (74)

where the bare parameters ω̊ and �̊ are expressed in terms of
the renormalized ones as in Eq. (43). To two-loop order we
obtain

Zψ = 1 − �2

ε
, (75)

Zω = 1 + 2�

ε
+ 6�2

ε2
, (76)

Z� = 1 + 4�

ε
+ �2

(
16

ε2
+ 2

ε

)
. (77)

The corresponding bulk scaling functions can be computed
using Eqs. (46) which give

β(�) = −ε� + 4�2 + 8�3 + O(�4), (78)

ηψ (�) = −2�2 + O(�3), (79)

ηω(�) = 2� + O(�3), (80)

γ (�) = 2� + 2�2 + O(�3). (81)
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Solving the FP equation (53) with the β function (78) we
get

�∗ = ε

4
− ε2

8
+ O(ε3). (82)

This gives the critical exponents to two-loop order as

1

ν
= ε + ε2

2
+ O(ε3), (83)

z = 1 + ε

2
− ε2

8
+ O(ε3), (84)

β = ν(d − z) = ν

(
1 + ε

2
+ O(ε2)

)
, (85)

η = −ε2

8
+ O(ε3), (86)

dψ = 1

2
(d − 1 + ηψ ) = 1

2
+ ε

2
− ε2

16
+ O(ε3), (87)

which coincide with those found in Refs. [19–21].

VI. SPECIAL TRANSITION

In this section we focus on the special transition taking
place at θ = 0, when both the bulk and the surface become
metallic at the same disorder strength �c whose dimension-
less value is given to two-loop order by Eq. (82).

To determine the renormalization factor Zψs one can con-
sider either the surface correlation function G̊(0,2)(�k, z1 =
0, z2 = 0) or the mixed bulk-surface correlation function
G̊(1,1)(�k, z1 = 0, z2 = z). Here and afterward we explicitly
keep the coordinate z = 0 of the surface fields for trans-
parency. To check that the same Z factors make all correlation
functions finite simultaneously we renormalize both these
functions. The surface correlation function can be expressed
graphically to one loop order as

where the arrow lines stand for the bare Green’s function (20)
and the dashed line for the disorder vertex �̊. Integrating out
the internal coordinate z1 we arrive at

G̊(0,2)(�k, 0, 0) = (1 + M0)
�α · �k + iω̊

2q
+ �̊

2q
(1 + M0)

[
1

2
�α · �k

(
1 − ω̊2

q2

)
+ iω̊

(
1 − ω̊2

2q2

)]∫
�k1

1

q1
, (88)

where q = √
k2 + ω̊2 and q1 =

√
k2

1 + ω̊2. The bulk-surface correlation function to one-loop order can be expressed as

which gives

G̊(1,1)(�k, 0, z) = (1 + M0)

[ �α · �k + iω̊

2q
− iαz

2

]
e−qz

+ �̊

8q
(1 + M0)

[
�α · �k

(
1 − 2(1 + qz)

ω̊2

q2

)
+ iω̊

(
3 − 2(1 + qz)

ω̊2

q2

)
− iqαz

(
1 − 2ω̊2z

q

)]
e−qz

∫
�k1

1

q1
. (89)

The one-loop integral over internal momentum �k1 in Eqs. (88) and (89) can be computed using dimensional regularization as∫
�k1

1

q1
=

∫
dd−1k1

(2π )d−1

1√
k2

1 + ω2
= −Kd−1

ωε

ε
. (90)

We renormalize the correlation functions by imposing the conditions

Z−1
ψs

G̊(0,2)(�k, 0, 0; ω̊, �̊) = finite, Z−1/2
ψ Z−1/2

ψs
G̊(1,1)(�k, 0, z; ω̊, �̊) = finite, (91)

where the bare parameters ω̊ and �̊ are expressed in terms of the renormalized ones (43). Both conditions yield the same result:

Zψs = 1 − 2�

ε
+ O(�2). (92)

Thus, to one loop order, we get

ηψs = η‖ = 2η⊥ = −2�∗ + O(�∗2) = −ε

2
+ O(ε2). (93)

The fact that both correlation functions (88) and (89) can be made finite simultaneously at arbitrary arguments �k and ω with the
same Z factors is nontrivial and proves consistency of our calculations.
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To find the factor ZOs for the surface composite operator we can consider the surface correlation function G̊(0,2,0,1)(k, z1 =
0, z2 = 0, 0) with an insertion of Os at zero momentum �kOs = 0, which to one-loop order reads

Here wavy lines denote the insertions of the composite operator Os. Evaluating the Feynman diagrams we arrive at

G̊(0,2,0,1)(k, 0, 0, 0) = 1

q2
(1 + M0)[iω̊(�α · �k) − ω̊2] + �̊

q2
(1 + M0)

