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Structural and mechanical properties of monolayer amorphous carbon and boron nitride
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Amorphous materials exhibit various characteristics that are not featured by crystals and can sometimes be
tuned by their degree of disorder (DOD). Here, we report results on the mechanical properties of monolayer
amorphous carbon (MAC) and monolayer amorphous boron nitride (maBN) with different DOD. The pertinent
structures are obtained by kinetic Monte Carlo (kMC) simulations using machine-learning potentials with
density-functional theory-level accuracy. An intuitive order parameter, namely, the areal fraction Fx occupied
by crystallites within the continuous random network, is proposed to describe the DOD. We find that Fx captures
the essence of the DOD: Samples with the same Fx but different sizes and arrangements of crystallites, obtained
using two distinct kMC procedures, have virtually identical radial distribution functions as well as bond-length
and bond-angle distributions. Furthermore, by simulating the fracture process with molecular dynamics, we
found that the mechanical responses of MAC and maBN before fracture are mainly determined by Fx and are
insensitive to the sizes and specific arrangements and to some extent the numbers and area distributions of the
crystallites. The behavior of cracks in the two materials is analyzed and found to mainly propagate in meandering
paths in the continuous random network region and to be influenced by crystallites in distinct ways that toughen
the material. The present results reveal the relation between structure and mechanical properties in amorphous
monolayers and may provide a universal toughening strategy for two-dimensional materials.
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I. INTRODUCTION

Two-dimensional (2D) materials exhibit unique properties.
Their mechanical properties, in particular fracture toughness,
which describes the ability of a material containing a crack
to resist fracture, are essential for their reliable integration
into future electronic, composite, and nano-electromechanical
applications [1–4]. However, cracks in 2D materials generally
induce brittle behavior at room temperature [5–8]. Given the
brittle nature of 2D materials, it is important to investigate
their mechanical properties and find effective ways to toughen
them for applications. Introducing extrinsic defects and in-
creasing the defect density is one way to increase the fracture
toughness of graphene [9]. In contrast, binary materials like
monolayer hexagonal boron nitride (h-BN) are intrinsically
toughened by an asymmetric deformation at crack tips (due
to asymmetric edge polarization) [10]. Overall, disorder engi-
neering is an effective toughening strategy for 2D materials.

Amorphous materials that are highly disordered feature
a wealth of mechanical properties [11–16], but their atomic
structures are very complicated and highly debated. As a
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result, the construction of structure-properties relations for
amorphous materials remains a long-standing riddle. The task
is simpler in 2D, as it is possible to directly determine the
atomic positions by high-resolution scanning transmission
electron microscopy (STEM). In 2019, monolayer amorphous
carbon (MAC) was successfully synthesized for the first time
and atomic-resolution STEM directly revealed that MAC is a
Zachariasen continuous random network (Z-CRN) containing
crystallites. It was also found that MAC exhibits high tough-
ness [17]. More recently, in the case of MAC, the degree of
disorder (DOD) was found to be tunable by the growth tem-
perature and to affect the electrical conductivity significantly.
A medium-range order (MRO) parameter, ηMRO, together with
density of conducting sites, ρsites, are introduced to correlate
properties to the DOD [18].

Monolayer amorphous BN (maBN) has not been synthe-
sized so far (only amorphous thin films have been reported
[19]). The structure of maBN has been studied by kinetic
Monte Carlo (kMC) simulations using empirical potentials
[20]. It was found that maBN features pseudocrystallites, i.e.,
honeycomb regions comprising noncanonical hexagons
with random B-B and N-N bonds, in a Z-CRN [20].
Furthermore, the mechanical and thermal properties of
MAC and maBN have by now also been investigated by
simulations based on empirical potentials [20–23]. However,
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the accuracy of empirical potentials is never as high as that of
density-functional theory (DFT) calculations, especially for
binary materials. kMC simulations based on DFT evaluations
of total energies for the construction of amorphous structures
still remain out of reach, but the advent of practical methods
for generating DFT-based machine-learning potentials
opens up new opportunities to investigate the structure and
properties of amorphous materials.

