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Localization of Lindbladian fermions
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We study a Lindbladian generalization of the Anderson model of localization that describes disordered free
fermions coupled to a disordered environment. From finite-size scaling of both eigenvalue statistics and the
participation ratio, we identify localization transitions in both the non-Hermitian Lindbladian spectrum, which
governs transient relaxation dynamics, and the Hermitian stationary state density matrix. These localization
transitions occur at different critical values of the Hamiltonian and dissipative disorder strength, implying the
existence of unconventional phases with a mixture of localized and delocalized features. We find that this
phenomenon is robust to changes in the value of the dissipative spectral gap.
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I. INTRODUCTION

Disorder-driven phenomena are a central theme in con-
densed matter physics, with one of the most famous examples
being the Anderson model of localization [1–3]. As a success-
ful phenomenological theory of metals and semiconductors,
the Anderson model has demonstrated deep connections
between generic disordered quantum systems and random
matrix theory [4].

In the last few decades, localization in non-Hermitian sys-
tems has been extensively studied across various fields of
physics, ranging from random lasers to biological networks
and many others [5–32]. The earliest and perhaps most well-
known instantiation of this phenomenon is the Hatano-Nelson
model [5,6,33,34], which describes a dirty one-dimensional
metal subject to nonreciprocity between opposite hopping di-
rections. An adequately substantial biased hopping ultimately
results in the delocalization of electrons even in one dimen-
sion. Another notable example, which partially motivates this
work, is a non-Hermitian generalization of the Anderson
model with complex-valued local potentials [18,26]. Origi-
nally developed to model optical lattices with random gain
and loss in the context of disordered photonics and ran-
dom lasers [12,17–19], this model undergoes a non-Hermitian
generalization of Anderson localization in sufficiently high
dimension [27–29,35].

One setting exhibiting non-Hermitian physics that has
garnered much recent attention is the dynamics of open
quantum systems. Under the Markovian approximation, the
density matrix of an open quantum system undergoes a non-
Hermitian time evolution described by the Lindblad master
equation [36,37]. Many existing models of non-Hermitian
disorder are unsuitable for modeling open quantum systems
because they do not explicitly incorporate incoherent pro-
cesses coming from interactions with the environment, which
inevitably drive the system to a nonequilibrium mixed state at
long times. As such, while much of the wisdom obtained from

the study of non-Hermitian matrices can be imported to help
us understand disordered Lindbladians, there is additional
structure present in the Lindbladian setting that past studies
do not fully capture, namely, the form of the stationary density
matrix.

The interest in studying disorder effects on dissipative open
quantum systems is largely attributed to the availability of
precisely controlled experiments that can be conducted on
specific atomic, molecular, and optical systems. An example
of an open quantum system with dissipation involves cold
atoms confined within an optical lattice created by counter-
propagating lasers, alongside the presence of an additional
reservoir of cold atoms [38–41]. These systems feature both
gain and loss represented by atoms falling from the reservoir
to the lattice and by the escape of atoms from the lattice
trap, respectively. Such experiments open up the possibility of
discovering unexplored disorder-driven quantum phenomena.

There have been numerous recent theoretical explorations
of the effects of disorder in Lindbladian dynamics. Recent
attention has been directed toward random matrix mod-
els [42–46], demonstrating the connection between generic
Lindbladian spectra and non-Hermitian random matrix theory.
This association has been suggested as a key feature of dissi-
pative quantum chaos [30,47–49]. Non-Hermitian many-body
localization transitions of the Lindbladian spectrum have also
recently become an area of active research [50–52].

In addition to the non-Hermitian Lindbladian spectrum,
several works have examined the possibility of a nontrivial
disorder-induced stationary state. In [53,54], quadratic Lind-
bladian fermions with all-to-all random matrix couplings were
shown to undergo simultaneous transitions in both the spec-
trum and stationary state as a function of the number of
decay channels. Another set of examples is Refs. [55–57],
which studied different types of localization transitions in the
stationary states of disordered lattice fermions.

