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Progress toward a first-principles theory of plasticity and work hardening is currently impeded by an insuffi-
cient description of dislocation kinetics, that is, of the dynamic effect of driving forces in a given dislocation
theory. Current continuum theories of dislocation kinetics are often incapable of treating the short-range
interaction of dislocations. This work presents a kinetic theory of continuum dislocation dynamics in a vector
density framework which takes into account the short-range interactions by means of suitably defined correlation
functions. The weak line bundle ensemble of dislocations is defined, whereby the treatment of dislocations
by a vector density is justified. It is then found by direct averaging of the dislocation transport equation that
additional driving forces arise which are dependent on the dislocation correlations. A combination of spatial
coarse graining and statistical averaging of discrete dislocation systems is then used to evaluate the various
classes of tensorial dislocation correlations which arise in the line bundle kinetic theory. A chiral classification
of slip-system interactions in face-centered-cubic crystals is introduced in order to define proper and improper
rotations by which correlation functions corresponding to six interaction classifications can be evaluated. The
full set of these six dislocation correlations are evaluated from discrete data. Only the self-correlations (for
densities of like slip system) are found to be highly anisotropic. All six classes of correlation functions are
found to be of moderate range, decaying within two to four times the coarse-graining distance. The correlations
corresponding to the coplanar interactions are found to be negligible. Implications of the evaluated correlations
for the implementation of vector density continuum dislocation dynamics are discussed, especially in terms of an
additional correlation component of the driving force and a gesture toward a coarse-grained dislocation mobility.
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I. INTRODUCTION

Since the discovery of dislocations as the mediators of
plastic deformation almost a century ago [1–3], dislocation
theory has been an important topic of interest in physics,
mechanics, and materials science. Due to the role of dis-
locations in determining the plastic strength of metals and
alloys, a major part of the theory of dislocations was quickly
developed, focusing on the mechanics [4], interactions [5],
and reactions of individual dislocations [6] in various crystal
structures. However, the initial question that dislocations were
posited to answer remains unsolved even today: Precisely how
do dislocations give rise to work hardening in metals? The
development of a first-principles theory of work hardening is
still underway because it is a problem of the collective motion
of dislocations. Collective motion always involves a certain
set of complexities, but dislocation theory comes with its own
peculiar difficulties.

To begin to sort out the types of difficulties faced in treating
the collective dynamics of dislocations, let us first distinguish
between dislocation kinematics and kinetics [7,8]. In treating
a collection of dislocations, one often describes the collec-
tion by means of a reduced representation. This commonly
involves some set of density measures. Constructing a the-
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ory of dislocation kinematics involves defining these density
measures and their evolution under a prescribed velocity field.
There are several such theories which are appropriate for
different purposes, as we will discuss below. However, within
a given kinematic framework, one will have to define driving
forces [5] and mobilities [9] whereby the velocity field can be
related to the density state. This closure is the problem of dis-
location kinetics. The fundamental question of both problems
is one of scale. Dislocations as line objects, as well as their
interactions, are associated with a fine scale near the lattice
spacing (on the order of a few Burgers vectors, or 1 nm).
Descriptors of a collection of dislocations are necessarily as-
sociated with a coarser scale, be it as small as a few tens of nm
or as large as several µm. The problem of dislocation kinemat-
ics is associated with finding appropriate dislocation density
measures which capture the relevant dislocation information
on the desired coarse scale [10]. The problem of dislocation
kinetics, which is the focus of this work, is in defining the
short-range dislocation interactions, which naturally occur at
the fine scale, in terms of the density measures at the coarse
scale. After situating our approach to the kinematic problem,
we will then proceed to treat dislocation kinetics for this
particular kinematic framework.