In this paper, we investigate the structure and mechanical
properties of monolayer amorphous carbon and boron nitride
using machine-learning potentials (MLPs) with DFT-level ac-
curacy. The kMC simulation [24], a widely used sampling
method for fast exploration of potential energy surfaces, was
employed to assist the active-learning procedure to train the
MLPs. Then the structure evolution of MAC and maBN is
simulated by kMC with the bonding energetics described by
the as-trained MLPs. It is found that crystallites are in fact
more energetically favored within maBN than pseudocrystal-
lites. Moreover, an intuitive order parameter, Fx, the fraction
of the area occupied by crystallites, is proposed to quantify the
DOD of these amorphous materials. We find that Fx captures
the essence of the DOD: We demonstrate that samples with
the same Fx but featuring very different atomic structures,
namely, different sizes and arrangements of nanocrystallites,
have essentially identical radial distribution functions and
bond-angle and bond-length distributions. The same conclu-
sions are obtained for samples with still the same Fx but are
generated by a “reverse annealing” kMC procedure, namely,
starting with crystalline samples, graphene, or h-BN, and
using the kMC procedure to gradually amorphize them. In
fact, same-Fx samples generated by the two different pro-
cedures typically differ to some extent in the numbers of
crystallites and even the crystallite-area distributions. Yet,
we find that, in all such MAC and maBN samples featuring
very different atomic structures, the mechanical properties,
namely, the stress-strain responses that define the moduli
and strength, investigated by MLP-based molecular dynamics
(MD) simulations, are determined by the Fx value of the
sample. Though this conclusion has been validated for a wide
range of same-Fx atomic structures, it may well be violated
in cases of extensive differences in statistical aspects such
as crystallite numbers, area distributions, etc., that may have
low probability in standard kMC simulations. Moreover, we
found that crack propagation exhibits very similar behaviors
in MAC and maBN. Crack propagation can be regarded as
the formation and the coalescence of voids. The existence of
crystallites affects the locations of void formation, causing
behaviors such as deflection, stopping, and bridging of cracks,
which lead to rich toughening mechanisms compared with the
crystalline material. The results deepen our understanding of
the structure-mechanical-properties relationship in 2D amor-
phous materials.

II. RESULTS AND DISCUSSION

A. Construction and validation of MLPs

The MLP set is trained by using the open-source DEEPMD-
KIT package [25,26] with the training dataset collected by
kMC simulation assisted active learning (Fig. S1 of the

Supplemental Material [27]). Considering the complex be-
havior of atoms in fracture simulation [28,29], the training
dataset consists of not only amorphous configurations but also
fractured samples under high tension, and even some other
allotropes, and the root-mean-square error of the validation
set is ∼6 meV per atom, which is consistent with the accepted
standard for accurate MLPs [30–32]. Details of the generation
process are described in the Supplemental Material [27]. We
first validated the reliability of the as-generated MLPs by
comparing MLP- and DFT-calculated energy changes �E that
are needed to decide whether to accept or reject Stone-Wales
transformations (also nearest-neighbor B and N exchanges
in maBN) during kMC procedures. Relatively small sets of
randomly selected steps from the beginning to the end of the
kMC simulations are chosen because the DFT calculations
are computationally taxing. The comparisons for MAC and
maBN are shown in Figs. 1(a) and 1(d), respectively. The
energy changes calculated by MLPs are very close to those
calculated by DFT. Furthermore, for the formation energies
of some typical defects in graphene and h-BN (Supplemental
Material [27] Tables S3 and S4) that affect kMC simulations,
the MLP results are in agreement with those of DFT calcu-
lations. To validate the stretching simulations, we stretched
several samples, and collected 150 MAC and 150 maBN
snapshots under different strain conditions. The atomic forces
of each atom are compared in Figs. 1(c) and 1(d) with the
atoms near crack tips and single-atom-wide strings, which is
observed in many simulations and even experiments [33,34],
colored in red and blue, respectively. In addition, the traction-
separation curves, which serve as a direct validation for the
fracture process [35], calculated using MLPs, are compared
with those obtained using DFT in Fig. S3, revealing excellent
agreement. It is clear that the MLPs can describe stretched and
fractured amorphous structures with DFT-level accuracy.