In this work, we propose a Lindbladian generalization of
the Anderson model which may act as a paradigmatic example
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of localization in open quantum systems. This is achieved by
introducing processes by which the system can gain and lose
particles from and to a disordered environment. To bridge the
gap between existing theory on non-Hermitian Anderson tran-
sitions and disordered Lindbladians, we construct the model
so that it has a spectrum determined by a non-Hermitian
Anderson model and also possesses a nontrivial stationary
state. This enables us to study the relationship between the lo-
calization transitions in the spectrum and the stationary state,
which has not previously been examined. We study localiza-
tion in our model using standard numerical techniques based
on finite-size scaling of both Hermitian and non-Hermitian
random matrix level statistics and the participation ratio (PR).
We find that both the spectrum and the stationary state localize
and, strikingly, that these transitions occur at different disor-
der strengths. This suggests the presence of two intermediate
phases between strong and weak disorder, where either the
stationary state or transient modes are localized while the
other remains spatially extended.

II. MODEL AND RESULTS

Consider a gas of fermions on a three-dimensional square
lattice with a total of L3 sites. Its many-body density matrix ρ

obeys the Lindblad equation:

∂tρ = −i[Ĥ, ρ] +
∑

v

(
L̂vρL̂†

v − 1

2
{L̂†

vL̂v, ρ}
)

. (1)

The Hamiltonian is taken to be that of the standard Anderson
model,

Ĥ =
∑

r

εrĉ†
r ĉr +

∑
〈r,r′〉

ĉ†
r ĉr′ , (2)

where r is a lattice vector and 〈r, r′〉 denotes nearest-neighbor
sites. The on-site potential εr is random and independently
distributed on each site, taken from a box distribution with
width WR, εr ∈ [−WR/2,WR/2].

To model coupling to a disordered environment, we allow
each site to gain and lose particles at different independent
random rates. Each site may be thought of as coupled to
two different baths; one pumps particles into the system, and
the other acts as a sink to which particles can escape. This
is described by two sets of jump operators corresponding to
these loss and gain processes, respectively:

L̂(l)
r = μrĉr, L̂(g)

r = νrĉ†
r . (3)

The dissipative couplings μr and νr are taken as random and
independently distributed on each site. This choice leads to
both nontrivial transient relaxation dynamics and a nontrivial
stationary state. The distribution of the dissipative couplings is
chosen so that their squares are independently sampled from a
box distribution, μ2

r, ν
2
r ∈ [0,WI]. The choice of a box distri-

bution simplifies numerical computation and is not expected
to modify universal features of the transitions. We note that
one could alternatively choose a finite value for the left edge
of the distribution, which would put a lower bound on the rate
of dissipation of each site. We observe that such a choice does
not significantly modify the transitions; see Sec. III C for a
detailed discussion of this point.

A. Background

Following the theory of quadratic Lindbladians
based on either third quantization [58] or Keldysh
techniques [54,59,60], one may introduce three single-particle
matrices,

(H0)rr′ = εr δrr′ + δ〈r,r′〉, (4a)

Qrr′ = 1
2

(
μ2

r + ν2
r

)
δrr′ , (4b)

Drr′ = (
μ2

r − ν2
r

)
δrr′ . (4c)

The single-particle eigenvalues of the Lindbladian are equiv-
alent to the eigenvalues of the non-Hermitian dynamic
matrix H = H0 − iQ. The corresponding eigenvectors are the
single-particle transient modes of the many-body dynamics,
governing relaxation to the stationary state.

In contrast, the (unique) stationary state density matrix ρst

is a Gaussian state that can be expressed using an effective
Hermitian Hamiltonian,

ρst ∝ exp

{
−

∑
r,r′

ĉ†
r (Hst )rr′ ĉr′

}
. (5)

The matrix Hst may be determined from the stationary
Keldysh distribution function Fst, which in turn solves a
matrix Lyapunov equation [54],

Fst = tanh(Hst/2), (6a)

i(HFst − FstH
†) = D. (6b)

The stationary state ρst is a statistical superposition of free
fermion states with different occupation probabilities. The
eigenvectors of Hst determine the single-particle states, and
the eigenvalues specify their corresponding stationary occu-
pation numbers. The uniqueness of the stationary state is a
consequence of the absence of conserved quantities in the
model. One cannot specify a temperature or chemical po-
tential because neither the energy nor the particle number is
conserved.

