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Multiple intermediate phases in the interpolating Aubry-André-Fibonacci model
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We investigate a generalized interpolating Aubry-André-Fibonacci (IAAF) model with p-wave supercon-
ducting pairing, focusing on its localization and topological properties. Within the Aubry-André limit, we
demonstrate that the system experiences transitions from a pure phase, either extended or critical, to a variety of
intermediate phases and ultimately enters a localized phase with increasing potential strength. These intermediate
phases include those with coexisting extended and localized states, extended and critical states, localized and
critical states, and a mix of extended, critical, and localized states. Each intermediate phase exhibits at least one
type of mobility edge separating different states. As the system approaches the Fibonacci limit, both the extended
and localized phases diminish, and the system tends towards a critical phase. Furthermore, the model undergoes
a transition from topologically nontrivial to trivial phase as potential strength increases.
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I. INTRODUCTION

The study of quantum localization plays an important role
in condensed matter physics, particularly since the remarkable
discovery of Anderson localization in 1958 [1]. It indicates the
absence of the delocalization-localization phase transition in
low-dimensional disordered systems [2–4]. Later, quasiperi-
odic (QP) potentials have garnered considerable attention for
enabling localization transitions in one-dimensional (1D) sys-
tems. These potentials have been successfully implemented in
various experimental platforms, such as in photonic crystals
[5–7], ultracold atoms [8,9], and so on [10–12]. The Aubry-
André (AA) model [13] stands out by demonstrating a phase
transition from an extended to a localized phase when the
quasiperiodic disorder strength exceeds a critical threshold.
Similarly, the Fibonacci model, known for its eigenstates
that remain critical at all potential strengths, has garnered
considerable theoretical [14–23] and experimental [18,24–27]
interest. Both models belong to the same topological class and
are regard as two distinctive limits within the interpolating
Aubry-André-Fibonacci (IAAF) model [28–30]. The IAAF
model provides a unique playground for investigating the
localization properties [31–34]. For instance, Refs. [31,34]
present various cascade behaviors of eigenstates during the
continuous transformation of the AA model into the Fibonacci
model.

The concept of mobility edge is crucial in separating ex-
tended from localized states, leading to many novel insights
in fundamental physics [4,35–37]. The quantum phase where
extended and localized states coexist within the energy spec-
trum is termed the intermediate phase. Numerous theoretical
studies have confirmed the existence of this intermediate
phase and the mobility edge in one-dimensional systems with
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broken self-duality symmetry [38–50]. In contrast to phases
where all eigenstates are exclusively extended or localized,
there exists a distinct third phase, known as the critical phase,
where all eigenstates are extended but nonergodic, as observed
in generalized quasiperiodic models [51–54]. Further studies
[55–58] have identified an anomalous mobility edge separat-
ing the extended and localized states from the critical ones.
These findings indicate the existence of additional intermedi-
ate phases there is a coexistence of critical and other states.

Topological phases of matter have emerged as a fascinating
area of research in condensed matter physics, offering novel
insights into the behavior of quantum systems. These phases
are characterized by their robust properties, which are pro-
tected by topological invariants and are insensitive to local
perturbations [59–64]. Among the most intriguing features
of topological phases are the presence of exotic quasiparticle
excitations known as Majorana zero modes (MZMs) [65–67].
MZMs arise in certain topological superconductors and are
predicted to exist at the ends of one-dimensional systems or
in vortices of two-dimensional systems [68–70]. The unique
properties of Majorana zero modes, such as their ability to en-
code and manipulate quantum information in a fault-tolerant
manner, have attracted significant attention from both theoret-
ical and experimental perspectives [71–73].