[
iω̊(�α · �k)

(
2 − ω̊2

q2

)
− ω̊2

(
5

2
− ω̊2

q2

)] ∫
�k1

1

q1
. (94)

Similarly, the bulk-surface correlation function G̊(1,1,0,1)(k, z1 = 0, z2 = z, 0) with an insertion of an Os composite operator can
be expressed graphically as

which gives

G̊(1,1,0,1)(�k, 0, z, 0) = (1 + M0)

[
(�α · �k)

(
iω̊

q2
− i

4q
αz − 1

4q
τx ⊗ σ0

)
+ q2 − 2ω̊2

q
+ ω̊αz

]
e−qz

+ �̊

8q
(1 + M0)

[
(�α · �k)

(
2i

ω̊

q

(
9 − 2(2 + qz)

ω̊2

q2

)
−

(
5 − 2(1 + qz)

ω̊2

q2

)
τx ⊗ σ0

)

+ q

(
5 − 2(9 + qz)

ω̊2

q2
+ 4(2 + qz)

ω̊4

q4

)
+ ω̊

(
7 − 2(1 + qz)

ω̊2

q2

)
αz

]
e−qz

∫
�k1

1

q1
. (95)

To renormalize these correlation functions with insertions we
require

Z−1
Os

G̊(0,2,0,1)(�k, 0, 0, 0; ω̊, �̊) = finite,

Z−1/2
ψ Z1/2

ψs
Z−1

Os
G̊(1,1,01)(�k, 0, z, 0; ω̊, �̊) = finite, (96)

where the bare parameters ω̊ and �̊ are expressed in terms of
the renormalized ones (43). To lowest order in �, renormal-
ization of both correlation functions gives

ZOs = 1 − 6�

ε
+ O(�2). (97)

From Eqs. (67) and (97) we find

ηρs = −6�∗ = − 3
2ε + O(ε2). (98)

The surface dynamic exponent is

zs = 1 + ηρs − ηψs = 1 − ε + O(ε2). (99)

Thus to one loop order the surface states in three dimensions
(ε = 1) have very weak dispersion ω ∼ kzs with zs ≈ 0. The
critical behavior of the LDOS on the boundary is described by
the surface critical exponent

βs = ν(d − zs) = ν[1 + 2ε + O(ε2)]. (100)

The ratio of the surface and bulk exponent independent of ν

reads
βs

β
≈ 1 + 2ε

1 + 1
2ε

= 1 + 3

2
ε + O(ε2), (101)

which can be helpful since numerical estimates of the ex-
ponent ν usually have larger error bars than those for the
exponent β [20].

Let us make some remarks on the relation between disor-
dered Dirac semimetals and the Gross-Neveu model. It has
been shown [19–21] that the bulk critical behavior of disor-
dered Dirac and Weyl semimetals can be derived from the bulk
critical behavior of the Euclidean Gross-Neveu model

S = −
∫

dd x

[ N∑
a=1

ψ̄a(x)
(
γ

μ
E ∂μ

)
ψa(x)

+ g

2

N∑
a,b=1

ψ̄a(x)ψa(x)ψ̄b(x)ψb(x)

]
(102)

in the limit of the number of fermion flavors N = 0. Indeed,
if we change variable ψ̄ → −iψ̄ in (40) and omit for the
moment the surface and mass terms we obtain

S = −
∫

dd x

[ N∑
a=1

ψ̄a(x)(αμ∂μ)ψa(x)

− �

2

N∑
a,b=1

ψ̄a(x)ψa(x)ψ̄b(x)ψb(x)

]
. (103)

Since the Euclidean matrices γ
μ
E satisfy the same anticom-

mutation relations as αμ both models (102) and (103) lead to
the same bulk critical behavior. Note that d in Eq. (102) is
not the space dimension as in Eq. (103) but the space-time
dimension and the positive sign of � in Eq. (103) corresponds
to attraction, while the positive sign of g in Eq. (102) corre-
sponds to repulsive interactions. The Gross-Neveu model has
been studied in the high energy physics up to four loop order
[80–82], so the bulk critical behavior of the disordered Dirac
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fermions can be obtained from previously known results to
order ε4.

However, the imposition of the BCs at z = 0 as Mψ =
ψ breaks the correspondence between the two models. In
semi-infinite systems z > 0, the same matrix M can give
different results for the disorder Dirac fermions and the
Gross-Neveu model since αμ and γ

μ
E are different and M

introduces an explicit dependence of the results on their
form. Indeed, the boundary condition with Mθ=0 was recently
used in Refs. [70,71] to study the boundary critical behav-
ior of conformal field theories of interacting fermions in the
Gross-Neveu universality class. The surface critical exponents
derived in Refs. [70,71] in the limit of N = 0 are different
from those we obtained here.