We also provide a benchmark of MLPs in phonon dis-
persions, which are relevant to the mechanical properties.
As shown in Figs. 1(e) and 1(f), the calculated phonon dis-
persions of crystalline graphene and monolayer h-BN, using
the as-generated MLPs, are in excellent agreement with the
DFT results. In contrast, the calculated phonon dispersions
using best-of-breed empirical potentials (AIREBO [36] for
graphene and extended Tersoff [37] for h-BN) show signif-
icant deviations from the DFT results. As a result of the
accurate description of acoustic phonon modes, the elastic
constants and modulus of crystalline graphene and monolayer
h-BN calculated by MLPs also outperform empirical poten-
tials and are in good agreement with DFT results (Tables S1
and S2). Overall, by comparing MLPs with DFT side by side,
it can be concluded that the as-generated MLPs can describe
crystalline, amorphous, stretched, and fractured systems, with
DFT-level accuracies that the best-of-breed empirical poten-
tials cannot match. MLPs are slowly becoming the standard
for “DFT-level” simulations and calculations for systems that
cannot be handled by straight DFT calculations.

B. Generation and characterization of MAC and maBN samples

The first step is to construct a reliable atomic structure
using MLPs. We performed kMC simulations [24,38] of
the structural evolution of monolayer amorphous materials
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FIG. 1. Validation of MLP. (a),(d) Energy differences caused by Stone-Wales transformations or bond exchanges (only in BN systems) at
randomly selected steps in the kMC algorithm. kMC-accepted �E’s are shown as red triangles while kMC-denied �E’s are shown as blue
reverse triangles; (a) MAC and (d) maBN. (b),(e) Comparison of atomic forces in fractured (b) MAC and (e) maBN between DFT results
and MLP predicted values. The inset is a schematic of fractured configuration, where red, blue, and black represent atoms at crack edges/tip,
strings, and other regions, respectively. (c),(f) Phonon dispersion comparisons for (c) graphene and (f) h-BN, calculated using DFT (black
solid), MLP (red dashed), and a state-of-the-art empirical potential (blue dashed).

(MAC and maBN). Starting from an initial configuration with
randomly distributed atoms in a plane, five typical atomic
structures of monolayer carbon and BN from different kMC
steps are shown in Figs. 2(a) and 2(b), respectively. The
canonical hexagons in crystallite islands are colored green,
while noncanonical hexagons in monolayer BN are col-
ored blue. It is worth noting that, like monolayer carbon,
monolayer BN also exhibits continuously growing crystallite
regions during the kMC simulation with MLP. This result
contrasts with earlier findings, based on kMC simulations
using an empirical potential, that monolayer amorphous BN
develops exclusively pseudocrystallites, namely, honeycomb
regions made up of noncanonical bonds [20]. We have now
discovered that this difference arises because the extended
Tersoff empirical potential substantially underestimates the
energy of some noncanonical hexagons like those occurring
in the recently predicted orthorhombic polymorph of BN
(o-B2N2) [39], which directly affects the results of kMC
simulations. In Table S4, we show that, unlike the empirical
potential, the DFT-based MLPs reproduce the DFT-calculated
formation energy of o-B2N2 very accurately. Thus, even
though maBN contains two different elements and has a high
possibility of forming noncanonical hexagons from a random
distribution of atoms, the more stable, lower-energy crystallite
structures prevail.

In order to distinguish amorphous structures with different
DOD, an order parameter is necessary. Previously, Tian et al.
[18] defined a DOD order parameter, ηMRO, namely, the ratio

of the MRO of amorphous and crystalline samples, obtained
from the fluctuations of the experimental radial distribution
functions (RDFs) in the medium-distance range (4–12 Å).
However, in order to correlate the conductivity with the DOD,
it was found necessary to introduce a second-order parame-
ter, the density of conducting sites, ρsites, which was derived
directly from atomic-scale images of MAC samples.