In this paper, we explore a generalized quasiperiodic
model, namely the IAAF model with p-wave superconduct-
ing (SC) pairing terms. We find that the potential effectively
transforms into a cosine QP modulation up to a constant onsite
chemical potential shift in the AA limit (see Fig. 1). The sys-
tem undergoes transitions from a pure phase, either extended
or critical, to a localized phase with a strong enough potential
strength. Many types of intermediate phases emerged during
this process, including those with coexisting extended and
localized states, extended and critical states, localized and
critical states and a coexistence of extended, critical and lo-
calized states. Specially, each intermediate phase exhibits at
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FIG. 1. Schematic of the quasiperiodically modulated onsite po-
tential [Eq. (2)] for several values of β = 0.01, 0.2, 5, 1000 (light to
deep blue curves).

least one type of mobility edge separating different states. As
the system approaches the Fibonacci limit where the potential
corresponds to a step potential switching between ±1 values
according to the Fibonacci substitution rule (see Fig. 1), the
domains for extended and localized phases diminish, leading
the system towards a critical phase. Additionally, we observe
that the model experiences a transition from topologically
nontrivial to trivial phase via increasing the strength of po-
tential. MZMs are present in the topological nontrivial phase.

The structure of the paper is as follows: In Sec. II, we
briefly introduce the Bogoliubov-de Gennes (BdG) theory
and outline several physical quantities to characterize the
extended, localized and critical states, as well as the corre-
sponding phases. In Secs. III and IV, we study the localization
properties ranging from AA limit to Fibonacci limit. In Sec. V,
we analyze the topological properties of our model. Sec-
tion VI provides the conclusion and outlook.

II. MODEL AND METHOD

Here, we start from the 1D p-wave superconducting paired
IAAF model with Hamiltonian defined as

Ĥ =
∑

i

[−Jĉ†
i ci+1 + �ĉiĉi+1 + H.c. + λVi(β )n̂i], (1)

where i denote the lattice site index. ĉi(ĉ
†
i ) is annihilation

(creation) operator of the spinless fermion on i and n̂i = ĉ†
i ĉi.

J is the nearest-neighboring (NN) single-particle hopping am-
plitude and let J = 1 in this paper. � is the pair-driving rate,
which we take as real and positive. λ is the strength of the
quasiperiodically modulated onsite chemical potential. The
potential Vi reads

Vi(β ) = − tanh[β(cos(2παi + θ ) − cos(πα))]

tanhβ
. (2)

Without loss of generality, we set the phase term of the
potential to be zero (θ = 0). The golden mean ratio α can be
derived from the limit of the ratio of consecutive Fibonacci
numbers Fi [74]: α = limn→∞

Fn−1

Fn
=

√
5−1
2 with F0 = F1 = 1.

The parameter β serves as a control mechanism allowing
interpolation between two known limiting cases of β → 0
and β → ∞. For the former, the potential Vi(β ) simplifies
to cos(2παi + θ ) − cos(πα). Then the model becomes a 1D
p-wave superconductor in the incommensurate lattices [75] up
to a constant onsite chemical potential shift. For the latter,

Vi(β ) corresponds to a step potential switching between ±1
values following the Fibonacci substitution rule. Figure 1
illustrates the onsite potential Vi(β ) to have a more intuitive
understanding.

Considering the Hamiltonian. Equation (1) owns particle-
hole symmetry, we can employ the Bogoliubov-de Gennes
(BdG) transformation [76] to diagonalize it, as follows:

γ̂ †
μ =

L∑
i=1

(viμĉi + uiμĉ†
i ), (3)

where L is the number of lattice sites and μ = 1, ..., L. In
this paper, we set L = Fn−1/Fn to ensure a periodic boundary
condition. Then Eq. (1) in terms of the γ̂μ and γ̂ †

μ operators
reads

Ĥ =
L∑

μ=1

2εμ

(
γ̂ †

μγ̂μ − 1

2

)
. (4)

Assuming the energy spectrum εμ is nonnegative. The eigen-
states in terms of spinless fermion language is defined as
|
μ〉 = (uμ, vμ)T = (uμ1, ..., uμL, vμ1, ...vμL )T and the pos-
itive eigenvalues εμ are obtained by solving Bogoliubov-de
Gennes equation:

