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Interatomic potential for sodium and chlorine in both neutral and ionic states
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Molten salts could play an important role in energy storage, in the form of liquid batteries, and heat storage
for solar and nuclear power. However, their widespread application is hindered by a limited understanding of the
mechanisms by which they corrode metallic containers. This knowledge gap necessitates atomic-scale studies on
salt-metal interactions. Molecular dynamics simulations are well suited for such research but require interatomic
potential capable of accurately modeling both ionic and neutral states of salt and metal elements. Herein, we
developed a moment tensor potential (MTP) with this capability, employing a small-cell training approach. The
proposed MTP is compact: It is described by 449 parameters fitted on 609 configurations; 30% of these are one-
or two-atom configurations. Extensive testing of our MTP points to a high-fidelity description of the structural
and transport properties of solid/liquid Na, gaseous Cl, and crystalline/molten NaCl. Furthermore, we applied
this MTP to calculate the standard reduction potential and solubility limit of Na in molten NaCl, achieving results
that closely align with experimental and ab initio simulation data. This approach offers a robust framework for
exploring the electrochemical and physical properties of molten salts across various compositions and solutes.
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I. INTRODUCTION

Molten chloride salts are promising heat transfer mediums
for carbon-free energy generation [1,2] and electrolytes of
liquid metal/molten salt batteries [3], but their propensity to
severely corrode metallic containers limits their application
[4,5]. One notable corrosion mechanism is metal dissolution
from salt-exposed components to the melt [6]. The dissolved
metal also causes self-discharge currents, lowering the ef-
ficiency of liquid metal/molten salt batteries [3] and metal
production [7,8] by molten salt electrolysis [9]. The solubility
limit and corrosion rates of metals in molten salts are linked
to the viscosities, self-diffusion coefficients, and heat con-
ductivities of these salts and the standard reduction potential
of the metallic atoms in the melt [9]. These properties are
challenging to measure experimentally and very demanding
to estimate using ab initio calculations. Molecular dynam-
ics (MD) simulation is well-suited for such inquiries, yet its
accuracy is contingent upon the interatomic potential (IP) em-
ployed. Hence, developing IPs for MD simulations of molten
salts has become an increasingly important research field.

Currently, multiple semiempirical IPs such as rigid ion
models [10] and polarizable ion models [11] can describe
multiple structural and dynamic properties of molten salts,
but they cannot capture the variations of charge states [12].
Charge transfers can be captured by variable-charge IPs such
as ReaxFF [13,14] and COMB [15,16]. However, these IPs
have rigid functional forms, which require the inclusion
of extra physically motivated terms for specific scenarios
[17–19]. Thus, systematically extending the number of pa-
rameters of these variable-charge IPs to approximate ab initio
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interactions is challenging. Alternatively, machine-learning
IPs offer flexible, functional forms that can be systemati-
cally improved. Approaches such as Gaussian approximation
potentials (GAPs) [20–22] and neural network IPs (NNIP)
[23–32] have been successfully used to model various molten
salts. NNIPs have also been proven to capture atomic charge
transfer in an organic molecule [33] and multiple charge states
of ions in molten salts [34,35]. Nonetheless, MD simulations
of metal dissolution and corrosion in molten salts require an
IP that can jointly describe metal and its corresponding salts
in both solid and liquid phases, neutral and ionic states. To our
knowledge, no existing IP fulfills this requirement.

In this paper, as a proof of concept, we employ the mo-
ment tensor potential (MTP) [36,37] framework to develop a
force field for Na (in solid and liquid phase), Cl (in gaseous
phase), and NaCl (in solid and liquid phase). We then validate
our MTP by comparing its predictions on multiple structural,
thermophysical, and transport properties with those obtained
by ab initio calculations. Since our MTP was developed to
describe both liquid Na and molten NaCl, we investigated
the transition of Na from the neutral state in liquid Na to the
ionic state in molten NaCl, calculating the standard reduction
potential and the solubility limit of Na in molten NaCl. We
expect that our method can be generalized to determine the
relative position of electrochemical reactions and the electro-
chemical series for any molten salt solvent.