VII. EXTRAORDINARY TRANSITION

Unlike the special and the ordinary transitions, the RG
description of the extraordinary transition encounters serious
obstacles even for spin systems [83]. Its current understanding
still relies on the mean-field approximation and exact results
for spherical spin models [84].

The case of a Dirac semimetal in a half space is even
more complicated than that of a spin system. In the latter,
the ordered surface and the extraordinary transition (the bulk

transition in the presence of an ordered boundary) exist at the
mean-field level. On the other hand, the semimetal phase with
a metallic surface is nonperturbative in the disorder strength
and so the extraordinary transition cannot be studied in the
usual framework of perturbative RG. Indeed, repeating the
calculations which we have done in the previous section for
θ �= 0 we find that the model is not renormalizable: new
divergences are generated by the RG flow. They cannot be
absorbed into the existing Z factors and can be attributed to the
presence of a nonperturbative nonzero surface LDOS at the
extraordinary transition. Nevertheless, we can extract some
predictions performing calculations in the real space.

The one-loop Green’s function on the surface (z1 = z2 =
0) at zero energy can be written in real space for arbitrary θ as

(104)

where the first term is the bare Green’s function given by
Eq. (26),

δ(0)G̊(0,2)(�r12) = i

Sd
(1 + Uθ )

�α · �r12

rd
12

, (105)

where �r12 = �r1 − �r2 and r12 = |�r12|. The one loop correction
can be split into the two integrals:

δ(1)G̊(0,2)(�r12) = i�̊

S3
d

(
2

cos2 θ
− 1

) ∫
dd−1r

∫ ∞

0
dz

(2z)2−d (1 + Uθ )�α · �r12

{[z2 + (�r − �r1)2][z2 + (�r − �r2)2]}d/2
(106)

and

δ(2)G̊(0,2)(�r12) = −2�̊

S3
d

sin θ

cos3 θ

∫
dd−1r

∫ ∞

0
dz (2z)1−d {(1 + Uθ )[�α · (�r − �r1)][�α · (�r − �r2)] + 2z2}(1 + Mθ )

{[z2 + (�r − �r1)2][z2 + (�r − �r2)2]}d/2
. (107)

The integral in Eq. (106) is calculated in Appendix E. Expanding the numerical prefactor in small ε = d − 2 to lowest order we
get

δ(1)G̊(0,2)(�r12) = i�̊

4πSd

(
2

cos2 θ
− 1

)
(1 + Uθ )�α · �r12

r2d−2
12

(
− 2

ε
+ γE + ln(π ) + O(ε)

)
. (108)

Using that to lowest order in ε the bare disorder is �̊ = 2�/Kd , we can combine the correction (108) with (105), expanding it
around the leading asymptotics �α · �r12/rd

12 as

G̊(0,2)(�r12) = i

Sd
(1 + Uθ )

�α · �r12

rd
12

[
1 + �

(
2

cos2 θ
− 1

)(
− 2

ε
+ ln

(
r2

12

) + 2γE − 2 ln2

)]
. (109)

The ln term in Eq. (109) gives us the anomalous dimension of the surface scaling behavior. Exponentiating it in Eq. (109) we get

G(0,2)(�r1, �r2) = i

Sd
(1 + Uθ )

�α · �r12

rd+η‖
12

, (110)

where, to one loop order,

η‖ = −2

(
2

cos2 θ
− 1

)
�∗ + O(�∗2) = −

(
2

cos2 θ
− 1

)
ε

2
+ O(ε2). (111)

For θ = 0 this exponent coincides with that at the special transition and grows with θ diverging at θ = π
2 corresponding to the

surface flat band.
In contrast with extraordinary transitions in spin systems where the critical exponents do not depend on the bare BC, here

the critical exponent η‖ depends continuously on the BC parameter θ . As we show in Appendix B, the BC (2) is conformally
invariant for any parameter θ , while in spin systems a general mixed (Robin) BC involves a surface mass ms that describes
the modification of the surface coupling strength and breaks conformal invariance. As a result, the mass ms flows under RG
to its fixed-point values ms = ±∞ at the ordinary and extraordinary transitions [85] and the surface critical exponents at the
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extraordinary transition do not depend on the bare values of ms. Instead, in the disordered Dirac systems we find a line of fixed
points corresponding to different values of parameter θ , which does not renormalize.