Dislocations are topological defects in crystals [11]. A vol-
ume containing a dislocation will be recognizable by means of
the dislocation, s topological invariant, analogous to a charge,
of the dislocation. This topological invariant is the dyad
formed by its line tangent and Burgers vector. When this is
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summed over all dislocations in a given volume, we obtain the
Kröner-Nye tensor [12,13]. The long-range mechanical fields
(and thus dislocation interactions) are produced by the geo-
metric incompatibility which this tensor represents [10,13].
However, the signedness of this measure is the fundamental
stumbling block of collective theories of dislocation motion:
in summing the topological invariant over a collection of dis-
locations multiple kinds of cancellation can occur, essentially
losing track of some portion of the dislocation population in
the volume [14]. The portion contributing to the Kröner-Nye
tensor is commonly referred to as the geometrically neces-
sary dislocation content (GND). Various kinematic theories
define additional density measures in order to account for
the canceled dislocation content, commonly referred to as
the statistically stored dislocation content (SSD), with various
levels of precision.1

We will discuss two different kinematic theories which
treat SSDs in different ways. While there are kinematic the-
ories which model only the evolution of GNDs [15,16], it
is difficult to interpret the velocity associated with this evo-
lution in terms of the velocities of individual dislocations.
As a result, kinetic closure of such theories is performed
by free-energy or phenomenological arguments rather than
coarse-graining arguments [17]. When considering the prob-
lem of statistical storage of dislocations, however, a certain
distinction immediately arises corresponding to two modes by
which the topological invariant might cancel. First, the pres-
ence of dislocations of different slip system in the volume
leads to cancellation by means of the Burgers vector and the
representative plane of possible dislocation tangents [18]. We
will refer to this SSD content as multislip SSDs. However,
cancellation can also occur due to dislocations on a single-slip
system by cancellation of the tangent vector [7]. We will refer
to this SSD content as single-slip SSDs. This can arise either
due to nontrivial curvature of the dislocations on the scale
of the representative volume or due to multiple nonparallel
dislocations passing through the volume. In a curved segment,
the component of the length perpendicular to the end-to-end
distance is lost. In the extreme case, a full dislocation loop
would be entirely stored in this mode. To create a theory that
resolves multislip SSDs but not single-slip SSDs, one must
consider the density of dislocations on each slip system and
their average direction (either in the form of an angular param-
eter [19] or in the form of a vector density [20–23]), resulting
in two kinematic variables per slip system. We will refer to
this as the vector density framework. If one wishes to resolve
even single-slip SSDs, it is necessary to treat the dislocations
as having some distribution over angular space as well as to
treat a curvature density [7]. Alternatively, this treatment may
be closed at lower order by considering only the first several
coefficients in a series expansion of this distribution [24]. We
will refer to this as the higher-order kinematic framework.
Closure at second order (already requiring approximation
[25,26]) requires the treatment of the total line length in the

1While in this work we will refer to geometrically necessary or sta-
tistically stored dislocations in the plural, we remind the reader that
these are net effects of a collection, and a geometrically necessary or
statistically stored character is not attributable to a single dislocation.

volume, the average curvature of those lines, the average line
tangent, and the average of the dyad formed by the line tangent
with itself. These are described by one, one, two, and two
variables, respectively, for a total of six kinematic variables
per slip system when all vector quantities are confined to the
glide plane of dislocations.

Regardless of the kinematic framework chosen, kinetic
closure, as will be the focus of this work, amounts to de-
termining relations between the structure at two scales. The
relative arrangement of the dislocations at the discrete scale
results in all the interaction fields, forces, and, eventually,
velocities of interest in the dynamics. Some of this relative
arrangement information is preserved in the continuum den-
sity field; this is why the coarse-grained Kröner-Nye tensor
gives rise to the long-range stress field. This tradeoff between
short- and long-range portions of the stress field is at the
heart of the fast Fourier methods which have gained recent
popularity in the discrete dislocation dynamics community
[10,27–30]. In such a case, one solves the long-range interac-
tions using the Kröner-Nye tensor while retaining recourse to
the discrete dislocation positions to compute the short-range
interactions overlooked by the Kröner-Nye tensor [31]. In the
continuum case, however, this short-range stress contribution
must be considered in an average sense. Consideration of
the average short-range dislocation structure is performed by
analysis of the correlation functions. These allow the relative
arrangement information of the coarse-grained density field
to be corrected in order to approximate more closely the rel-
ative arrangement information in the discrete system. For the
higher-order theory, where the local dislocation arrangement
is more general, this correction is a complex object involving
multiple contributions from the connectedness of the lines and
even something like a local microstructure [32]. For the vec-
tor density theory, the form is simplified and the correlation
largely encodes line connectivity information and the average
structure of parallel line bundles [33].