II. METHODS

A. Machine-learning IP

The MTP framework represents atomic energy V (ni ) as a
linear combination of basis functions Bα [36]:

V (ni ) =
∑

α

εα(u,v)Bα(u,v)(ni ), (1)
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where εα are fitting parameters. The basis function Bα can be
defined by the moment tensor Mα:

Mα(u,v)(ni ) =
∑

j

fu(|ri j |, ni, n j )ri j ⊗ . . . ⊗ ri j, (2)

where ri j is the position vector from the atom ni to n j . The
order parameter α is determined by u and v: fu represents the
sum of Chebyshev polynomials up to an order of u, and v

indicates the outer product of ri j by v times. The resulting
tensor Mα(u,v) is then contracted to a numeric value Bα . Based
on a series of Bα , linear regression is applied to minimize the
error with respect to energies, forces, and stresses calculated
using density functional theory (DFT). We utilized the MLIP-3
package [38] to train our molten salt MTP. In this paper, the
energy, force, and stress data points are assigned weights of
100:1:0.01, like in previous MTP works [39–43].

In MTP, the inner and outer cutoff radii determine the
maximum and minimum interaction range between atoms. We
chose an inner cutoff of 1.85Å for our potential, as the radial
distribution functions (RDFs) of liquid Na and molten NaCl
in Fig. 1 show that no interatomic distances are <1.85Å. We
chose an outer cutoff distance of 8Å. These inner and outer
cutoff distances have been used in several machine-learning
force fields for molten salts [31,35,44]. The determination
of the functional form of MTP, i.e., the number of fitting
parameters, can be found in the Supplemental Material [45].

We also constructed a validation set to test the perfor-
mance of our MTP. The composition of training and validation
datasets are listed in Tables SI and SII in the Supplemental
Material [45]. Different from the training set, the validation
set contains cubic cells having three or four Na atoms, two
Na and Cl atoms, or three Na and Cl atoms. All atoms are
distributed randomly inside the cell. These structures are ther-
modynamically unstable, resembling neither solid nor liquid
structures. We chose them to ensure that the validation dataset
is independent of the training dataset, so they give an unbiased
evaluation of the MTP fit on the training dataset with increas-
ing parameters.

B. Ab initio quantum mechanical calculations

All configurations in our training, testing, and validation
datasets were generated using the QUANTUM ESPRESSO soft-
ware package [46] and the generalized gradient approximation
following Perdew, Burke, and Ernzerhof [47]. Because ionic
crystals have neither free electron as in metals nor shared
electrons as in covalent bonds, each electron in ionic crys-
tals is bonded to an ion, akin to electrons in isolated atoms.
Hence, we chose a semilocal pseudopotential [48] that utilizes
spherical-harmonic functions for the nonlocal term in angular
coordinates, the same descriptors used for atomic electron
wave functions. The kinetic energy cutoff for wave functions
was set to be 680 eV, consistent with previous work on the
machine-learning potential of molten NaCl [32].

Previous research [49] has found that, without van der
Waals corrections, ab initio MD (AIMD) simulations of
molten NaCl structures can expand indefinitely. This suggests
that van der Waals forces are significant to the cohesion of
molten salts. Even though Coulombic forces are the dominant
forces at short ranges, at longer ranges, the average repul-

sion between like charges balances the attraction between
opposite charges. Based on these earlier studies, we added
to our DFT calculations van der Waals corrections with the
DFT-D2 scheme of Grimme [50], which has been demon-
strated to successfully reproduce the microscopic structure
and thermodynamic properties of molten NaCl [49]. We also
applied the same correction to all Na and Cl2 configurations.
For all DFT calculations, the convergence criterion for elec-
tronic self-consistent calculations is 0.01 meV. Since models
of different sizes require different k-point densities for DFT
calculations, we tested the energy and force convergence of
different models to assess if different k-point densities are an
issue (see the Supplemental Material [45] for more details).

All training configurations regarding Cl2 gas contain a
single Cl2 molecule with varying interatomic distances in a
large cell (15 × 15 × 15Å), so the molecule is not subject
to noticeable intermolecular interactions. Because our MTP
was trained by models of an isolated Cl2 molecule, it did
not consider any interactions between molecules. Increasing
the k-point density to 2 × 2 × 2 only decreased the atomic
energy by 0.2 meV/atom and the atomic force by 0.6 meV/Å.
Thus, a single k point is enough for both energy and force
convergence.

AIMD simulations were carried out at constant vol-
umes and temperatures; the temperature was controlled by a
Berendsen thermostat [51] with a time scale of 1 fs. When
running AIMD simulations, we used models containing 128
atoms for molten NaCl, and 43 and 117 atoms for liquid Na.
The sizes of the 128- and 117-atom models are two times
larger than our MTP cutoff distance, so we do not expect an
atom in them to see its replica or the same particle twice. Our
AIMD obtained the same RDF and diffusion coefficients of
molten NaCl as previous work based on a 64-atom model [31].
The 43-atom model of liquid Na also yields the same RDF as
that based on the larger 117-atom model and a 64-atom model
[49].