Let us now discuss the second contribution given by Eq. (107). As shown in Appendix E it can be simplified to

δ(2)G̊(0,2)(�r12) = −4�̊

S3
d

sin θ

cos3 θ

�(d )

�2(d/2)

∫
dd−1r

∫ ∞

0
dz

∫ 1

0
dβ

(2z)1−d (1 + Mθ )
[
r2 + z2 − β(1 − β )r2

12

]
[
r2 + z2 + β(1 − β )r2

12

]d
[β(1 − β )]1−d/2

. (112)

For �r12 �= 0, the integral (112) converges for 3
2 < d < 3 and

evaluates to

δ(2)G̊(0,2)(�r12) = − �̊

Sd

sin θ

cos3 θ

�
(

3−d
2

)
�

(
d − 3

2

)
2πd/2

1 + Mθ

r2d−3
12

.

(113)

Naively, the correction (112) is subdominant with respect to
the leading scaling behavior (110) for d > 2. However, this
term has a different structure from the bare two-point function,
that is, renormalization of the model requires adding coun-
terterms of the form absent in the bare model. Therefore, the
model is not renormalizable for θ �= 0 in d = 2.

If the correction (112) to the Green’s function had an imag-
inary part, it would give rise to a nonzero surface LDOS at the
extraordinary transition. The integral (112) diverges at small z
for d > 3

2 for �r12 = 0. Introducing a UV cutoff z > 2π/� we
find that its trace is given by

Trδ(2)G̊(0,2)(0) = −�̊�1+2ε

S2
d

sin θ

cos3 θ

27−3dπ3−2d�
(

d−1
2

)2

(2d − 3)�(d − 1)
.

(114)

The result is real and thus the surface LDOS vanishes at zero
energy in perturbation theory in the disorder strength �̊. A
nonzero surface LDOS is generated only at a finite disorder
strength �s at the surface transition and the semimetal phase
with metallic surface (see Fig. 1) is intrinsically nonperturba-
tive. Obtaining a nonzero surface LDOS requires either the
SCBA discussed in Sec. III or the RG approach to the surface
states developed in the next section.

Nevertheless the profile of the LDOS away from the sur-
face at the extraordinary transition can be found from the
solution of Eq. (64) and reads

ρ(z) = 1

zd−z
, (115)

where z is the bulk dynamical exponent.
We emphasize that the above calculations do not provide

a complete description of the extraordinary transition in dis-
ordered Dirac fermions since they do not take into account
nonperturbative effects for disorder strengths larger than the
surface critical disorder � > �s.

VIII. SURFACE TRANSITION

The critical exponents for the surface transition in spin sys-
tems coincide with the critical exponents of the corresponding
(d − 1)-dimensional system. Indeed, once we integrate out
the bulk degrees of freedom, the bare Green’s function in the
bulk 1/(τ + k2), where τ is the bulk reduced temperature and
�k ∈ Rd , becomes 1/(τs + k2), where τs is the surface reduced

temperature and �k ∈ Rd−1 [84]. This is due to the fact that
the bulk remains massive when the surface is critical and thus
the bulk can be effectively decoupled from it. The situation is
completely different in the case of a Dirac semimetal, where
the bulk remains massless at the surface transition.

Using Eq. (24) or Eq. (26), the two-point Green’s function
on the surface at zero energy can be expressed as

G0(�k) = (1 + Uθ )
�α · �k
2k

. (116)

We now construct an effective field theory of the surface tran-
sitions. Since the matrix (116) is not invertible, it is convenient
to switch from the four-component spinor field ψ (�r) to the
two-component spinor field �(�r) = {�1(�r), �2(�r)} such that
ψ (�r) = X�(�r) with

X =

⎛
⎜⎜⎜⎜⎜⎝

i√
2

0

0 i√
2

eiθ√
2

0

0 − e−iθ√
2

⎞
⎟⎟⎟⎟⎟⎠. (117)

This matrix satisfies X †X = σ0 and (Mθ − 1)X = 0, i.e., the
field �(�r) satisfies the BCs (2) by construction. We can now
write the effective theory of the surface transition as

Ssurf =
N∑

a=1

∫
dd−1k �̄a(−�k)G−1(�k)�a(�k)

− �s

2

N∑
a,b=1

∫
dd−1r �̄a(�r)�a(�r)�̄b(�r)�b(�r), (118)

where we have introduced the surface interaction term with
an effective strength �s due to scattering of surface states by
impurities close to the surface. The Green’s function G(�k) =
X †G0(�k)X has the following form:

G(�k) = (1 − iσz tan θ )
�σ · �k

k
. (119)

The dimensional analysis of the theory (118) shows that the
critical dimension is d = 1 and weak disorder is irrelevant for
d > 1. To investigate effects of strong disorder we apply the
Wilsonian RG method (shell integration in momentum space).
To one loop order this gives

−m∂m�s = −(d − 1)�s + 2

cos2 θ
�2

s . (120)