Ĥ
(

uμ

vμ

)
=

(
A B

−B∗ −A∗

)(
uμ

vμ

)
= εμ

(
uμ

vμ

)
. (5)

Given that all couplings are real in our model, the associ-
ated 2L × 2L matrices Ĥ is real and symmetric. Hence, the
matrix A is real and symmetric (A = A∗ = AT ), while B is
real and antisymmetric (B = B∗ = −BT ). Equation (5) can be
further read as

(A + B)φμ = εμψμ, (A − B)ψμ = εμφμ, (6)

where φμ = uμ + vμ and ψμ = uμ − vμ. The elements of
Ĥ are defined as 2Ai j = λVi jδi j − J (δ j,i+1 + δ j,i−1), 2Bi, j =
−�(δ j,i+1 − δ j,i−1). The eigenvector components are defines
as uT

μ = (uμ1, ..., uμL )T and vT
μ = (vμ1, ..., vμL )T . The eigen-

values satisfy γ̂μ(εμ) = γ̂ †
μ (−εμ) where only the zero-energy

states (εμ = 0) are self-conjugate due to the particle-hole
symmetry. Our calculations will focus solely on the quasipar-
ticle spectra of the BdG Hamiltonian for simplify.

In this following, we discuss several physical quantities to
characterize the nature of wave function. Firstly, we introduce
the inverse participation ratio (IPR) defined in Eq. (7) and the
normalized participation ratio (NPR) defined in Eq. (8), which
are utilized to differentiate among the extended, critical and
localized states [56]:

IPR(n) =
L∑

m=1

[∣∣u(n)
m

∣∣4 + ∣∣v(n)
m

∣∣4]
, (7)

NPR(n) = [2L × IPR(n)]−1, (8)

where Eq. (7) satisfies IPR(n) ∼ 1/(2L)γn [50]. The index n
denotes the nth eigenstate of BdG Hamiltonian and m is the
m-th element of that eigenstate. For the nth eigenstate, when
IPR approaches 0, it indicates a extended state and the corre-
sponding γn = 1. Conversely, NPR approaches 0 and γn = 0
for a localized state. If the state is critical, then γn ∈ (0, 1).
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For a large-size system, the fractal dimension D(n) is de-
fined as follows [48–50]:

D(n) = − lim
L→∞

log(IPR(n) )

log 2L
. (9)

By analyzing the inverse participation ratio IPR(n), we can
easily infer that D(n) goes to 0 (1) for the localized (extended)
state and D(n) ∈ (0, 1) for the critical state. Then the average
fractal dimension 〈D〉 averaged over the BdG quasiparticle
spectrum can capture the overall characteristics of the system
and it is defined as

〈D〉 = 1

L

L∑
n=1

D(n). (10)

The system exhibits phases that are either extended, where
the average fractal dimension 〈D〉 approaches 1, or local-
ized, where 〈D〉 approaches 0. However, it cannot distinguish
the critical phase from intermediate phase. It is necessary
to compute D(n) for each eigenstate, if D(n) ∈ (0, 1) for all
the eigenstates, it suggests a critical phase. Furthermore, we
define D averaged across a subset of eigenstates to capture the
different states coexist in an intermediate phase.

Next, we introduce η which aids in distinguishing pure
phases (extended or localized phase) from intermediate phase,
defined as [48–50]

η = log10[〈IPR〉 × 〈NPR〉], (11)

where 〈IPR〉 and 〈NPR〉 are given by Eq. (12). For the ex-
tended phase, 〈IPR〉 → 0 [〈NPR〉 → finite]. Conversely, for
the localized phase, 〈NPR〉 → 0 [〈IPR〉 → finite]. So we
have 〈IPR〉 × 〈NPR〉 ∼ 1/2L and η � −3 in the pure phases,
where L = 610 in Fig. 2. For the intermediate phase, both of
〈IPR〉 and 〈NPR〉 keep finite and −3 < η � −1:

〈IPR〉 = 1

L

L∑
n=1

IPRn, 〈NPR〉 = 1

L

L∑
n=1

NPRn. (12)