C. MTP-MD simulations and active learning algorithms

The trained MTP was used in LAMMPS via an interface
with MTP [36]. The system size and simulation tempera-
tures were chosen to be the same as that in AIMD, with a
time step of 1 fs. NVT simulations were performed using
the Nosé-Hoover thermostat [52] while maintaining periodic
boundary conditions. The equilibrated trajectory after 500-ps
simulations was used to perform coordination and structure
analysis. For the calculation of self-diffusion coefficients, we
used the Berendsen thermostat [51] to be consistent with our
AIMD simulations.

In the active learning method, n configurations are initially
generated and converted to an n × m matrix (m is the number
of the basis MTP functions). MTP then selects m configu-
rations into an active set A with the maximum modulus of
the determinant |det(A)|. This determinant can be viewed as
the volume occupied by the active set A in configurational
space (projecting the atomic coordinates on the current MTP
basis set). Later, when encountering a new configuration, the
program will calculate whether it can increase |det(A)| by
replacing one existing configuration in A. A configuration will
be selected for training (flagged risky) only if it can increase
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|det(A)| by a factor >2. Otherwise, the extrapolation error
is usually not significantly higher than that for interpolation
[36]. Every time the training set is updated, so is the active set.
However, if a configuration increases |det(A)| higher than the
maximum allowed extrapolation grade (typically 10 for our
calculation [36]), the simulation will be unstable and must be
terminated. We must update the active/training set and retrain
the potential.

Overall, one iteration of our active learning algorithm con-
sists of the following steps:

(1) A set of n training configurations is generated and con-
verted to an n × m matrix.

(2) Select from the training dataset m configurations to form
an active set A with the maximum |det(A)|.

(3) Run the simulation with the current potential and
the active set until its successful completion or break
due to configurations exceeding the maximum allowed
extrapolation grade. New training configurations are
selected automatically during the simulation.

(4) The ab initio calculated energy, forces, and stresses of
the selected configurations are appended to the trained
set, and the active set is updated to maximize |det(A)|.

(5) The MTP is retrained.

The above iteration repeats until the simulation completes
successfully with no risky configurations identified. Using an
MTP trained by solid Na and NaCl configurations, we found
the first iteration will always break for configurations of liquid
structures, yet the second will not. Two iterations are enough
for MTP to pick up all risky configurations.

All training configurations are selected based on the active
learning algorithm discussed above. For each type of con-
figuration, we created 31 deformed models with volumetric
strains evenly distributed from −15 to 15% and then ran an
active-learning MTP-MD simulation for each model under
the NVT condition. The liquid models are sampled from
primary liquid structures predicted by an MTP trained only
by solid configurations. To detect risky configurations caused
by thermal fluctuations, we ran MTP-MD simulations using
the Langevin thermostat [53] at 100, 673, 1273, and 1473 K
for solid configurations. Each simulation ran for 1 ns. For
liquid structures, training configurations were selected at tem-
peratures beyond the melting points: 373, 673, 973, and 1073
K for liquid Na and 1073, 1273, 1473, and 1555 K for
molten NaCl.

D. Performance and cost assessment of MTP

A comprehensive performance and cost assessment of var-
ious machine-learning IPs, including MTP and NNIP, can be
found in Refs. [42,54]. These comparisons found a tradeoff
between accuracy and the number of parameters and, conse-
quently, the computational cost. Compared with NNIP, MTP
exhibits an excellent balance between model accuracy and
computational efficiency [42]. However, the outcome of such
assessments depends heavily on the choice of training and
validation datasets and, therefore, on the specifications set
by the scientist training the models. Nonetheless, potentials

involving more parameters are generally more accurate yet
less computationally efficient. We also found the computa-
tional cost of MTP [∼10−7 (CPU h) atom−1 (MDstep)−1]
is 10 times smaller than that of an NNIP for molten NaCl
(between 10−6 and 10−5 (CPU h) atom−1 (MDstep)−1, as
reported in Ref. [31]), close to the cost of the Fumi-Tosi
empirical potential [55] (see the Supplemental Material [45]
for the figure of performance and cost assessment of MTP).