This RG flow has a non-Gaussian fixed point

�∗
s = 1

2 (d − 1)cos2 θ (121)
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that is unstable and corresponds to the surface transition.
In the plane (θ , �) shown for d = 3 in Fig. 1 the line of
these fixed points describing the surface transition connects
the special transition point and the point (θ = π/2, � = 0)
corresponding to the surface flat band which becomes metallic
for arbitrary weak disorder similar to the strictly 2D Dirac
fermions, e.g., in the graphene. Linearizing around the sur-
face fixed point we calculate the in-plane correlation length
exponent at the surface transition for 0 < θ < π/2 as

νs = 1

d − 1
, (122)

which becomes ν = 1/(d − 2) at the special transition for
θ = 0, while at θ = π/2 one can expect an exponential be-
havior.

IX. CONCLUSIONS

In this paper, we have studied a non-Anderson, disorder-
driven quantum phase transition in a semi-infinite Dirac
semimetal with a flat boundary. We considered the most gen-
eral boundary conditions (BCs) and then narrowed them down
to the ones that respect time-reversal invariance and conformal
symmetry and can be parametrized by a single angle θ . In
clean systems, general BCs give rise to Fermi arcs on the sur-
face, while the conformally invariant BCs lead to rotationally
invariant surface states with linear dispersion and a pointlike
Fermi surface at zero energy.

Studying the large scale behavior of the semi-infinite dis-
ordered Dirac fermions as a function of the angle θ and
the disorder strength, we obtained a rich phase diagram: the
surface of the system becomes metallic at a critical disorder
that is weaker than that for the semimetal-diffusive metal
transition in the bulk. The latter transition then takes place in
the presence of a metallic surface. In the language of surface
critical phenomena this corresponds to the so-called extraordi-
nary transition. The lines of the surface and the extraordinary
transitions meet at the special transition point.

To elucidate the universal properties across the phase di-
agram, we applied renormalization group (RG) methods and
computed the corresponding critical exponents. We showed
that, unlike the bulk case, the surface critical properties of
disordered Dirac fermions are not the same as the surface crit-
ical properties of the Gross-Neveu model in the zero replica
limit. While the special and the surface transitions can be
described perturbatively in disorder from the semimetal phase,
the extraordinary transition cannot be studied within the usual
framework of perturbative RG since the semimetal phase with
a metallic surface is intrinsically nonperturbative in the dis-
order strength. A complete description of the extraordinary
transition in disordered Dirac fermions remains a challenging
task.

It would be also interesting to study the nonperturbative
effects on the surface criticality and in particular on the sur-
face transition [45–55]. We hope that these studies can be
generalized to the more complicated case of nodal semimetals
with Fermi arcs on the surface and even to the disordered
semi-infinite nodal loop semimetals [86–88].

Furthermore, it is interesting to reconsider Anderson tran-
sitions in semi-infinite disordered electronic systems from the
perspective of surface critical phenomena.
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APPENDIX A: BOUNDARY CONDITIONS

Let us consider a semi-infinite system with the boundary
normal to the unit vector n̂B. Then the matrix M should satisfy
the following generalization of Eq. (3):

{M, n̂B · α} = {M, τ3 ⊗ (n̂B · σ)} = 0. (A1)

To find matrices M that satisfy this relation, we follow the
strategy of Ref. [72] and start by expanding an arbitrary Her-
mitian matrix M as

M =
3∑

μ,ν=0

cμντμ ⊗ σν, (A2)

where the 16 coefficients cμν are real. Substitution of this form
into Eq. (A1) gives conditions on the coefficients cμν that can
be written as

c00 = c30 = 0, c0 · n̂B = c3 · n̂B = 0,

c1 = b1n̂B, c2 = b2n̂B, (A3)

where we have introduced four 3-vectors

cμ = (cμ1, cμ2, cμ3). (A4)

Combining the so-far unconstrained coefficients into two vec-
tors in the x − y plane,

a = (c10, c20, 0), b = (b1, b2, 0), (A5)

the matrix M acquires the form

M = τ0 ⊗ (c0 · σ) + τ3 ⊗ (c3 · σ) + (a · τ) ⊗ σ0

+ (b · τ) ⊗ (n̂B · σ). (A6)

Next we substitute Eq. (A6) into the condition M2 = I.
This gives several constraints. First of all, we get

c2
0 + c2

3 + a2 + b2 = 1, c0 · c3 = 0, a · b = 0. (A7)

Together with Eq. (A3) this means that the three vectors c0,
c3, and n̂B are mutually orthogonal and we can write

c3 = λn̂B × c0. (A8)

Another constraint is

a = λ(ẑ × b). (A9)
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Now the first equation in (A7) becomes