We explored the applicability of ηMRO to characterize the
wide range of kMC-generated samples, i.e., individual kMC
snapshots, of which Fig. 2(a) shows only five. We used MD
simulations of several samples at room temperature and calcu-
lated their RDFs and ηMRO. We found that samples with very
similar MRO and hence similar ηMRO may differ significantly
in their short-range RDFs, their bond-angle and bond-length
distributions, and even more conspicuously in the fractions of
the areas occupied by crystallites (see Fig. S5 for a detailed
discussion). These observations motivated us to propose an
alternative and more intuitive order parameter for monolayer
amorphous materials that is directly based on the atomic struc-
ture, namely, the fraction of the crystallite part of the structure,
defined by

Fx = Nx

NCRN + Nx
.

Here Nx and NCRN are the numbers of rings in the crys-
tallites and the CRN regions, respectively. In practice, one
canonical hexagon attached to two other adjacent canonical
hexagons is counted to contribute to Nx, and all other rings
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FIG. 2. Atomic structures of monolayer carbon and BN in kMC simulation. (a),(b) Atomic structures of monolayer carbon and BN from
different kMC steps, respectively. The hexagons in crystallite regions are colored in green (canonical hexagons) and blue (noncanonical
hexagons). The percentage of canonical hexagons (only the green region) and corresponding DOD order parameter Fx are listed. (c),(d) RDF
of monolayer carbon and BN with five different Fx, respectively.

are counted to contribute to NCRN (see more details in the
Supplemental Material [27]). As a result, Fx ranges from 0
for the most disordered structure (fully CRN) to 1 for the
most ordered structures (crystalline graphene or maBN). The
calculated Fx values for samples with the same ηMRO are quite
distinct (see Table S5). The Fx values of the five monolayer
carbon samples in Fig. 2(a) are used to label their structures
in Fig. 2(a) while their RDFs are shown in Fig. 2(c). All
structures show clear short-range order, but their RDF peaks
are broadened differently. Structures with smaller Fx exhibit
broader RDF peaks and broader bond-angle and bond-length
distributions, i.e., larger DOD (see Figs. S6 and S7). The
five Fx values are compared with the respective ηMRO values
in Table S6. The net conclusion is that ηMRO appears to be
relatively insensitive to increasing DOD in samples with CRN
areas that occupy more than ∼50% of the sample, i.e., for
Fx < 0.5.

To validate the effectiveness of Fx as a measure of the
DOD, we generated four samples with completely different
arrangements of crystallites, but with roughly equal values
of Fx. Three samples were generated by performing the kMC
procedure as in Fig. 2, i.e., starting with three different random
distributions of the atoms. The fourth sample was generated
by starting with a crystal and introducing disorder until the
same Fx value is reached. This comparison is meant to test
if the effectiveness of Fx as a measure of the DOD remains
valid in the case of samples created by very different proce-
dures. The atomic structures, RDFs, and distributions of bond

lengths and bond angles of four MAC samples with identical
Fx = 0.5 are compared in Fig. 3. Similar comparisons are
made for another two groups of MAC samples with Fx = 0.25
and 0.75, in Fig. S6. Additionally, the number of crystallite
islands and the crystallite-area of samples generated using
different procedures are compared in Figs. S8 and S9. These
figures identify some of the statistical differences of samples
generated by our two different procedures. In all cases. we
found that samples with very different atomic structures but
the same value of Fx, i.e., samples with very different sizes
and arrangements of crystallites obtained by very different
procedures but having similar total crystallite areal frac-
tion, exhibit nearly identical RDFs and distributions of bond
lengths and angles. In other words, Fx captures the essential
indicators of DOD.

For the binary maBN systems, the values of Fx are also
calculated and shown in Fig. 2(b) while their RDFs are shown
in Fig. 2(d). We also generated samples with completely dif-
ferent local atomic structures, but with roughly equal values
of Fx, and compared their RDFs and their distributions of
bond lengths and bond angles, shown in Fig. 3 and Fig. S7.
Once more, we find that samples with very different atomic
structures but the same value of Fx exhibit nearly identical
RDFs and distributions of bond lengths and bond angles. As
all the noncanonical B-B and N-N bonds are distributed in
CRN regions, the areal fraction of crystallites, Fx, is able to
capture both the structural and the chemical DOD in binary
monolayers. We have, therefore, established Fx as an effective
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FIG. 3. Relation of Fx to different manifestations of the DOD.
(a),(b) Atomic structures of four different MAC and maBN samples
with identical Fx = 0.50 but generated from different kMC proce-
dures (one initiates from h-BN, the other three from different random
configurations). (c) RDFs of three MAC (upper panel) and maBN
(lower panel) samples in (a) and (b). (d) Bond-length and (e) bond-
angle distributions of the three MAC (upper panel) and three maBN
(lower panel) samples in (a) and (b).

indicator (order parameter) of the DOD for 2D amorphous
materials.