III. RESULTS

A. Active-learning small-cell strategy for training
dataset construction

We adapted a systematic small-cell active-learning strategy
previously used to develop MTPs for Zr and Zr hydrides
to construct our training set [56,57]. Our small-cell strategy
was inspired by the fact that, because DFT provides only
the total energy of the whole model under consideration, the
MTP optimizer faces a degeneracy when decomposing the
total energy into atomic energies. Only 1 or 2 atom cells with
identical elements have unambiguous atomic energy partition.
Therefore, to alleviate the degeneracy problem, we built an
initial training set using multiple 0 K primitive cells of Na
and NaCl with volumetric strains from −15 to 15%. Then we
expanded our training set via MTP-MD simulations, leverag-
ing the active-learning mode of the MLIP-3 software package
[58]. Specifically, we ran active-learning MTP-MD on each
deformed NaCl primitive cell at four different temperatures
(100, 673, 1273, and 1473 K). Thermally induced atomic
vibrations can access microstates different from the 0-K vol-
umetrically deformed structures. During the simulation, the
active-learning MTP algorithm automatically selected con-
figurations with interatomic environments distinct from the
initial training set. Afterward, we performed DFT calcula-
tions on these selected configurations, added the results to
the training set, and retrained the MTP. Using this updated
MTP, we repeated the active-learning process. Every time new
training configurations were identified, the MTP was updated.
Finally, no deformed NaCl primitive cells were flagged by
the active-learning MD. The same procedure was utilized to
introduce into training configurations of Na and NaCl unit
cells, molten Na and NaCl models, and Cl2 gas models.

We constructed a training set containing 609 configura-
tions: 15 Cl2 molecule models, 339 primitive and unit cells
of Na and NaCl, and 74 liquid models with a maximum of 34
atoms. By gradually replacing the Cl atom with Na in such
34-atom configurations, we also included models of supersat-
urated Na solutions in molten NaCl. Specifically, our training
dataset contains only 8 liquid Na configurations, for MTP can
infer most of the properties of liquid Na from molten NaCl
due to their similarities: the incomplete free electron screening
in liquid Na results in an oscillatory ion-ion interaction (the
Friedel oscillations) and RDF like that in molten NaCl caused
by the excluded-volume effect of the Cl ions; additionally,
both Cl ions and free electrons carry the same charge, thereby
inducing a similar polarization effect on Na ions at the same
distance. Validation using a separate dataset indicated that a
relatively modest 449 MTP parameters were sufficient to ade-
quately describe the chemical and physical properties of NaCl,
Cl2 gas, and Na (see discussions in Sec. III B). In contrast,
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FIG. 1. Machine-learning interatomic-potential development and evaluation. (a) The hierarchical construction of our training dataset. Blue
and red atoms represent Na and Cl, respectively. 0 K equations of state for (b) solid NaCl and (c) solid Na. Radial distribution functions of
liquid Na and molten NaCl at 1150 K are shown in (d) and (e), respectively. The comparison of moment tensor potential (MTP) atomic force
prediction with density functional theory (DFT) results for (f) a 54 atom solid Na model, (g) a 64 atom crystalline NaCl model, (h) a 117 atom
liquid Na model, and (i) a 128 atom molten NaCl model.

NNIPs have thousands of parameters [23–32] and thus must
use an augmented training dataset (∼10 000 configurations)
to alleviate overfitting; GAPs [20–22] also require thousands
of molten salt training configurations, each having hundreds
of atoms. Our training strategy indicates that such a vast
training dataset and large training models are not required.
Once trained with the 609 small-cell configurations, the MTP
does not flag risk for liquid models containing >34 atoms
during further active learning. The information in these large
liquid models can be interpolated from crystalline salt and
small-cell liquid models. Hence, our semisupervised, small-
cell approach has the advantage of being computationally
efficient, while minimizing human intervention.

B. MTP predictions on structure properties

Figures 1(b) and 1(c) show the MTP-predicted 0 K equa-
tions of the state obtained from the volumetric deformation of
the unit cells of NaCl and Na, respectively. They are in very
good agreement with DFT calculations, accurately reproduc-
ing bulk moduli, cohesive energies, and lattice parameters of
both Na and NaCl. Such accuracy is expected because these
configurations are included in the training set. To validate that
our MTP can capture various interatomic interactions in larger
models, we also compared the atomic forces predicted by
MTPs and that by AIMD of a 2 × 2 × 2 NaCl supercell model
at 850 K [Fig. 1(f)] and a 3 × 3 × 3 Na supercell cell at 300 K
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TABLE I. Properties of Na and NaCl, calculated using MTP and DFT. The vacancy formation energy of NaCl is the energy cost for a
Na-Cl vacancy pair. Bulk moduli are derived from fitting to the Birch-Murnaghan equation of state, like previous experimental works on NaCl.
Due to the addition of dispersion corrections, our DFT-calculated Na properties deviate from experimental observations.