The kinetic analysis and correlation functions in this work
will be entirely situated in the vector density framework.
However, if there is a more complete framework (the higher-
order framework), why would we bother with the vector
density framework? The short answer is parsimony: the vector
density framework requires two variables per slip system [24
variables for face-centered-cubic (fcc) metals with 12 slip
systems], while the higher-order framework requires thrice
as many variables (72 variables for fcc). This lack of parsi-
mony becomes more of an issue when kinetics begin to be
considered. Kinetic closure, as we will describe in more detail
shortly, will require a description of average quantities which
are quadratic in the density variables (e.g., total elastic energy
[8]). These pair densities will have to bridge the two relevant
length scales: they relate the relative arrangement information
on the order of the discrete dislocations to the relative arrange-
ment stored in the coarse density field. The difference between
these relative arrangements, in the form of correlation func-
tions, must be evaluated for every combination of density field
variable [8,32]. A threefold increase in variables becomes a
ninefold increase in kinetically relevant variables. Of course,
if that is the price for accurately modeling the physical system,
so be it. However, what if this increase in variables gained
no new information regarding the dislocation configuration?
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That is, what if you are considering a scale on which physical
dislocation arrangements do not contain single-slip SSDs? We
know that below some critical distance, considered to be on
the order of 50–100 nm [21,34,35], opposite signed disloca-
tions tend to annihilate. At or below this scale, the additional
variables become irrelevant, as collections of dislocations on
like slip system would bear more resemblance to bundles of
parallel lines.2 We will more rigorously define this weak line
bundle regime, where the line bundle assumption holds in a
specific sense, in more detail below.

Work on the dislocation correlation functions has only just
begun in recent years. While several works have attempted to
outline kinetic frameworks for continuum dislocation dynam-
ics by appealing to dislocation correlations [8,36,37], only
just recently have the correlation functions themselves been
studied in three dimensions [32,33]. Here we approach the
kinetic portion of a vector density theory in a more direct
manner, demonstrating how the correlation functions arise
naturally by directly averaging the dislocation transport equa-
tion. In so doing, we will find that an additional driving force
for dislocation motion arises. This additional nonlocal force,
which we call the correlation force, bears a similarity to the
correlation-based effective stresses found in two-dimensional
models of dislocation motion [38,39]. This previous work
in two dimensions, however, only considers a local density
approximation to this force [8], considered here in a more gen-
eral nonlocal form. Also, whereas the earlier investigations of
correlation functions only treat a small subset of the relevant
correlations, here we will evaluate all correlations which can
in principle arise in the vector density framework.

In the remainder of this work, we present a kinetic the-
ory of dislocation motion in the vector density framework.
In Sec. II, we outline the transport relationship for discrete
dislocations and how this is coarse grained in the line bun-
dle regime. In this way, we show how correlation functions
naturally arise and close the kinetic equations. In Sec. III,
we present a means by which these correlation functions
might be evaluated from discrete dislocation data. This is
followed in Sec. IV by a symmetry analysis of slip systems in
fcc crystals which reduces the number of unique correlation
functions which must be considered between pairs of slip
systems. In Secs. V and VI we present the calculations and
their results, followed in Sec. VII by a discussion of the impli-
cations of these findings for continuum theories of dislocation
motion.

II. DISCRETE AND COARSE-GRAINED KINETICS
OF DISLOCATION TRANSPORT

Beginning with a treatment of discrete dislocation dy-
namics and the coarse-graining process, we will show how
dislocation correlation functions arise in the kinetics of
coarse-grained dislocation dynamics. Upon application of the
(weak) line bundle assumption, we show how the correla-
tion functions enter into the dynamics in a straightforward
manner.

2This assumes the absence of significant dislocation dipole popula-
tions, which would represent nonannihilating single-slip SSDs.