C. Structure-mechanical-properties relations

Admittedly, the definition of Fx as a measure of the DOD
is accessible to experiments only through atomic-resolution
images. However, this definition enables a detailed theoret-
ical investigation of structure-properties relations. We have
investigated the mechanical properties of MAC and maBN by
performing MD simulations as follows. Structures with areas
∼40×20 nm2 were generated using the modified-building-
blocks method [40]. Details are described in Figs. S10 and
S11 As shown schematically in Fig. 4(c), a 2-nm-long pre-
crack was introduced at the center of the model. Then, after

structural optimization and equilibration by MD for 100 ps
under an NPT ensemble, a constant engineering strain was
applied in the y direction until the sample breaks (a frac-
ture develops throughout the sample). The used strain rate is
10−4 ps−1. The NVT ensemble was used during the stretching
procedure to obtain the system’s response to strain and tem-
perature fluctuations. Figure 4(a) compares the nominal 2D
stress-strain relations for the mechanical response of graphene
along the zigzag direction and that of MAC with different
values of Fx. In the small-strain region, the stress increases
smoothly as the strain is enhanced. There are two differences
between crystalline and amorphous mechanical responses:
(1) the stress in MAC is much lower than that of graphene
at the same strain; and (2) unlike the linear stress-strain curve
of graphene, the stress-strain curves of all MAC samples are
nonlinear. This nonlinear stress-strain region suggests a plas-
tic deformation in MAC samples, which is attributed to the
activation of shear transformation zones (STZs). The STZs are
preferentially activated in regions containing weakly bonded
atoms [41–43], which refers to the CRN region in the cases
of MAC and maBN. The existence of displacement vortices
(Fig. S12) is the evidence of STZs’ activation [44]. In a
fracture process, when the strain increases to a critical value,
the stress reaches its maximum and then drops, accompanied
by the fracture propagation and the release of strain energy.
As a typical brittle 2D material, graphene exhibits an abrupt
drop in its stress-strain curve, while the stress of the MAC
samples drops in a staircase fashion. Moreover, the curves in
Fig. 4(a) show a sequential pattern: as the DOD increases, i.e.,
as Fx decreases, the critical strain increases and the maximum
stress decreases. We are not ready, however, to correlate Fx

with mechanical properties, because a given value of Fx can
correspond to different samples with distinct atomic struc-
tures. We, therefore, compared the mechanical responses of
samples with different arrangements of crystallites generated
by different procedures but with similar values of Fx. Their
stress-strain curves are shown in Fig. 4(d). The stress-strain
curves of different samples with similar Fx are very similar
to each other when the strain is smaller than the critical strain.
Moreover, different structures with similar values of Fx exhibit
similar critical strain and maximum stress. Therefore, our
results demonstrate that the mechanical properties, i.e., strain-
stress curves before fracture of kMC-generated amorphous
samples are determined by Fx.

As mentioned above, the stress-strain curves of MAC ex-
hibit kinks with abrupt drops in stress [Fig. 4(a)]. Each kink
observed on the stress-strain curve indicates an initiation,
propagation, or arrest of a crack. To analyze the crack behav-
iors near the kinks, the atomic stress distribution of a snapshot
of MAC (Fx = 0.36) corresponding to the star mark on the
stress-strain curve after the appearance of several kinks in
Fig. 4(a) is shown in Fig. S13. It is found that the crack
is discontinuous and is divided into three cracks, only one
of which is propagating with the strain increasing, while the
other two are arrested, which represents the damage tolerance
of MAC samples. These simulation results are consistent with
experimental data on plasticity, large toughness, and arrested
crack propagation in MAC [17].