III. PHASE DIAGRAM FOR SMALL β

As mentioned above, the potential Vi(β ) simplifies to
cos(2παi + θ ) − cos(πα) in small β limit. The system enters
into the localized phase when λ exceeds a critical threshold
due to the existence of quasiperiodic potential, i.e., α is in-
commensurate (see Appendix. A). It differs from the previous
study which exclusively considered a cosine potential without
the constant onsite chemical potential shift [75]. To sub-
stantiate this distinction, we show the phase diagram where
variable η and fractal dimension 〈D〉 versus (λ, �) in Fig. 2.
This diagram features two distinct regions: the pure phases
(depicted in blue) and various intermediate phases (depicted
in red) separated by η in Fig. 2(a), which is the key point
in our paper. The pure phases are further distinguished into
extended phases (deep red region) and localized phases (deep
blue region) by 〈D〉 in Fig. 2(b).

To have a complete insight into the phase diagram, we
calculate the fractal dimension D(n) where n denotes nth
eigenstate of BdG Hamiltonian versus the potential strength
λ for different � = 0.5, 1 and 1.5, as illustrated in Fig. 3.
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FIG. 2. Phase diagram that varies with (�,λ) in terms of η

(a) and 〈D〉 (b). The pure phase (intermediate phase) is corresponding
to the blue (red) region in panel (a). The pure phase is further distin-
guished into extended (deep red region) and localized phase (deep
blue region) in panel (b). The critical phase is persists along � = 1
with λ � 0.57, marked in red elliptic. Here, we set the parameter
β = 0.01 and L = 610.

It is interesting that the critical phase is confined to a nar-
row line where � = 1 and λ � 0.57. Therefore, the complete
phase diagram includes three pure phases (extended, localized
and critical phase) and many types of intermediate phases. A
more detailed discussion of these phases will be provided in
subsequent sections.

A. Pure phases

Figure 3 shows the system is in the extended (critical)
phase where all the states are extended (critical) when � 
= 1
(� = 1), with weak potential strength λ. To provide more
precise numerical evidences, we further calculate the D(n) for
various lattice sizes L at selected values of λ, the results are
displayed in Figs. 4(a) and 4(b). And the finite-size extrap-
olation of 〈D〉 averaged over the quasiparticle spectrum is
shown in Fig. 4(d). Take � = 0.5 and λ = 0.2 for example,
Fig. 4(a) shows the D(n) for all the states increases with L and
〈D〉 approaches 1 in the thermodynamic limit, indicating the
system is in the extended phase. Additionally, when � = 1,
the D(n) fluctuates from 0 and 1, independent on L, indicating
all the states are critical, as shown in Fig. 4(b). When the
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FIG. 3. (a)–(c) The fractal dimension D(n) versus λ, where n denotes n-th eigenstate of BdG Hamiltonian. The parameter � is 0.5 (a), 1
(b), and 1.5 (c), respectively. Other parameters are β = 0.01 and L = 610.

potential strength λ is strong enough, such as λ = 5.8 for
� = 0.5, the system goes to a localized phase where D(n)

for all the states decreases with L and 〈D〉 tends to 0 in the
thermodynamic limit, as shown in Fig. 4(c). Therefore, the
system exhibits three distinct pure phases, including extended,
critical and localized phase.

B. Intermediate phases

One can observe that the system undergoes various inter-
mediate phases before transitioning into the localized phase
as shown in Fig. 3. When � = 0.5 and λ = 1.8 as shown
in Figs. 5(a) and 5(d), D(n) corresponding to the low energy
states in zone I increases with L, and the finite-size extrapo-
lation of D averaged over the zone I goes to 1, indicating all
the states in zone I are extended. While D(n) corresponding
to the high energy states in zone III decrease with L, and
the finite-size extrapolation of D averaged over the zone III
goes to 0, indicating all the states in zone III are localized.
In contrast, D(n) for the states in zone II fluctuates around 0.6,
almost independent of L, and the finite-size extrapolation of D
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FIG. 4. (a)–(c) The fractal dimension D(n) for different L at fixed
� = 0.5 and λ = 0.2 (a), � = 1 and λ = 0.2 (b), and � = 0.5 and
λ = 5.8 (c), where n denotes nth eigenstate. (d) Finite-size extrapo-
lation of 〈D〉 as a function 1/log(2L).