Thus, two distinct objects, the dynamic matrix H and the
stationary Hamiltonian Hst, are needed to fully characterize
the theory. This should be contrasted with coherent models of
disordered free fermions, for which all features of the model
can be deduced from the properties of the single-particle
Hamiltonian alone once one specifies the temperature and
chemical potential.

In the context of the model considered here this presents
two distinct random matrix problems, one non-Hermitian and
one Hermitian. The dynamic matrix H is similar to a non-
Hermitian Anderson model, for example, in Refs. [18,26],
but the sampling of the imaginary on-site terms is chosen
to ensure the spectrum is supported only below the real
axis. This difference can be expected to manifest only in
nonuniversal features of the model, so one should anticipate
a non-Hermitian Anderson transition in the AI† symmetry
class [61,62].

In contrast, the stationary Hamiltonian is specified in-
directly through the constraint imposed by the Lyapunov
equation (6b). This specifies an unusual random matrix prob-
lem which to our knowledge has not been previously studied.
The entries of the matrix Hst may be complex, placing it in the
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FIG. 1. Effective phase diagram of the three-dimensional model.
Dark red and light blue markers denote numerically determined
critical disorder strengths (W ∗

R ,W ∗
I ) (see Sec. III) for the dynamic

matrix H and the stationary state Hst , respectively; lines through
their centers denote numerical uncertainties. The triangles and di-
amonds denote values determined from ratio statistics, and circles
and squares denote values from the participation ratio. The dark red
X on the horizontal axis denotes the critical point of the Hermitian
Anderson model. Solid lines illustrate schematic phase boundaries
consistent with our numerical estimates which separate four phases,
labeled with roman numerals. Phases I and II have delocalized H and
delocalized and localized Hst , respectively; phases III and IV have
localized H and localized and delocalized Hst , respectively.

unitary symmetry class A. This is true in spite of the fact that
all three single-particle matrices, H0, Q, and D, have purely
real entries. This is a consequence of the dynamic lack of time
reversal symmetry: the Lindbladian dynamics describes the
irreversible process of a system relaxing to a unique stationary
state while in contact with its environment. One may thus
expect a localization transition within the unitary universality
class.

B. Summary of the main results

The model has two parameters, WR and WI, the Hamilto-
nian and dissipative disorder strengths, respectively. The limit
of strong disorder of either type causes both the dynamic
matrix H and the stationary state effective Hamiltonian Hst to
localize. These transitions occur at different critical disorder
strengths, resulting in four distinct phases (see Fig. 1). Two
phases have a mixture of localized and delocalized features:
the stationary state is a statistical mixture of either delocalized
or localized states, while the relaxation to this state occurs
through the excitation of localized or delocalized transient
modes. This phenomenon has no analog in equilibrium, where
the state and dynamics are canonically specified by the same
Hamiltonian. It is possible in the present context because
fluctuations in the stationary state and relaxation dynamics

have no fixed relation (no fluctuation-dissipation theorem) in
the far-from-equilibrium dynamics studied here.

We further find that the existence of these phases is not
strongly contingent on the dissipative spectral gap, the small-
est imaginary part of all nonzero Lindbladian eigenvalues. It
is, instead, the property of the spectrum near the center of
the support of the single-particle matrices, where their density
of states is large, that governs the transition, similar to the
conventional Hermitian Anderson localization. This suggests
that these localization phenomena are conceptually unrelated
to the rate of approach to the stationary state and may occur
in systems with or without a finite dissipative gap. For a more
detailed discussion and justification, see Sec. III C.

We note several additional features of the phase diagram
before discussing the details of the transition in Sec. III. The
location of the critical line of H is relatively symmetric with
respect to WR vs WI. This is expected, as similar results hold
for the non-Hermitian Anderson model with different real and
imaginary disorder strengths [28]. The slight asymmetry in
our model comes from the difference in the sampling of real
and imaginary on-site potentials. Qualitatively, both play a
similar role in driving the localization transition of H . The
dissipationless limit WI → 0 corresponds to H → H0. The
critical line for H intersects the horizontal axis at WR 	 16,
the known value for Hermitian Anderson localization on a
d = 3 square lattice with nearest-neighbor hopping [63].