(1 + λ2)
(
c2

0 + b2
) = 1. (A10)

Solutions of this equation can be parametrized as

λ = tan θ, |c0| = cos θ cos γ , |b| = cos θ sin γ ,

θ ∈ [−π/2, π/2], γ ∈ [0, π/2]. (A11)

Let us use the angle φ ∈ [0, 2π ) to characterize the direction
of the vector b in the x − y plane. Then

b = cos θ sin γ (cos φ, sin φ, 0),

a = sin θ sin γ (− sin φ, cos φ, 0). (A12)

Finally, let us use the unit vector n̂0 in the direction of c0, so
that

c0 = cos θ cos γ n̂0, c3 = sin θ cos γ (n̂B × n̂0). (A13)

We end up with four angles: θ , γ , φ, and the angle deter-
mining the direction of n̂0 in the plane normal to n̂B. Then
we can write the most general four-parameter family of M
matrices:

M = cos θ cos γ τ0 ⊗ (n̂0 · σ)

+ sin θ cos γ τ3 ⊗ (n̂B × n̂0) · σ

− sin θ sin γ (sin φ τ1 − cos φ τ2) ⊗ σ0

+ cos θ sin γ (cos φ τ1 + sin φ τ2) ⊗ (n̂B · σ). (A14)

Let us now simplify the matrix M for the case n̂B = ẑ that we
are dealing with. In this case the unit vector n̂0 lies in the x − y
plane and we can use another angle ψ ∈ [0, 2π ) to write

n̂0 = (cos ψ, sin ψ, 0),

n̂B × n̂0 = ẑ × n̂0 = (− sin ψ, cos ψ, 0). (A15)

Then the matrix M becomes

M = cos θ cos γ τ0 ⊗ (cos ψ σ1 + sin ψ σ2)

− sin θ cos γ τ3 ⊗ (sin ψ σ1 − cos ψ σ2)

− sin θ sin γ (sin φ τ1 − cos φ τ2) ⊗ σ0

+ cos θ sin γ (cos φ τ1 + sin φ τ2) ⊗ σ3, (A16)

which is exactly Eq. (4).

APPENDIX B: SYMMETRY CONSTRAINTS
ON BOUNDARY CONDITIONS

The bulk Dirac Hamiltonian (1) in a clean system is
conformally invariant. The Euclidean conformal group in d
dimensions is generated by translations Pμ, rotations Mμν ,
dilatation D, and special conformal generators Kμ. These gen-
erate infinitesimal conformal transformations of Dirac spinors
that can be written as

[Pμ,ψ (x)] = ∂μψ (x),

[Mμν, ψ (x)] = (xν∂μ − xμ∂ν + Sμν )ψ (x),

[D, ψ (x)] = (xμ∂μ + �ψ )ψ (x),

[Kμ,ψ (x)] = (2xμxν∂ν − x2∂μ + 2�ψxμ − 2xνSμν )ψ (x),

where the generators Sμν of internal rotations in the spinor
space are

Sμν ≡ 1
4 [γ μ, γ ν] = 1

2γ μγ ν for μ �= ν. (B1)

In our setting the role of the Euclidean gamma matrices is
played by the alpha matrices αi.

When we consider a semi-infinite system with the bound-
ary at z = 0, we can only ask whether the system is invariant
under conformal transformations preserving the plane z = 0.
Thus we restrict the indices μ, ν above to values 1 and 2.
The boundary condition (2) is conformally invariant if the
matrix M commutes with D, P1, P2, M12, K1, and K2. The
first three of these conditions are trivially satisfied for any
constant (spatially independent) matrix M. The last three con-
ditions all reduce to the requirement that M commutes with
S12. In other words, rotational invariance in the x − y plane
turns out equivalent to conformal invariance. Since in our case
S12 ∝ α1α2 ∝ τ0 ⊗ σ3, we need to check the condition

[M, τ0 ⊗ σ3] = 0. (B2)

It is easy to see that the last two terms in a general matrix
(4) satisfy Eq. (B2) for any value of the parametrizing angles,
but the first two terms do not. These symmetry-violating terms
both vanish when γ = π/2, in which case we get the two-
parameter family (5) (upon making an additional trivial shift
φ → φ + π to flip the overall sign):

M3D conf = sin θ (sin φ τ1 − cos φ τ2) ⊗ σ0

− cos θ (cos φ τ1 + sin φ τ2) ⊗ σ3. (B3)

If we also require invariance under time reversal T = τ0 ⊗
σ2K, we need to satisfy [T , M] = 0 or

Mτ0 ⊗ σ2 = τ0 ⊗ σ2M∗. (B4)

It is easy to check that the general matrices (4) satisfy Eq. (B4)
only when γ = π/2 and φ = ±π/2, which gives two families
±Mθ , where

Mθ = sin θ τ1 ⊗ σ0 − cos θ τ2 ⊗ σ3. (B5)

These matrices are contained within the conformally invariant
family (5) and are unitary-equivalent to any matrix M3D conf:
M3D conf = ±UMθU −1, where

U = eiφ̃±τ3 ⊗ σ0 = (cos φ̃± τ0 + i sin φ̃± τ3) ⊗ σ0,

φ̃ = ±π

4
− φ

2
. (B6)

These unitary transformations amount to rotations of τ ma-
trices in the x − y plane and, therefore, do not change the
matrices αi and the massless Dirac Hamiltonian (1).