averaged over the zone II approaches a finite value between 0
and 1, indicating all the states in zone II are critical. Hence
the system exhibits an intermediate phase with coexisting
localized, extended, and critical states. These states are sepa-
rated by the two types of anomalous mobility edge separating
extended or localized from critical states. When λ is slightly
increased (i.e., λ = 2.3) shown in Figs. 5(b) and 5(e), we
identify another intermediate phase with coexisting localized
and extended states where D goes to 1 (I) and 0 (II) in the
thermodynamic limit, respectively. This intermediate phase
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FIG. 5. (a)–(c) The fractal dimension D(n) for different L at fixed
� = 0.5 and λ = 1.8 (a), � = 0.5 and λ = 2.3 (b), and � = 1.5 and
λ = 3.5 (c), where n denotes nth eigenstate. (d–f) Finite-size extrap-
olation of 〈D〉 as a function 1/log(2L) averaged over the different
state zones in panels (a)–(c).
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FIG. 6. (a) The fractal dimension 〈D〉 averaged over all the BdG
quasiparticle spectrum versus �. (b) The fractal dimension D(n) for
different L at � = 1, where n denotes nth eigenstate. The parameter
λ = 0.2.

exhibits a traditional mobility edge separating the extended
and localized zones. When the � = 1.5 and λ = 3.5 shown in
Figs. 5(c) and 5(f), D(n) for states in zones II and IV decrease
with L and its average value D goes to 0, indicating they
are localized. Conversely, D(n) fluctuates around 0.56 and 0.5
for states in zones I and III, indicating the states are critical.
Therefore, the system has an intermediate phase with coexist-
ing localized and critical states. These states in different zones
are separated by an anomalous mobility edge.

The system is known to exhibit a critical phase when
� = 1 and λ � 0.57 (see Sec. III A). Additionally, a distinct
intermediate phase emerges when � is slightly deviating from
1. Now take λ = 0.2, for example, Fig. 6(a) shows that the
〈D〉 varies smoothly versus � when � � 0.92. A notable
decrease in 〈D〉 is first observed when the system goes into the
intermediate phase with coexisting extended (I) and critical
states (II), as shown in Fig. 6(b). Subsequently, a second
notable decline occurs when the system enters the critical
phase with � = 1 [see Fig. 4(b)]. The phenomenon is easily
understand by the ultimate value of D(n) is less than 1 in
the thermodynamic limit for the critical states. Consequently,
the system exhibits four distinct intermediate phases: the first
one with coexisting extended and localized states; the second
one with coexisting extended and critical states; the third one
with coexisting localized and critical states; and the fourth one
with coexisting extended, critical, and localized states.

IV. PHASE DIAGRAM WITH INCREASING β

To investigate the effect of increasing β, we begin by
analyzing the phase diagram where variable η versus (λ,
�) at fixed β = 5 and β = 50, as shown in Figs. 7(a) and
7(b). In contrast to the phase diagram shown in Fig. 2(a),
we found that the zones for pure phases such as extended
phase and localized phase are significantly diminished with
increasing β. We plot the fractal dimension D(n) versus λ

at fixed � = 0.5 in Figs. 7(c) and 7(d). Figure 7(c) shows
that an extensive number of extended states are replaced by
the critical states or localized states when the strength of
potential is weak, which differs markedly from the scenario
presented in Fig. 3(a). As the strength of potential λ increases,
the system exhibits various intermediates phases, such as one
comprising both localized and critical states, and another with
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FIG. 7. (a), (b) Phase diagram of variable η versus (�, λ). The
red dashed line corresponds to � = 0.5. (c), (d) The fractal di-
mension D(n) versus λ, where n denotes nth eigenstate of BdG
Hamiltonian when � = 0.5. The green dashed lines corresponds to
λ = 0.2 and 5.8, respectively. Here, the parameter β = 5 (a), (c), 50
(b), (d), and L = 610.

coexisting extended, critical and localized states. What is
more, the system goes to the localized phase when the strength
of potential is further increased. Hence, the phase diagram
does not have essential changes when β = 5. However, the
pure phases (extended or localized phase) almost disappear
and more critical states emerge when further increasing β, as
shown in Fig. 7(d).