In contrast, the critical line of Hst is comparatively quite
flat in the horizontal direction. The location of the critical
point depends only very weakly on WR until its value becomes
very large. This lack of sensitivity to the Hamiltonian disorder
strength suggests that stationary state localization is driven
almost exclusively by competition between the coherent hop-
ping and incoherent gain and loss processes. For large WR,
the phase boundary tends toward the horizontal axis. In the
range of small WI and large WR, denoted phase IV in Fig. 1,
Hst is delocalized, despite the single-particle Hamiltonian H0

being strongly localized. The ultimate fate of phase IV for
very large WR is difficult to resolve numerically. It is unclear
whether it eventually terminates in a second critical point on
the horizontal axis or the stationary state remains delocalized
for any large, but finite, WR. The Lyapunov equation becomes
ill defined in the dissipationless limit WI = 0, reducing to
a commutator with H0 and thus lacking a unique solution.
The different phases for Hst are meaningful only for a finite
WI > 0.

III. NUMERICS

We perform a finite-size scaling analysis based on both
eigenvalue level statistics and PR on both H and Hst. We also
examine the localization profile of individual eigenvectors of
both through the PR and estimate critical exponents of the
transitions. We conclude with a discussion of the role of the
dissipative gap.

A. Transient modes

Localization of the dynamic matrix H can be detected
through non-Hermitian eigenvalue statistics: letting s1,2(ε)
denote the geometric distance in the complex plane between
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an H eigenvalue ε and its nearest and next-nearest neighbors,
respectively, the non-Hermitian level spacing ratio is defined
as [30]

rNH(WR,WI ) = 〈s1(ε)/s2(ε)〉, (7)

where 〈· · ·〉 is both a disorder average and a sum over all ε in
a finite-size window centered in the middle of the spectrum
of H , the point (0,−WI/2) in the complex plane. The window
is defined using a modification of the approach used in [27]
as the middle quarter of eigenvalues sorted by the magnitudes
of both their real and imaginary parts in terms of how close
they are to this point. This quantity has the limiting values
rNH 	 0.67 for uncorrelated eigenvalues in a localized sys-
tem and rNH 	 0.72 for symmetry class AI† in a delocalized
system [30].

By fixing one of WR,I and varying the other or by im-
posing a constraint between the two, the curves of rNH(W )
for different system sizes L all intersect at a critical point
(WI,WR) = (W ∗

I ,W ∗
R ); for an example see Fig. 2. The precise

location of the critical point is extracted by fitting data to the
scaling form in the vicinity of the transitions,

rNH(W ) 	 r∗
NH − r (1)

NHL1/ν (W − W ∗), (8)

where r∗
NH is the value of rNH at the critical point, r (1)

NH is a
constant of proportionality, and ν is the critical exponent of
the correlation length.

We verify the existence of the transition by studying the
spatial profile of the eigenvectors of H . Using the right
eigenvectors of H , given by H |ε〉 = ε |ε〉, one may de-
fine the participation ratio similarly to that in Hermitian
models [64,65]:

PR(ε) =
[∑

r

|〈r|ε〉|4
|〈ε|ε〉|2

]−1

, (9)

where |r〉 is the spatial basis on the lattice. Focusing only on
the right eigenvectors of H is justified because H = HT and
therefore the left eigenvectors are the complex conjugates of
the right ones and thus have the same PR. To perform the
scaling analysis, we introduce the following quantity:

p(WR,WI ) =
〈

ln(PR)

ln(Ld )

〉
, (10)

where 〈· · ·〉 is the same disorder plus spectral average as used
in rNH described above. Near the transition this quantity has
the scaling form [66–68]

p(W ) 	 p∗ − p(1) L1/ν

ln(L)
(W − W ∗), (11)

where as in Eq. (8) W is either of WR,I and ν is the critical
exponent; p∗ is the value of p at the critical point, and p(1) is a
constant of proportionality. Examples of the finite-size scaling
of both the ratio statistics and the PR are shown in Fig. 2.