We next turn to the mechanical properties of maBN. The
stress-strain curves of h-BN along the zigzag direction and
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FIG. 4. Mechanical response of MAC and maBN. (a) Strain-stress curves of MAC and with three different Fx comparing with the precrack
graphene along a zigzag direction. The blue star represents a snapshot containing two arrested cracks. (b) Stress-strain curves of maBN with
different Fx compared with the precrack monolayer h-BN along a zigzag direction. (c) Schematic of stretching simulations. (d),(e) Strain-stress
curves for three groups of (d) MAC and (e) maBN samples, respectively. Samples in each group have similar Fx values, but are generated
from different procedures: one initiates from crystal, and three initiate from different random configurations, which are labeled by Gr/hBN and
R1–R3, respectively, and have completely different atomic structures. Samples labeled by R1 in the legend correspond to the sample in (a) for
MAC and (b) for maBN.

maBN samples with different and similar values of Fx are
shown in Figs. 4(b) and 4(e). We see the maBN shares features
with MAC, including the nonlinear stress-strain relation at
the small-strain region and smaller critical strain at higher
values of Fx. Note that, while graphene and h-BN exhibit dis-
tinct fracture properties—with graphene having an atomically
smooth cracked edge [5] but h-BN lacking such smoothness
[10]—they still demonstrate similar features after amorphiza-
tion. Based on the present results shown in Figs. 4(b) and
4(e), we propose that the introduction of amorphousness may
serve as a universal route to toughness enhancement of 2D
materials.

Another obvious difference observed in the stress-strain
curves of crystalline and amorphous materials is how stress
decreases during the fracture process, which is associated with
the propagation of cracks. In contrast to crystalline materials,
stress does not immediately drop to zero in amorphous mate-
rials. Instead, the stress in MAC and maBN decreases slowly
and even fluctuates.

Overall, we have described the construction of MAC and
maBN samples using a kMC algorithm in two different
ways: by “annealing,” namely, starting with a totally random
amorphous structure that gradually develops more and larger

crystallites and by a form of “reverse annealing,” namely,
starting with a crystalline structure that is gradually amor-
phized. We showed that in all cases, the parameter Fx is
sufficient to describe the DOD and determine the mechanical
properties, namely, elastic modulus and stress-strain curves
prior to fracture, independent of the differences in the sizes
and arrangements of the nanocrystallites and, to some ex-
tent, even the differences in the numbers of crystallites and
crystallite-area distributions. The kMC-generated structures
are likely to correspond to most but not necessarily all struc-
tures that can be fabricated in the laboratory. This question
can be explored by experiments, while theory lacks additional,
non-kMC statistical procedures to generate monolayer amor-
phous structures (in contrast, for bulk materials, one can melt
and quench [45]).

D. The fracture process

To understand the fracture process in MAC and maBN,
a detailed analysis of crack propagation was performed.
Figure 5(a) shows the pathway of the main crack in one maBN
sample. It is found that the crack propagates mainly through
the CRN regions between crystallites. The same is also true
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FIG. 5. Crack propagation. (a) Crack path in crystallite-maBN. The main crack interacts with crystallites in three main ways: (b),(e)
crystallites stop the propagation of the main crack; (c),(f) the main crack is deflected by crystallites; and (d),(g) while the main crack is stopped
by crystallite, another crack initiates near the crystallite and a bridge is formed between the two cracks.

for MAC. The randomly distributed crystallites embedded in
the CRN regions result in a meandering crack path, which
costs much more energy than a straight crack path like that of
crystalline graphene [5]. This is because the crack propagation
in the CRN region can be regarded as the formation and
coalescence of voids as shown in Fig. S14, which is similar to
bulk amorphous carbon [46], and the STZs, where collective
atomic rearrangements occur, are preferentially activated in
CRN regions where atoms are more weakly bonded than in
crystallite regions. These activated STZs in the CRN are prone
to exhibit elevated temperatures, facilitating the emergence of
soft spots and the formation of voids within the material [47].