A. Discrete dislocation dynamics

Let us begin with a treatment of the underlying dis-
crete dislocation lines before introducing the coarse-graining
treatment. The dislocation system in an fcc crystal can be
described as a collection of 12 line objects (1-manifolds) L[α]

embedded in a crystal space M which is roughly equivalent
to R3.3 These embedded line objects also define two measures
on the crystal manifold, namely, a scalar line length �[α]

and the geometric dislocation content κ[α] in a given region
� ⊆ M:

�[α](� ⊆ M) :=
∫
L[α]∩�

dl (1)

:=
∫

�

�[α](r)d3r, (2)

κ[α](� ⊆ M) :=
∫
L[α]∩�

ξ[α](rl )dl (3)

:=
∫

�

�[α](r)d3r, (4)

where we have denoted by ξ[α](r) the unit direction of the
differential line element dl . While the scalar line content �[α]

will still be of some use in the analysis of discrete dislocation
data, the theoretical formalism is concerned much more with
the geometrically necessary dislocation content. These mea-
sures imply the existence of a singular distribution or density
�[α]. This singular density is analogous to a Dirac distribution
concentrated on the line object L[α]. This distribution allows
an identification of the discrete line object with a singular
density field, or, in the language of differentiable manifolds,
with a two-form. The nature of this density as a two-form
allows us to leverage a result from the theory of differentiable
manifolds, namely, that the evolution of the lines is given by
a Lie derivative with respect to some velocity field v[α]:

�̇[α] = ∇ × (v[α] × �[α] ) − v[α](∇ · �[α] ) (5)

= ∇ × (v[α] × �[α] ). (6)

We have chosen not to burden the reader with the interior
product and exterior derivative notation. Rather we will opt for
the above vector calculus notation, albeit with the caveat that
the particular action of the gradient operators on the singular
density is to be understood as an exterior derivative.4 The
transport equation for open lines [Eq. (5)] has three terms:
the first describes transport due to dislocation glide, while the
second describes the motion of the end points of the lines. In
the case where the dislocation line object L[α] is a collection

3Although deformation per se contradicts the equivalence between
the crystal manifold M and R3, we note that for short-range effects
(as will be examined in this work), the crystal manifold is approxi-
mately flat.

4As a matter of fact, dislocations are not most perfectly repre-
sented by singular densities. Rather, they are better represented by
well-defined continuum densities resolved on the order of the lattice
spacing [40,41]. In such a case, the gradient operators used in Eqs. (5)
and (6) require no qualification.
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of closed curves, the divergence (exterior derivative) of �[α] is
null, corresponding to the physical fact that dislocation lines
cannot terminate in the crystal. For a treatment of systems
where assumption is relaxed to treat the closure failure created
in connected dislocation networks (e.g., by way of cross slip,
junction reactions, etc.) (see [42]). In this work we wish only
to treat the kinetics of dislocation glide, and so ignore the
end-point transport, resulting in Eq. (6).

The above treatment is a kinematic description of the evo-
lution of discrete line objects in space. In order to describe
a kinetic theory of dislocation motion, we must include a
physically motivated prescription of the velocity field v[α]. In
discrete models of dislocation dynamics, the motion of the

dislocation lines is assumed to be overdamped and therefore
linearly related to the stress field evaluated on the dislocation
line [9,43,44]. The form of the velocity law is given by the
following simplified functional notation:

Bv[α](r) := F [α]
PK[ξ[α](r) ⊗ �[β](r′)]. (7)

Here B is a material-specific drag parameter, and the Peach-
Koehler functional F [α]

PK is a linear, vector-valued functional.
As a result, the brackets should be understood to denote an
integration over r′. From the details of how this Peach-Koehler
functional is derived, cf. Appendix A. Its form is given by

(
F [α]

PK[ξ[α](r) ⊗ �[β](r′)]
)

l := ε jkl b
[α]
i ξ

[α]
k (r)