This fitting also enables estimation of the critical exponent
ν (see Fig. 3). The values found using the ratio statistics
are most closely consistent with ν 	 1.5 obtained for d = 3
in Ref. [27]. The values obtained from the PR are close
to ν 	 1.2, which, interestingly, is closer to the estimate of
ν 	 1.19 found in Ref. [28]. This systematic discrepancy is

FIG. 2. Examples of finite-size scaling of the level statistics and
PR for H , with fixed WR = 4. The horizontal axis W on both plots is
WI; the vertical axes show rNH and p with uncertainties. The crossing
points are WI = 12.77 ± 0.02 and 12.36 ± 0.06, respectively, giving
critical points in the (WR,WI ) plane of (4,12.77) and (4,12.36). The
insets show computed values of rNH(W ) and p(W ) using the scaling
forms given in Eqs. (8) and (11) with parameters determined from
fitting vs their numerically determined values; a solid line with unit
slope is shown for reference. The estimated critical exponent is ν =
1.44 ± 0.03 from level statistics and ν = 1.23 ± 0.02 from the PR.

likely attributable to differences in finite-size effects in the PR
vs ratio statistics, to which the PR tends to be more sensitive;
thus, the ratio statistics should be taken as a more reliable
estimate in our analysis. The PR result could be improved by
the inclusion of subleading corrections to the scaling ansatz of
p, as in, for example, [69]. The present analysis is sufficient to
demonstrate the existence of the localization transition, so we
leave a more refined analysis of the critical scaling to future
work.

We also examine the PR of each eigenvector compared to
its location in the complex plane, as shown in Fig. 4. The
result is similar to what was observed in Ref. [26]. For a
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FIG. 3. Fitted values of the localization length critical exponent
ν compared to critical disorder strengths (W ∗

R ,W ∗
I ) obtained from

finite-size scaling analysis of both the ratio statistics and PR for both
H and Hst , shown with estimated numerical uncertainty.

localized H , eigenvalues are nearly spread over the entire
square-shaped region with width WR and height WI, with
some concentration near the vertical center due to the choice
of sampling. For delocalized H , the majority of eigenvalues
are concentrated in the middle of the density of states and
are delocalized. However, near the boundary of the support
region there is a small number of localized states on all sides.
This is the complex-plane analog of the mobility edge in
the conventional Anderson model. In the present Lindbladian
context, it has an additional significance: the eigenvalues clos-
est to the real axis correspond to modes with the smallest
decay rate. Since they fall on the edge of the spectrum, this
implies that the longest-living transient modes tend to be
localized.

B. Stationary state

The stationary state effective Hamiltonian Hst undergoes a
localization transition in unitary symmetry class A, which is
shown for a fixed value of WI in Fig. 5. To detect this tran-
sition, we again use both the ratio statistics and participation
ratio. Let βn denote the nth eigenvalue of Hst ordered from
smallest to largest and sn = βn+1 − βn. The level spacing for
Hermitian matrices is [24,70]

rH(WR,WI ) =
〈

min

{
sn

sn−1
,

sn−1

sn

}〉
, (12)

where 〈· · ·〉 is the disorder average and an average over a
fraction of eigenvalues in the center of the spectrum of Hst,
defined using the middle half of the eigenvalues sorted by
magnitude. In the localized phase eigenvalues are uncorre-
lated, and rH 	 0.39; in the delocalized phase correlations
match the Ginibre unitary ensemble value of rH 	 0.60 [70].

Like in the previous section, we identify a transition by
fixing one of either WR,I and performing a finite-size scal-
ing analysis by varying the other. The scaling form of rH is
the same as that of rNH shown in Eq. (8). The existence of the
transition is confirmed using the PR, which is defined the
same way as in Eq. (10). As with H , we find a critical line
of transition values of (W ∗

R ,W ∗
I ) which separate localized and

FIG. 4. Complex spectra of H with L = 12 and (WR,WI ) =
(5, 5) above and (WR,WI ) = (20, 20) below. Marker locations show
the location of H eigenvalues in the complex plane. Colors indicate
the value of p(ε) = ln(PR(ε))/ ln(L3), so that the darker the marker
color the more localized the corresponding eigenmode is.

delocalized phases of Hst, as shown in Fig. 1. The scaling
exponent estimates predicted from both ratio statistics are
close to known results, for example, in Refs. [71,72], in which
the d = 3 Anderson transition in symmetry class A was found
to have a critical exponent which is close to ν 	 1.44 (see
Fig. 3). We note that there is a systematic discrepancy in the
critical disorder strength predicted by the PR and ratio statis-
tics, which we suggest may be understood similarly to that
found in the critical exponents of the non-Hermitian transition
(see Sec. III A).