To illustrate the impact of β on the system, we examine the
fractal dimension D(n) for different L at a fixed weak λ = 0.2
and a strong λ = 5.8, with β ranging from small to large, as
shown in the upper and lower panels of Fig. 8, respectively.
The D(n) goes to 1 (0) with the increase of L when β =
0.01, representing a completely extended (localized) phase,
as shown in Fig. 8(a). At β = 5, D(n) exhibits minor fluctu-
ations for a limited number of states, suggesting a slightly
deviation from pure phase, yet without significantly altering
its essence, as shown in Fig. 8(b). However, this fluctuation
becomes pronounced at higher β values. Figure 8(c) reveals
that D(n) fluctuates between 0 and 1 for more states, indicating
the critical states. Hence the system has an intermediate phase
with coexisting more critical states and less localized states.
One can infer that the localized states will be completely
replaced by the critical states with further increments in β,
which is confirmed in Appendix B 1. Additionally, we also
explore the fate of the critical phase for large λ, the details are
shown in the Appendix B 2).

V. TOPOLOGICAL PROPERTY

In this section, we study the topological properties of
system using Z2 topological invariant M, which emerged as
a frontier in understanding the properties of materials that
exhibit topological superconductivity [65]. We employ the
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FIG. 8. The fractal dimension D(n) for different L at fixed β = 0.01 (a), β = 5 (b), and � = 50 (c), where n denotes nth eigenstate. Other
parameters � = 0.5 and λ = 0.2 (5.8) for the upper (lower) panel of each figure.

numerical method referenced in Ref. [77] to calculate Z2

topological invariant in the open boundary condition (OBC).
Equation (6) can be simplified into the following form with
zero-mode states ε1 = 0 (μ = 1):

(A + B)φ1 = 0, (A − B)ψ1 = 0. (13)

In the transfer matrix form, φ1 and ψ1 can be rewritten as

[φ1(i − 1), φ1(i)]T = Fi[φ1(i), φ1(i + 1)]T ,

[ψ1(i + 1), ψ1(i)]T = Fi[ψ1(i), ψ1(i − 1)]T , (14)

where

Fi =
(

λVi (β )
�+J

�−J
�+J

1 0

)
. (15)

The total transfer matrix for system size L is defined as
F = FLFL−1 · · · F2F1. The Z2 topological invariant M is de-
termined as M = sgn(ln(|λ2|)), where λ1, λ2 are eigenvalues
of F with the assumption |λ1| < |λ2|. The topological phase
diagram as a function of (β, λ) is illustrated in Fig. 9(a),
where M = −1(1) corresponds to the topological nontrivial
(trivial) phase. We observe that the topological phase transi-
tion point is less than 3 [75] when β → 0, which emphasizes
once again for the discrepancy with QP potential without
constant onsite chemical potential shift. The topological phase
boundary decay slightly at the onset but quickly reach sat-
uration with increasing β, indicating the topological nature

does not change in the process of AA limit tending to the
Fibonacci limit. Additionally, the topological phase transition
is accompanied by the closure and subsequent reopening of
the energy gap, as shown in Fig. 9(b). The gap narrows when
λ is small and may close completely when λ intersects in the
topological phase boundary, then the gap reopens as λ further
increases. To intuitively understand the behavior of the edge
states, we present the lowest excitation state of φ and ψ in
Fig. 9(c). When λ = 1.0, the distribution of zero-mode state
φ (ψ) locates at left (right) end with a narrow spread, which
is consistent with topological nontrivial phases, as shown in
the upper panel of Fig. 9(c). When λ = 1.5 within the trivial
phase (see the lower panel), the φ and ψ extended throughout
the bulk, meaning the loss of majorana edge states.