Finally, we may impose symmetry under charge conjuga-
tion C = τ2 ⊗ σ2K: [C, M] = 0 or

Mτ2 ⊗ σ2 = τ2 ⊗ σ2M∗. (B7)

In the general case this gives two families

MC1 = τ3 ⊗ (sin ψ σ1 − cos ψ σ2),

MC2 = (cos φ τ1 + sin φ τ2) ⊗ σ3. (B8)

Only the second of these two families is contained in the
conformally invariant family (5) when θ = 0. As before, this
family can be unitarily rotated to Mθ=0.
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FIG. 3. Spectrum of the Dirac Hamiltonian (1) in a slab ge-
ometry for symmetric BCs with θ = − π

4 . In the limit of kL � 1
the states with energies |εk |/k > 1 (blue lines) form the bulk Dirac
bands, while the two states (red lines) whose energy asymptoti-
cally approach εk/k = 1/

√
2 (dashed black line) are localized at the

boundaries.

APPENDIX C: DIRAC SURFACE STATES
IN A SLAB GEOMETRY

Here we consider the time-independent, massless Dirac
equation Ĥ0ψ = εψ with Hamiltonian (1) in a slab geometry
where the system has two flat boundaries at z = 0 and z = L.
At each boundary we impose a BC of the form (10) with
θ = θ1 at z = 0 and θ = θ2 at z = L. We can again use the
translational invariance along the two boundaries to perform
the Fourier transform in the directions parallel to them, �r =
(x, y) → �k = (k1, k2), and look for solutions in the form

ψ (r) = ψ�k (z)ei�k·�r . (C1)

Similarly to Eqs. (9) and (10), we now have to solve

(−i α3∂3 + �α · �k)ψ�k (z) = εkψ�k (z), (C2)

Mθ1ψ�k (0) = ψ�k (0), (C3)

Mθ2ψ�k (L) = ψ�k (L). (C4)

For simplicity, we consider the symmetric case with identi-
cal boundaries. Then the symmetry z → −z, θ → −θ implies
that the BC angles at the two boundaries are related as θ1 =
−θ2 = θ . In this case the spectrum εk is determined by the
equation

tanh
(
L
√

k2 − ε2
k

)
(εk cos θ ± k) =

√
k2 − ε2

k sin θ, (C5)

where the upper sign corresponds to positive θ ∈ (0, π/2] and
the lower sign to negative θ ∈ [−π/2, 0). This spectrum is
shown in Fig. 3 as a function of L for θ = −π

4 . For large slab
thickness (kL| sin θ | � 1), Eq. (C5) has two solutions with

0 2 4 6 8

0.0

0.2

0.4

0.6

0.8

1.0

FIG. 4. Red dashed line: the lowest energy surface state in a slab
geometry for symmetric BCs with θ = − π

4 and kL = 8. Blue solid
line: the surface state in a semi-infinite geometry given by Eqs. (11)
and (15) for the same parameters.

|εk| < k given by

εk ≈ ε0k ± 2k sin2 θ exp(−kL| sin θ |), (C6)

which are localized at the boundaries. In the limit of
kL| sin θ | → ∞ their energies asymptotically approach ε0k =
∓k cos θ , which is the energy of the surface state in the semi-
infinite geometry; see Eq. (16).

For θ = 0 there are no surface states, either in the slab
geometry or in a semi-infinite system. Otherwise (θ �= 0), the
surface states on both boundaries, being infinitely separated
(L → ∞), would have exactly the same energy due to the
choice of the BCs. For finite L the degeneracy is lifted, similar
to the problem of a symmetric double well in nonrelativistic
quantum mechanics. The density ψ†ψ (z) for the lower energy
surface state in the slab geometry and the density for the
wave function in the semi-infinite geometry, normalized to
ψ†ψ (0) = 1, are shown in Fig. 4.

The solutions with |εk| > k describe the bulk Dirac bands
with energies εk ≈ ±

√
k2 + (nπ + θ )2/L2, n ∈ N for |εk| �

k. Here we considered the simplest case of a single Dirac cone.
Surface states in a slab geometry for Weyl semimetal with
several cones were discussed in Ref. [89].