NaCl Na

DFT MTP Experiment DFT MTP Experiment

Cohesive energy (eV) 7.05 7.07 6.62 [59] 1.37 1.4 1.113 [60]
Lattice parameter (Å) 5.62 5.6 5.64 [61] 3.97 4 4.28 [62]
Bulk modulus (GPa) 27 30.8 24 [63] 7.45 8.55 6.3 [64]
Vacancy formation energy (eV) 2.12 2.43 2.12 [65] 0.56 0.35 0.39 [66]
Antisite formation energy (eV) 4.28 4.53
Simple cubic Na cohesive energy (eV) 1.26 1.27
Simple cubic Na lattice parameter (Å) 3.19 3.23
Face-centered cubic Na cohesive energy (eV) 1.36 1.4
Face-centered cubic Na lattice parameter (Å) 5 5.12

[Fig. 1(g)]. For both structures, the MTP-predicted forces
follow a linear relation with the DFT results with a unity
slope. The root mean square errors are 0.025 and 0.042eV/Å
for solid Na and crystalline NaCl, respectively. Furthermore,
our MTP can also correctly predict the formation energy of
defect structures not included in the training set, such as a
Na-Cl vacancy pair in NaCl (DFT: 2.12 eV; MTP: 2.43 eV),
a NaCl antisite defect (DFT: 4.28 eV; MTP: 4.53 eV), as well
as the unstable face-centered cubic (fcc) and simple cubic
(sc) structures of Na (Table I). Likewise, with no phonon data
included during training, our MTP leads to reasonable NaCl
and Na phonon band structures and density of states (see the
Supplemental Material [45]).

Next, we compare the structures of molten NaCl and
liquid Na obtained via AIMD with those obtained using
MTP-MD. Both AIMD and MTP-MD were performed under
the isothermal-isovolumetric condition (NVT) at 1150 K with
densities of 0.98 and 1.64g/cm3 for liquid Na and molten
NaCl. These are equilibrium densities predicted by our MTP
at 1150 K; the density of molten NaCl, 1.64g/cm3, is slightly
higher than the experimental value (1.53g/cm3 [67]) but
consistent with a previous NNIP prediction [31]. Next, we
computed the RDF of liquid Na in Fig. 1(d) and the RDFs for
the three atomic pairs (Na-Na, Na-Cl, and Cl-Cl) of molten
NaCl in Fig. 1(e). MTP-based RDFs of both liquid Na and
molten NaCl closely overlap those obtained using ab initio
calculations. Compared with the experimental RDFs deduced
from neutron diffraction measurement [68,69], both AIMD
and MTP predict the first and second peak positions and
the long-range fluctuations accurately. Our AIMD predicts a
shoulder of the Cl-Cl and Na-Na RDFs at 5.3 Å, a structure
not observed in experiments. This structure reflects an
exaggerated attraction caused by the DFT-D2 dispersion
correction [70]. Except for these differences, the microscopic
structure of the simulated molten NaCl agrees with that
measured experimentally, so the phenomenological behavior
of molten NaCl would remain the same with experiments (see
the Supplemental Material [45] for more details).

In addition to RDF, our MTP reproduces the angular dis-
tribution functions in molten NaCl and liquid Na (see the
Supplemental Material [45]). We also compared the atomic
forces predicted by MTP with AIMD simulations of 117-atom

liquid Na [Fig. 1(h)] and 128-atom molten NaCl [Fig. 1(i)]
models at 1150 K. For both liquid structures, the atomic
forces predicted by MTP are in line with the DFT results
with a unity slope. The root mean square errors are 0.043 and
0.138eV/Å for liquid Na and molten NaCl, respectively. In
addition, our MTP predicts a melting point of NaCl consistent
with a recently developed NNIP on molten NaCl [31]. These
validations of the MTP based on models larger than training
configurations indicate that the MTP can capture both the
metallic bonding in Na and ionic bonding in NaCl accurately.