⎛
⎝σ 0

i j +
NS∑

β=1

∫
M

σ̂
[β]
i jm(r − r′)�[β]

m (r′)d3r′

⎞
⎠, (8)

where b[α]
i is the Burgers vector of slip system [α], σ 0

i j the

externally applied stress, σ̂
[α]
i jm(�r)dlm is the stress field sur-

rounding a differential dislocation segment dlm, and ε jkl is the
standard Levi-Civita tensor. The summation runs over all NS

slip systems considered in the crystal.
As simple as they may seem, Eqs. (6)–(8) amount to a

complete theory of the glide of discrete dislocations. Discrete
frameworks consist primarily in evaluating interaction forces
[Eq. (8)], and updating segment positions, which due to the
line expansion inherent in Eq. (6) is not a trivial operation
[44]. We now turn our attention for the remainder of this
section to the evolution of continuum densities of dislocations.
To do so, we will outline a class of averaging operators which
allow the discrete dislocation kinetics to be coarse grained
rather straightforwardly. We will then show how correlations
naturally enter into such a kinetic theory.

B. Continuum dislocation dynamics in line bundle ensembles

Before showing how the discrete transport kinetics are
averaged, we first must define what we mean by an averaging
operator. We will denote this average with angle brackets 〈·〉.
Its main quality of interest is that it takes discrete densities to
a smooth continuum density field:

ρ[α](r) := 〈�[α](r)〉. (9)

Additionally, the average is a linear projection operator. That
is, it has the following properties for constants c, d and linear
functionals of the line configuration A, B:

〈cA(L) + dB(L)〉 = c〈A〉 + d〈B〉, (10)

〈〈A〉〉 = 〈A〉. (11)

Using only these properties, it is possible to derive a
kinematic theory of dislocation motion in a continuum sense
[7,24]. However, deriving a kinetic theory becomes difficult
without making use of further assumptions [8]. These are
chosen by considering what type of dislocation states are
considered in the average, analogously to the operation in

statistical mechanics of selecting an ensemble. In the present
case, we choose to utilize the so-called line bundle assumption
[23,33]. This corresponds to an assumption that the disloca-
tion system is highly polarized on the representative distances
on which the density field is modeled. That is to say, this
assumption corresponds to the case of few single-slip SSDs.
For clarity, we will define two variations of this assumption:
a strong line bundle assumption and a weak line bundle as-
sumption.

In our previous work with correlations in line bundle en-
sembles [33], we utilized a strong form of the line bundle
assumption, which states that for any constant vector a,

〈|a · �[α](r)|〉 = |a · ρ[α](r)|. (12)

An equivalent statement would be to say that fluctuations in
the line direction,

δξ[α](r) := ξ[α](r) − ρ̂[α](r), (13)

where ρ̂[α] represents the unit direction of ρ[α], are by defini-
tion null. This strong line bundle assumption has the benefit
that it produces convenient properties as corollaries of this as-
sumption, especially in the form of the correlation functions.
However, this is a rather stringent condition which in practice
is rarely fulfilled in physical dislocation systems.

Nonetheless, appropriate averaging processes can be de-
fined where the line bundle assumption holds approximately.
As a result, we introduce a weak line bundle assumption.
Rather than defining fluctuations in line direction as null, we
assume they are simply small to second order: δξ 2

i ≈ 0. In this
case, any quantities second order or higher in the line direction
can factor out the average line direction once5:

〈ξ⊗nA(L)〉 ≈ ρ̂〈ξ⊗(n−1)A(L)〉. (14)

Whereas the result of the strong line bundle assumption is
that the dislocation system is perfectly polarized (|ρ| = 〈�〉),

5Technically in the weak line bundle approximation [Eq. (14)], the
right-hand side should be fully symmetrized. This is omitted for
brevity.
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the weak line bundle assumption simply operates in the high
polarization regime |ρ|/〈�〉 ≈ 1. In the following section, we
will examine a particular averaging procedure which satisfies
this property, but at this time we will simply examine the ef-
fects of a weak line bundle averaging operator on the kinetics
of discrete dislocation transport.