VI. CONCLUSION AND OUTLOOK

In summary, our research delineates the various quantum
phases and the topological properties emerged in the IAAF
model with p-wave SC pairing terms. For the former, this
model exhibits modifiable phase diagrams through the tunable
parameter β. For small values of β, this model can be reduced
to the generalized AA model up to a constant onsite chemical
potential shift. The system is always in the pure phases when
the strength of potential is weak (extended or critical phase) or
strong (localized phase) enough. What is more, it is interesting
that the system has many types of intermediate phases when
the strength of potential is moderate. For instance, one can
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FIG. 9. (a) Phase diagram that varies with (β, λ) in terms of Z2 topological invariant M. (b) Energy spectrum versus λ for L = 610. The
color coding correlates to the fractal dimension D(n). (c) The spatial distributions of φ and ψ for the lowest excitation with V = 1.0 (upper
panel) and V = 1.5 (lower panel) where j is jth site. The parameter β = 5 for (b), (c). Open boundary condition.
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FIG. 10. Finite-size extrapolation of 〈D〉 as a function 1/log(2L),
where λ = 2� + 2 (upper panel) and λ = 2� + 2.5 (lower panel).

observe an intermediate phase where extended and localized
states coexist, as well as phases where extended and critical
states, or localized and critical states, are present concurrently.
Also, the coexistence of extended, critical and localized states.
These coexisting states are separated by different type of
mobility edges. As β increase, the pure phases (extended
or localized phase) will gradually diminish, and the system
becomes critical in the Fibonacci limit. For the latter, we
observe the system transitions from topologically nontrivial to
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1
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Φ

FIG. 11. (a) The fractal dimension D(n) for different L, where
n denotes nth eigenstate. (b) Finite-size extrapolation of 〈D〉 as
a function 1/log(2L). (c) The probability distribution of selected
(nth) eigenstate for L = 10946, where index j denotes jth site. The
parameter λ = 0.2 (5.8) for the upper (lower) panel of each figure,
� = 0.5, β = 104.

trivial phase via increasing λ. The existence of the majorana
edge states and the closure and reopening of the energy gap
demonstrate the Z2 topological nature.

Experimentally, we expect that the proposed model can
be realized in current superconducting circuit quantum sim-
ulator [78–80], where the nearest neighboring pairing can be
realized as a consequence of coherent two-photon driving.
Even though in such a system, the particle is boson instead
of fermion, one can tune the onsite repulsive interaction be-
tween the bosons to make them become hard-core. For a 1D
system, a hard-core boson model is equivalent to a spinless
fermion model even in the presence of nearest neighboring
pairing. In such a synthetic quantum system, the parameters
are highly tunable, which allows us to access the parameter
regime studied in this paper.

This work unveils a quantum model that exhibits many
types of intermediate phases, thereby enriching the under-
standing of mobility edges. A natural question is that whether
these intermediate phases are robust when interactions are
introduced. Additionally, investigating the dynamic properties
that arise from the various phases may be another intriguing
question. Besides, the one-dimensional (1D) p-wave super-
conducting paired fermion model can be mapped onto the
transverse XY model via the Jordan-Wigner transformation
[81,82]. Our research casts a new light on the study of anal-
ogous phenomena related to localization in low-dimensional
quasiperiodic spin systems.
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APPENDIX A: BREAKDOWN OF PHASE BOUNDARY IN
THE SMALL β LIMIT