Finally, our MTP successfully reproduces the DFT-
determined bond-length-bond-energy relationship of Cl2 gas
molecules (see Fig. 2), yielding the same equilibrium bond
lengths, bond stiffness, and bond energy as DFT calculations.
We further calculated the equation of state for Cl2 gas at
1150 K using 200 Cl2 gas molecules. The pressure was
averaged over 10-ns NVT simulations at different volumes
occupied by these Cl2 molecules. These molecules remain

FIG. 2. The bond-length-bond-energy relationship for a Cl gas
molecule at 0 K. We also illustrated the equation of state for Cl2 gas
at 1150 K.
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FIG. 3. The prediction of atomic transport properties of molten NaCl and liquid Na. (a) Arrhenius plot of moment tensor potential (MTP)-
predicted self-diffusion coefficients of molten NaCl and experimental measured diffusion coefficients [72]. (b) The Arrhenius plot of self-
diffusion coefficients of liquid Na and the corresponding experimental values [73]. (c) Comparison of thermal conductivity between our
MTP predictions, experimental measurements [74], and molecular dynamics (MD) simulations using neural network interatomic potential
(NNIP) [31]. (d) Comparison of viscosity between MTP predictions and experimental measurements [75,76].

stable within a wide range of pressure, yielding the famous
ideal gas law PV = nRT . Overall, these comparisons confirm
that our MTP captures the structural properties of NaCl and
Na in both solid and liquid states as well as the covalent bond
properties of Cl2 gas.

C. Atomic transport properties of both liquid
Na and molten NaCl

In addition to structures, atomic transport properties and
heat capacity are also essential for molten salt selection. Al-
though AIMD can be used to predict ionic self-diffusivity
in various binary and ternary salt mixtures [71], MTP-MD
allows for larger length and time scales to investigate trans-
port behaviors. Here, we utilized AIMD and MTP-MD to
determine the self-diffusion coefficients of different ions
from the slope of their mean-squared displacement vs time.
Figures 3(a) and 3(b) shows the Arrhenius plots of the self-
diffusion coefficients of molten NaCl and liquid Na. The

MTP-calculated coefficients are consistent with the AIMD
results, on the same order of magnitude (10−5 to 10−4cm2/s)
as experimental measurements [72]. Furthermore, Figs. 3(a)
and 3(b) show similar slopes for both computational ap-
proaches and experimental measurements [72], indicating
that MTP also predicts the diffusion activation energies
accurately.

Unlike previous work on MD simulations of molten salts
that used self-diffusion coefficients to estimate the viscosity
[31], we directly evaluated viscosity and thermal conductivity
using the reverse nonequilibrium MD method developed by
Muller-Plathe [77]. Specifically, we imposed a heat flux by
periodically exchanging kinetic energy between two atoms
in different regions. The ratio between the kinetic energy
exchange rate and the resulting temperature gradient is pro-
portional to the thermal conductivity (see the Supplemental
Material [45] for simulation details). Figure 3(c) shows that
the MTP predicts thermal conductivities like those obtained
using a NNIP [31] and exhibits a temperature dependence
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FIG. 4. Prediction of thermodynamic properties of molten NaCl
and liquid Na. (a) The assessment of heat capacity predictions of
molten NaCl and liquid Na. Error bar represents standard error av-
eraged over 10 samples. Since the melting point of Na is ∼1000 K
lower than that of molten NaCl, we plotted the properties of liquid
Na at a temperature scale different from that for molten NaCl. (b)
The distribution of extra potential energy due to an extra Na atom in
an original 117 atom liquid Na model.

closer to experimental results [74]. Likewise, we exchanged
the momentum between two atoms in different regions to
introduce a momentum flux; the ratio between the momentum
flux and the resulting momentum gradient is proportional
to viscosity. Because a viscous flow is an activated process
obeying the Arrhenius relation [78], we show in Fig. 3(d) an
Arrhenius plot of the viscosities obtained with the MTP and
values determined experimentally [75,76]. The results pre-
dicted by the MTP are in good agreement with experimental
measurements, exhibiting similar slopes on the Arrhenius plot
and, therefore, similar activation energies.

At last, we calculated the constant-pressure heat capacity
of molten NaCl from the enthalpy increase in ∼10 K tem-
perature increment, using a model containing 62 500 atoms
under the isothermal-isobaric condition. The MTP predicts a
heat capacity of molten NaCl close to both experimental mea-
surements and NNIP predictions [31] [Fig. 4(a)]. Figure 4(a)

also shows the heat capacity of liquid Na using the same
method. Our MTP predicts approximately the same value and
the same downtrend as experimental measurements [79] over
a wide temperature range above the melting point. Overall,
our MTP predictions match ab initio calculations of structural
and transport properties of crystalline and molten NaCl, solid
and liquid Na, and Cl gas with high accuracy.