We also observe that the overall shape of the distribution
of the PR over the spectrum of Hst is substantially more
pronounced than that of the corresponding H0 (see Fig. 6). In
the delocalized phase the distribution exhibits a clear mobility
edge, much sharper than that of H0, which shows a prevalence
of delocalized states with a large PR at the center of its density
of states and states that are more localized with a smaller PR
near the edges. This demonstrates the strong sensitivity of
the stationary state to the dissipative disorder. We also note
that the bandwidth of Hst is quite small compared to that of
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FIG. 5. Examples of finite-size scaling of the level statistics and
PR for H0, with fixed WR = WI. The horizontal axis shows varying
values of W = WR,I; the vertical axes show rH and p with uncer-
tainties. The crossing points are W = 4.43 ± 0.01 and 5.87 ± 0.09,
respectively, giving critical points (4.43,4.43) and (5.87,5.87). The
insets show computed values of rNH(W ) and p(W ) using the scaling
forms given in Eqs. (8) and (11) with parameters determined from
fitting vs their numerically determined values; a solid line with
unit slope is shown for reference. The estimated critical exponent
is ν = 1.74 ± 0.22 from level statistics and ν = 1.87 ± 0.24 from
the PR.

H0, especially in the delocal phase; this can be understood as
a consequence of the fact that loss and gain processes have
equal strength on average and thus drive the system close to a
Gibbs state.

These numerical findings also justify our focus on the
eigenstates of Hst near the center of its density of states to
identify the transition. For delocalized stationary states the
bandwidth of Hst is small, implying that all eigenstates con-
tribute to expectation values with roughly equal probability.
The density of states near the middle is much larger than the
edge, so observables are dominated by delocalized features. In

FIG. 6. Participation ratios (vertical axes on all plots) for the
eigenvectors of the steady-state effective Hamiltonian Hst (left
column) and the corresponding Anderson Hamiltonian H0 (right
column) from the same disorder realization, shown for L = 12. The
bottom row shows (WR,WI ) = (20, 20), where both plots are in the
delocal phase; the top row shows (WR,WI ) = (2, 2), where both plots
are localized.

contrast, for localized stationary states all states are localized,
so expectation values always show localized features.

C. Dissipative gap

The dissipative gap determines the slowest rate of ap-
proach toward the stationary state from an arbitrary initial
state. Formally, it is the minimum of the imaginary part of
the Lindbladian spectrum. Systems with a finite dissipative
gap decay toward the stationary state exponentially with the
timescale given by the inverse gap. Systems without a gap, in
contrast, can decay algebraically.

For the quadratic Lindbladian dynamics considered here,
the many-body dissipative gap is the same as that of H . Any
particular disorder realization exhibits a finite dissipative gap
(although this may be lost in the limit L → ∞). In particular,
when H is strongly localized, the eigenvalues of H are deter-
mined almost exactly by local εr, μr, and νr and thus fill the
entire square-shaped region in the complex plane bound by
the real and imaginary intervals [−WR/2,WR/2] and [0,WI].
Because both μr and νr can be arbitrarily small, eigenvalues
can be arbitrarily close to the real axis, leading to a vanishing
dissipative gap.

While this is true of the model as defined above, we argue
that this is not an essential feature of either type of localiza-
tion observed here. Modification of the jump operators can
introduce a finite dissipative gap even in the strongly localized
regime of either or both of H and Hst. To show this, we con-
sider an additional set of nonrandom gain and loss channels
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encoded by two additional sets of jump operators:

L̂(l′ )
r = √

κ ĉr, L̂(g′ )
r = √

κ ĉ†
r , (13)

where κ is a site-independent constant. This addition modifies
the single-particle matrix Q of Eq. (4),

Qrr′ = 1
2

(
μ2

r + ν2
r + 2κ

)
δrr′ . (14a)

The other two single-particle matrices are unchanged. Note
that the same result could have been achieved by modifying
the distribution of μr and νr so that their squares are uniformly
distributed on the shifted interval [κ,WI + κ] instead of intro-
ducing new jump operators.