Reference [75] deduced the delocalization-localization
transition at λc = 2(J + �) for the Hamiltonian with cosine
QP potential. In the main text, Vi(β ) simplifies to cos(2παi +
θ ) − cos(πα), reflecting the cosine QP potential with a con-
stant onsite chemical potential shift in the small β limit.
Thus, Anderson’s theorem is also not applicable here due to
the presence of QP potentials. While the phase boundaries
λc = 2(J + �) demarcating the different phases have become
distorted under the effect of cos(πα), as shown in Fig. 10. The
upper panel of Fig. 10 reveals that the finite-size extrapolation
of 〈D〉 cannot goes to zero for certain values of � (e.g.,
� = 1.2), indicating the inability to transition into the local-
ized phase. However, the system can be localized for larger
λ (e.g., 2� + 2.5), as shown in the lower panel of Fig. 10.
This suggests that, within the parameter space considered,
the system experiences a localized phase for λ values in the
vicinity of 2(J + �), indicating a slight distortion of the phase
boundary.

174203-7



CHENYUE GUO PHYSICAL REVIEW B 109, 174203 (2024)

0 5000 10000
0

0.05

0.1

0.15
0

0.02

0.04

0.06 (d)

0

0.5

1

0 0.5 1
0

0.5

(c)

λ = 1000

λ = 100
0.2

0.6

0 0.5 1

0.2

0.4

λ = 10

λ = 100

(a)

0 5000 10000
0

0.05

0.1
0

0.02
(b)

Φ

0

0 0.5 1
0

0.5

0.5

1
(e)

λ = 100

λ = 1000

3

0

0.01

0.02

-310

(f)

5000 100000
0

6
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APPENDIX B: FATE OF THE CRITICAL PHASE WITH
LARGE β

1. Effect of small λ

In the main text, we find the pure phases (extended or
localized phase) almost disappear and more critical states
emerge when further increasing β. So we infer that system
is critical when the β is further increased (e.g., β = 104),
which is confirmed in Fig. 11. The distribution of D(n) for all
the eigenstates fluctuates between 0 and 1, and the finite-size
extrapolation of 〈D〉 averaged over the quasiparticle spectrum
converges to a finite value for both of λ = 0.2 and λ = 5.8,
as depicted in Figs. 11(a) and 11(b). To have a intuitive
comprehension of these critical states, we plot the probability
distributions of selected eigenstates in Fig. 11(c). It reveals
that the states remain extended but nonergodic, irrespective of
their position relative to the boundaries or centers of energy
bands, thus confirming their multifractal nature.

2. Effect of large λ

The localized zone gradually diminishes as β increases,
which seems to indicate the system enters the localized phase
requiring a larger λ. This is confirmed in the left-hand pan-
els of Fig. 12. For β = 50 and λ = 10, the upper panel of
Figs. 12(a) and 12(b) shows that D(n) for some eigenstates

fluctuate away 0 and 1, and their probability distributions
remain extended but nonergodic, highlighting critical states.
Upon increasing λ to 100, these states become localized
to narrow lattice sites, as depicted in the lower panel of
Figs. 12(a) and 12(b). It may be presumed that the system
is perpetually localized as long as the potential strength λ is
large enough. However, this is not the case. Take β = 103 for
example, the upper panel of Fig. 12(c) reveals that the fractal
dimension D(n) for a large number of eigenstates fluctuates
form 0 and 1, with only a few exceptions (such as n = 30),
signifying the emergence of many critical states even with λ

fixed at 100. Most importantly, these critical states persist in
an extended but nonergodic form when λ further increases to
1000, as shown in the blue and green lines in Fig. 12(d). For
β = 104, the right-hand panel of Fig. 12 shows that the distri-
bution of D(n) for almost all the eigenstates varies from 0 to
1. These critical eigenstates remain extended yet nonergodic
regardless of their proximity to the energy band boundaries
or centers, which again corroborates their multifractal nature.
This behavior stems from the increasing β, which causes
Eq. (2) to more accurately approximate the potential which
alternates between ±1 values following the Fibonacci substi-
tution rule. The most prominent feature of Fibonacci chain
is that all the eigenstates are critical no matter how strong
the potential strength λ is. Consequently, the critical phase
remains stable at high values of β, despite the presence of
strong potential strength.
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