D. Calculation of standard reduction potential
of Na in molten NaCl

The analysis presented above confirms that the MTP can
handle both liquid Na and molten NaCl; here, we focus on
the transition of Na from the neutral to the ionic state. This
transition is linked to the standard reduction potential of Na,
which is proportional to the change in Gibbs free energy �G
in the redox reaction Na(l ) + 1

2 Cl2(g) � NaCl(l ). Here, �G
can be evaluated as the net change of the chemical potentials
μex

g between different states along the following pathway:

�G = μex
g (Nal → Nag) + μex

g (Nag → Na(NaCl)l )

− �G f (Cl•g) + μex
g [Clg → Na(NaCl)l ]. (3)

All gaseous states are ideal, so �G f (Cl•g) represents the Gibbs
free energy of Cl radical gas relative to Cl2 gas, which is
5.9 kT at 1150 K [61]. Here, μex

g of different liquid structures
at 1150 K are calculated using the Widom particle insertion
method [Fig. 4(b)] [80]: a test particle is inserted randomly
(∼800 times) into a configuration of solvent particles (128
atom molten NaCl and 43 atom liquid Na), each time result-
ing in a distinct potential energy change �U . The logarithm
of the Boltzmann average of �U , −kT ln〈exp(−�U/kT )〉,
gives μex

g of the test particle in this solvent. Because DFT
gives the ground-state electron distribution, the electron trans-
fers naturally. Trained by DFT results, our MTP can in
principle reproduce the effect of charge transfer on total
energy.

Following the pathway shown above, we first determined
μex

g (Nal → Nag) using both MTP and DFT. MTP yields ap-
proximately the same value (9.58 ± 0.6 kT) as that given
by DFT (9.6 ± 0.9 kT). Then the successive transformation
of Na and Cl radicals into their ionic states gives μex

g of a
Na-Cl pair in molten NaCl. The MTP prediction of this value
also matches the DFT results (DFT: −50.1 ± 4kBT ; MTP:
−46.8 ± 3.8kBT ). Consequently, MTP yields a �G (−35.9 ±
4.3 kT) very close to the DFT target (−31.3 ± 4.9 kT). The
successful reproduction of the DFT-level �G suggests that our
MTP can reasonably capture the neutral-to-ionic transition of
Na from liquid Na to molten NaCl.

Both DFT and MTP show a negative �μl , indicating Na
dissolution is favorable. At this concentration level, previous
research [81,82] has found that the dissolved Na atoms are
ionized and become indistinguishable from other Na ions in
the melt. To test whether our MTP distinguishes the dissolved
Na from other Na ions, we compared the excess number of
Cl neighbors in surplus of Na neighbors (referred to herein as
surplus Cl neighbors) of solvent Na and dissolved Na within
the cutoff distance of our MTP (8Å). Figure 5 shows the
number of surplus Cl neighbors for one representative solvent
ion and one dissolved Na atom in a 128 atom molten NaCl
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FIG. 5. Change in the number of surplus Cl neighbors of Na
upon solvation in NaCl melt.

model, averaging over a 10 ns NVT simulation at 1150 K. The
number of surplus Cl neighbors decreases from ∼1.2 in pure
NaCl to ∼0.6 when one Na atom is dissolved into the melt.
The solvent and dissolved Na atoms have the same amount
of surplus Cl neighbors within the error bar, suggesting the
same local environment and atomic charge. We also found the
dissolved and solvent Na ions have identical atomic energy
and Voronoi-cell atomic volume distributions. These findings
demonstrate that MTP does treat the dissolved Na atom the
same as other Na ions in the melt. The dissolved Na does
not perturb the solvent ion network but becomes a part of it,
consistent with a previous AIMD study on molten NaCl with
dissolved Na [83].

E. Determination of the solubility limit of Na in molten NaCl

Since our MTP captures the neutral-ionic transition
of Na, it can be used to determine the solubility limit
of Na in molten NaCl. Figure 6(a) illustrates the rel-
ative chemical potential �μl upon solvation of Na
in molten NaCl at different excess Na concentrations
μex

g [Naextra (NaCl)l ; Na]−μex
g (Nal ; Na). Both DFT and MTP

show an initial negative �μl , indicating Na dissolution is
favorable. At this concentration level, the dissolved Na atoms
become indistinguishable from other Na ions in the melt
[81,82]. �μl becomes positive at ∼3% for MTP, after which
Na dissolution is unfavorable. The MTP-predicted solubility
limit lies between the DFT prediction and the experimental
solubility [84], demonstrating the expressive power of the
MTP framework.