This translates the entire spectrum of H away from the real
axis by a distance κ in the complex plane, so the dissipative
gap is at least as large as κ regardless of the strength of the
disorder. This change does not modify any other details of
the eigenvalues or eigenvectors. The non-Hermitian Anderson
transition is thus unaffected, and the critical line for H in the
(WR,WI ) plane, depicted in Fig. 1, is unchanged. The effects
on the stationary state are less obvious, but we numerically
verified that its localization transition remains intact and the
locations of the critical points are not affected for small, but
finite, κ . We find that the locations of critical points generally
move toward the origin of (WR,WI ) with increasing κ but
remain finite (see Fig. 7).

IV. CONCLUSION

We proposed a simple Lindbladian model of localiza-
tion in an open system of disordered fermions. By studying
both eigenvalue statistics and the participation ratio, we
found that both the transient modes and the stationary state
undergo localization transitions at sufficiently strong dis-
order of either the Hamiltonian or dissipative type. We
established a schematic phase diagram of our model and es-
timated the localization length critical exponent of the two
transitions, which generally agreed with known results for
their respective universality classes along the entire phase
boundary.

Surprisingly, we found that the stationary state is much
more sensitive to the dissipative disorder, while the transient
mode spectrum is affected by both types of disorder in an ap-
proximately symmetric way. As a consequence, localizations
of the transient modes and stationary state occur at different
critical disorder strengths. This results in four distinct phases:
two conventional phases corresponding to weak and strong
disorder of both types in which all features are delocalized
or localized, respectively, and two unconventional phases in
which only the stationary state or transient modes are local-
ized while the other remains delocalized. We showed that the
phases persist independently of the presence of a dissipative
spectral gap.

One may speculate on the observable consequences of
these new types of localization. Following Ref. [54], ex-
pectation values of observables and their equal-time higher
correlation functions depend only on Hst. The dynamic matrix
H determines observables’ nonstationary properties, such as
linear response features and quenches from initially nonsta-
tionary states. Measurements of local quantities cannot detect
a sharp transition between localized and delocalized phases.

FIG. 7. Finite-size scaling of level statistics and PR for Hst with
κ = 1 and WR = WI (compare to Fig. 5). The horizontal axis shows
varying values of W = WR,I, and the vertical axes show rH and p with
uncertainties. The crossing points are WI = 3.53 ± 0.03 and 2.17 ±
0.002, respectively, giving critical points (3.53,3.53) and (2.17,2.17).
The insets show computed values of rH(W ) and p(W ) using the
scaling forms given in Eqs. (8) and (11) with parameters determined
from fitting vs their numerically determined values; a solid line with
unit slope is shown for reference. The estimated critical exponent is
ν = 1.32 ± 0.05 from level statistics and ν = 1.57 ± 0.12 from PR.

In the Hermitian Anderson model, localization is signaled
by vanishing conductivity. Such a metric is unsuitable in the
model studied here because it has no conserved quantities
and hence no transport features. We leave the question of
an appropriate experimental signature of localization in this
model to future work.

A possible alternative way forward is the construction of
a more complicated Lindbladian model with similar local-
ization phenomena that also possesses conserved quantities.
In such a theory, transport features could be a signal of
localization. This would necessitate going beyond the single-
particle description, as the inclusion of conserved quantities
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requires jump operators that are at least quadratic in fermion
creation operators. It is an open question as to whether or not
mixed localized and delocalized features could be realized in
disordered many-body Lindbladians. As an alternative to non-
linear jump operators, one may also consider the effects
of coherent nonlinearities on the localization of either the
transient modes or stationary state. In the three-dimensional
model studied here one would anticipate fermion interac-
tions to overcome either type of localization, analogous to
closed systems of disordered three-dimensional fermions. The
fate of localization in lower dimensions is less obvious.
Non-Hermitian versions of many-body localization in one
dimension have been studied in the past [25] and recently in

the context of Lindbladian spectra in [50–52], but localization
features of many-body stationary states have yet to be consid-
ered and would be an interesting direction for future study.
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