APPENDIX D: VERTEX FUNCTIONS IN THE BULK

The one- and two-particle vertex functions in the bulk are
given to two-loop order by the diagrams shown in Fig. 5.
The corresponding integrals are computed using dimensional
regularization and are given in Table I.

APPENDIX E: CALCULATION OF THE ONE-LOOP
INTEGRALS IN REAL SPACE

The integral

I =
∫

dd−1r
∫ ∞

0
dz

z2−d

{[z2 + (�r − �r1)2][z2 + (�r − �r2)2]}d/2
(E1)
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that appears in Eq. (106) can be computed using the Feynman parametrization. First we write

1

[z2 + (�r − �r1)2]d/2[z2 + (�r − �r2)2]d/2
= �(d )

�2(d/2)

∫ 1

0
dβ

βd/2−1(1 − β )d/2−1

(β[z2 + (�r − �r1)2] + (1 − β )[z2 + (�r − �r2)2])d
. (E2)

This expression will be integrated over �r. Therefore, we can
make a linear change of variables to remove the terms linear
in �r in the denominator:

�r → �r + β�r1 + (1 − β )�r2. (E3)

This gives

I = �(d )

�2
(

d
2

) ∫ 1

0
dβ βd/2−1(1 − β )d/2−1

∫ ∞

0
dz z2−d

×
∫

dd−1r[
r2 + z2 + β(1 − β )r2

12

]d
. (E4)

(i) (ii) (iii) (iv)

(v) (vi) (vii)

(viii) (ix) (x)

(xi) (xii) (xiii)

(xiv) (xv) (xvi)

(xvii) (xviii) (xix)

(xx) (xxi)

FIG. 5. Diagrams contributing to the one- and two-particle vertex
functions to two-loop order.

The subsequent integrals over �r and z converge for 1 <

d < 3 and are easily reduced to the beta function with the
result ∫

dd−1r[
r2 + z2 + β(1 − β )r2

12

]d

= π (d−1)/2 �
(

d+1
2

)
�(d )

1[
z2 + β(1 − β )r2

12

](d+1)/2 ,

∫ ∞

0
dz

z2−d[
z2 + β(1 − β )r2

12

](d+1)/2

= �
(

3−d
2

)
�(d − 1)

2�
(

d+1
2

) 1[
β(1 − β )r2

12

]d−1 . (E5)

Finally we do the β integral which converges for d < 2:∫ 1

0
dβ [β(1 − β )]−d/2 = �2

(
1 − d

2

)
�(2 − d )

. (E6)

Combining all factors and using the Legendre duplication
formula for the gamma function

�(2 − d ) = π−1/221−d�

(
1 − d

2

)
�

(
3 − d

2

)
, (E7)

TABLE I. Integrals corresponding to the diagrams shown in
Fig. 5 computed using dimensional regularization with their com-
binatorial factors.

Diagram Expression

(i) Kd
2 ω̊ε�̊ 2iω̊

ε

(ii) − Kd
2 ω̊ε�̊2( 4

ε
+ 6)

(iii) + (iv) 0

(v)
K2

d
4 ω̊2ε�̊2(− 4iω̊

ε2 − 4iω̊
ε

)

(vi)
K2

d
4 ω̊2ε�̊2( �α· �p

ε
− 2iω̊

ε2 )

(vii) + (x)
K2

d
4 ω̊2ε�̊3( 4

ε2 + 2
ε

)

(viii) + (ix)
K2

d
4 ω̊2ε�̊3( 16

ε
)

(xi) + (xii) 0

(xiii) + (xiv)
K2

d
4 ω̊2ε�̊3(− 4

ε2 − 4
ε

)

(xv)
K2

d
4 ω̊2ε�̊3( 8

ε2 + 16
ε

)

(xvi)
K2

d
4 ω̊2ε�̊3( 4

ε2 + 8
ε

)

(xvii)
K2

d
4 ω̊2ε�̊3(− 4

ε2 − 8
ε

)

(xviii)
K2

d
4 ω̊2ε�̊3( 8

ε2 + 16
ε

)

(xix)
K2

d
4 ω̊2ε�̊3( 8

ε
)

(xx) + (xxi) 0
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we get for 1 < d < 2

I = 2d−2πd/2 �(d − 1)�
(
1 − d

2

)
�2

(
d
2

) 1

r2d−2
12

. (E8)

To derive Eq. (112) from Eq. (107) we use the Feyn-
man parametrization (E2) and then change variables �r →
�r + β�r1 + (1 − β )�r2. Omitting the linear in �r terms which
integrate out to zero we arrive at Eq. (112).
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