Because the averaging operator is linear, it commutes with
derivatives and other linear operators. As a result, averaging
both sides of Eq. (6) results in the following coarse-grained
transport equation:

ρ̇[α] = ∇ × 〈v[α] × �[α]〉. (15)

As is evident from this equation, a solution of the dislocation
dynamics amounts to finding a closed-form expression for the
cross product of the velocity and density vector fields. We do
this by introducing the relation for the velocity field to obtain

B〈v[α] × �[α]〉 = 〈
F [α]

PK[ξ[α](r) ⊗ �[β](r′)] × �[α](r)
〉

= 〈
F [α]

PK[�[α](r) ⊗ �[β](r′)] × ξ[α](r)
〉

≈ 〈
F [α]

PK[�[α](r) ⊗ �[β](r′)]
〉 × ρ̂[α](r)

= F [α]
PK[〈�[α](r) ⊗ �[β](r′)〉] × ρ̂[α](r) (16)

by the application of, respectively, the definition of the unit
direction, the weak line bundle assumption, and the linearity
of the average and Peach-Koehler functional.

In the final relation above, a new quantity of interest has
arisen: the two-point density ρ[α,β](r, r′) which is given by

ρ[α,β](r, r′) := 〈�[α](r) ⊗ �[β](r′)〉. (17)

As is common in the analysis of density hierarchies, we con-
sider this average to be expressed without loss of generality
by the product of the single-point densities and a correlation
function d (i, j)[α,β](r, r′). This correlation function expresses
the scalar correlation between each respective tensor com-
ponent of the product density for each combination of slip
systems. That is,

ρ
[α,β]
i j (r, r′) := ρ

[α]
i (r)ρ[β]

j (r′)(1 + d (i, j)[α,β](r, r′)). (18)

The scalar operation of the correlation function is one way
of denoting the diagonal nature of an in general tensorial
correlation

d [α,β]
ki jl (r, r′) := d (i, j)[α,β](r, r′)δikδ jl , (19)

where δi j here represents the Kronecker delta. This diagonal-
ity property was shown to be a corollary of the strong line
bundle assumption [33]; we presume that it holds, at least
approximately, in the case of the weak line bundle approxi-
mation as well.

Substituting this definition into the transport relation
[Eqs. (15) and (16)], we obtain

ρ̇[α] = B−1∇ × {(
F [α]

MF + F [α]
C

) × ρ[α]
}
, (20)

F [α]
MF(r) = F [α]

PK[ρ̂[α](r) ⊗ ρ[β](r′)], (21)

F [α]
C (r) = F [α]

PK[ρ̂[α](r) · d [α,β](r, r′) · ρ[β](r′)]. (22)

The mean-field force term F [α]
MF captures the driving force

arising due to the eigenstress field generated by the con-
tinuum densities ρ[β]. Assuming the dislocation correlation

functions to be nontrivial, however, we can see that the mean-
field solution of the driving force actually misrepresents the
dislocation transport. The correlation-dependent force term
F [α]

C then serves to correct the dynamics, reincorporating into
the theory the short-range dislocation interactions lost in the
coarse-graining process.

We have already arrived at an important result: a kinetic
theory for the evolution of the dislocation density vector in
highly polarized dislocation systems. If the correlation func-
tion can be evaluated from discrete data, the kinetic theory
would be complete. In the remainder of this work, we present
a method for averaging discrete dislocation data in a way con-
sistent with the line bundle assumption so that the correlation
functions can be evaluated from discrete dislocation data.

III. AVERAGING OF DISCRETE DISLOCATION SYSTEMS

We have shown that for certain averaging operators, i.e.,
those for which the weak line bundle assumption [Eq. (14)]
holds, the correlation functions enter straightforwardly into
the evaluation of the dislocation velocity field. In the sec-
tion that follows, we present a specific averaging operator
which fulfills the line bundle assumption and outline an em-
pirical method for evaluating the correlation function from
discrete dislocation dynamics. This averaging process consists
of a spatial convolution of the dislocation line with a weight
function of finite range as well as a statistical homogeneity
argument that treats all points in the crystal as equivalent.