Finally, trained by configurations of supersaturated solu-
tions of Na in molten NaCl, our MTP can directly capture
the Na partition/dissolution in supersaturated/undersaturated
solutions of Na in molten NaCl [Fig. 6(b)]. Starting from a
1 million atom model of molten NaCl, we randomly deleted
half of the Cl atoms to create a supersaturated Na solution.
On the other hand, we created a void in another 1 million
atom model of molten NaCl and filled this void with liquid Na,

FIG. 6. The determination of solubility limit of Na in molten
NaCl. (a) Change in chemical potential of Na upon solvation in NaCl
melt upon the molar concentration of excess Na in molten NaCl.
The experimental reference is given by the vertical dashed line [84].
(b) The Na partition/dissolution in supersaturated/undersaturated Na
solution in molten NaCl at 1150 K.

creating an undersaturated Na solution in contact with liquid
Na. During isothermal-isobaric simulation at 1150 K, both
models stabilize at the same excess Na concentration close to
the experimental solubility limit. These simulations indicate
that our MTP can also benefit the material selection of liquid
metal/molten salt batteries, which store electrical energy in
two liquid metal layers separated by a molten salt electrolyte
layer. The primary factor determining the efficiency of such
batteries is the metal solubility in molten salt [85,86], for
the dissolved metals cause self-discharge currents. The metal
solubility in their respective halide melts was found to in-
crease with their atomic number and the atomic number of
the halide [87]. Also, the solubility in a molten salt com-
prising only the cation of the metal is always larger than
in a melt containing a plurality of cations. These scientific
problems are considered very challenging, and solving them
requires fairly aggressive assumptions [87,88]. Our MTP can
describe the metal solubility in molten salts with no a priori
assumption.

IV. DISCUSSION AND CONCLUSIONS

Exploring the mechanisms of metal corrosion in molten
salts requires atomic-scale investigations into how salt ions
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interact with metal atoms. While MD is well suited for such
inquiries, its accuracy is contingent upon the IP employed.
This IP must be able to jointly represent salt and metal el-
ements in both ionic and neutral states. Currently, no such
IP exists. In response, we developed an MTP to bridge this
gap. Our approach features a computationally inexpensive
small-cell training dataset, 30% of which are 1 or 2 atom
configurations. The resulting MTP can be represented using
only a few hundred parameters, yet it empowers IP-MD sim-
ulations of complex phenomena which behave very similarly
to DFT-MD simulations.

Note that the proposed potential does exhibit limitations,
particularly in capturing phonon spectra (see the Supple-
mental Material [45] for more details). This limitation is
likely due to the relatively compact descriptor and simple
regressor—linear regression—employed. The potential en-
ergy surface describing phonon spectra typically exhibits
sharp fluctuations. Our low-level descriptor combined with
linear regression is not sufficient to capture such details [89].
However, since our MTP consistently yields reasonable co-
hesive energies, lattice parameters, bulk moduli, and stable
crystalline structures without any imaginary phonon frequen-
cies, all the while involving relatively few parameters and
training configurations—i.e., it is computationally efficient
both to train and to use—we argue this is a worthwhile trade-
off.

Another issue stems from our use of the same DFT setup
to calculate the properties of metals, chlorides, and gas. While
this consistency simplified the training process, it ignores
important corrections that need to be considered to accu-
rately handle gases [90] and ions [91]; these corrections are
important to obtain high-quality phase diagrams [91]. As a

result, the training errors of previous SNAP [43] or NNIP
[31], which were trained only for metals or salts, can be
as low as 1 meV/atom. The low training error is partly at-
tributed to the low DFT error of the energy differences among
similar structures (∼1 meV/atom [92–94]). However, when
assessing the energy difference between different phases, DFT
errors can reach dozens of meV/atom [95–97], leading to a
higher average error of our MTP (∼7 meV/atom). Given the
proof-of-concept nature of this paper, such corrections to dif-
ferent phases were ignored but should be accounted for if such
properties must be obtained with high accuracy—in fact, the
use of thermodynamic tables for gases, if they are available,
are likely a better choice for many calculations. Nonetheless,
our MLIP model can reproduce DFT results across multiple
phases and yield macroscopic properties in general agreement
with experimental measurements. It is a promising tool to help
interpret existing molten salt experimental data and predict
their properties under conditions without available experimen-
tal data.
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