We next analyze the influence of crystallites on the
crack propagation path. Some typical snapshots during crack
propagation and corresponding schematics are shown in
Figs. 5(b)–5(d). Figure 5(b) shows one blunted crack tip (blue
arrows mark the direction of crack propagation) that points to
a crystallite (labeled by the red circle), stops at the crystallite,
and the atomic stress concentration near the stopped crack tip
is partially released (Fig. S15). In contrast, voids continuously
form near the crack tip shown in Fig. 5(c). As a result, this
crack changes its direction and propagates along the edge
of a crystallite instead of being blunted by the crystallite. In
other cases, we found two cracks near a crystallite such as the
snapshot shown in Fig. 5(d). One of the cracks stops in front of
the crystallite just like the crack shown in Fig. 5(b). The other
crack initiates from a void far from the first crack tip. The two
cracks are separated by the crystallite in between forming a

crack bridge between them, resulting in a discontinuous crack
path, and the crack bridge serves as a shield mechanism to
protect the crack from propagating [48].

Through a detailed analysis of these snapshots, the propa-
gation of cracks can be understood as follows. Voids are the
precursors of crack tips. However, voids are very difficult to
form thermally in crystallites because the formation energies
of vacancies are large (7.5 eV for the vacancy in graphene)
[49]. When the crack tip reaches a crystallite, there are several
possible outcomes. If there is no “unstable structure” (soft
spot caused by activated STZs) on either side of the crack,
it is difficult to form voids near the crack tip, whereby the
propagation of the crack is forced to stop [Figs. 5(b) and 5(e)].
On the contrary, if there is an unstable structure nearby, where
voids can form from, the crack is deflected by the crystallite
[Figs. 5(c) and 5(f)]. The deflection of the crack path increases
the energy cost of crack propagation and hence toughens the
materials.

Another possibility is that, after a propagating crack stops
at a crystallite, voids form on the other side of the crystallite
far from the crack tip, whereby they are not able to directly
merge into the crack tip. In this case, a new crack tip initiates
at such a void and the crystallite forms a bridge between
the two cracks [Figs. 5(d) and 5(g)]. The formation of the
bridge helps reduce the local stress in the wake of the crack
and toughens the material [50]. Overall, embedded crystallites
terminate or deflect a crack that is propagating towards them
or make the crack discontinuous. A meandering crack path
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increases the energy cost of crack propagation and leads to
toughening of amorphous materials.

III. CONCLUSIONS

In summary, accurate MLPs for monolayer amorphous
carbon and BN are trained with comprehensive sampling in
the phase space by kMC-assisted active learning. Crystal-
lites are much more energetically favorable and can easily
form in maBN, suggesting that pseudocrystallites are not
likely to form in nonelemental materials. An intuitive order
parameter, Fx, based on the atomic structures, is proposed
to quantify the DOD in amorphous materials that comprise
a Z-CRN and crystallites. Its effectiveness is demonstrated
in MAC and maBN. For mechanical properties, large-scale
uniform MAC and maBN samples were generated using the
modified-building-block method. We find that the mechanical
properties, stress-strain responses that reveal modulus and
strength, of these samples, generated by two different kMC
procedures, are determined by Fx. With the increase of Fx,
there is a noticeable downward (upward) trend in critical
strain (stress), respectively (exploration of how electrical con-
ductivity of amorphous monolayers [18] correlates with Fx,
however, is beyond the scope of this paper). A high crack re-
sistance is observed in amorphous samples during the fracture
process. Our analysis of crack propagations reveals that the
crack resistance is attributed to complicated crack behaviors

resulting from the presence of the crystallites in a Z-CRN
amorphous structure. In disordered CRN regions, there is a
soft spot induced by activated STZs, leading to the formation
of voids and crack propagation. Conversely, the crystallite
regions, which possess resistance to void formation, can stop
or deflect crack propagation or even induce the initiation of
another crack, acting as a bridge between cracks. In both MAC
and maBN, these behaviors are common and contribute to
the propagation of cracks in a meandering and more ener-
getically costly manner, which indicates that amorphization
can toughen the two different materials in the same way.
This finding suggests that amorphization may be a universal
toughening mechanism, capable of improving the mechanical
properties of various 2D materials.
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