A. Spatial coarse graining of discrete dislocations

For some discrete dislocation line configuration L0 with
corresponding discrete density field �0, define the continuum
density ρ(r; L) as follows:

ρ(r; L) :=
∫

�L

wL(r − r′)�0(r′)d3r′, (23)

where wL is some weight function with compact support �L

characterized by some characteristic coarse-graining length L.
We note that for this spatially averaged density field, there will
obviously be a qualitative difference between the density field
as this length tends to 0 and the density field as this length
tends to infinity. This qualitative difference is closely related
to the emergence of what we have discussed in the introduc-
tion as single-slip SSDs. For small coarse-graining lengths,
we note that there is actually a small length L∗ which is used
in discrete dislocation dynamics to remedy the nonphysical
singularity in the elastic field of dislocations ([38, 39]). That
is to say, physical, discrete dislocations are better modeled as
density fields of the type ρ(r; L∗), where L∗ is on the order
of 5–10 times the Burgers vector magnitude, or about 2–3 nm
in copper. Here single-slip SSDs are absent by definition. On
the other extreme, it is obvious that at some sufficiently great
L, at least on the order of 1 µm, the volume �L surrounding
any point could contain dislocation loops, or at least disloca-
tions sufficiently curved so as to make the vector cancellation
in the spatial average non-negligible, resulting in significant
populations of single-slip SSDs. However, we expect to find
intermediate lengths, on the order of 20–100 nm, where there
is a de facto absence of single-slip SSDs. This corresponds to
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the physical requirement that these single-slip SSDs (opposite
signed dislocations in �L) actually annihilate within some
critical distance. This critical distance is often estimated to
be on the order of 50 nm [45].

A consequence of the above considerations is that the def-
inition of the correlation function in Eq. (18) now supports a
more precise interpretation. Namely, the correlation encodes
some relationship between density products at different scales
L∗ and L. It attempts to recover the fine product densities by
means of an appropriate linear relationship with the coarser
product densities.

The result of applying this density field calculation to a
discrete dislocation configuration is that for some collection
of points {ri}Nr

i=1, we now have in hand the density field at those
points ρ[α](ri; L) for various convolution lengths L. However,
in terms of measuring the product density, this only amounts
to a single measurement of the product density. This is be-
cause the product density

ρ[α,β](ri, r j ; L) = ρ[α](ri; L) ⊗ ρ[β](r j ; L) (24)

has no sense of equivalence between some classes of point
pairs. In order to get some sense of the representative behav-
ior of classes of these point pairs, we must define a further
averaging process.

B. Ensemble averaging of dislocation product densities

If we hope to build some picture of the average rela-
tionships between product densities at different scales we
will need to reduce the space of dependencies of the cor-
relation function. In its form in Eq. (18), it depends on a
six-dimensional space, a tuple of two positions (r, r′). How-
ever, it is evident that in bulk crystals there is some degree
of arbitrariness to any specific choice of origin. If the only
local information that the correlation can be dependent on is
the dislocation density, then it follows from such a statisti-
cal homogeneity argument that the correlation should only
be dependent on the separation distance �r := r′ − r [33].
Additionally, we should expect the long-range behavior of
the dislocation state �r → ∞ to be uncorrelated. That is, for
some function of the system state at two points f (r, r′) :=
f1(r) f2(r′), we expect

lim
r′−r→∞

〈 f (r, r′)〉 = 〈 f1(r)〉〈 f2(r′)〉. (25)

In any case, this statistical homogeneity argument raises
further questions. Namely, which points do we treat as equiv-
alent and how can we use this equivalence to reason to a
correlation function? As should be evident from our kinetic
derivation, we are interested in points where there is a dislo-
cation at both r and r′. Otherwise, there is no transport nor
interaction to be spoken of. As a result, we are interested in
the atmosphere of discrete density surrounding a point with
nonzero discrete density. Considering a sample set S[α] of
points where the discrete density is nonzero,

S[α] := {r ∈ M : ρ[α](r, L∗) > 0}, (26)

we may then partition the direct product of the sample space
into sets of like separation vector in order to find pairs of

interest to us:

�[α,β](�r) := {(r, r′) ∈ S[α] × S[β] : r′ − r = �r}. (27)

We will then simply examine the density product data at
two scales, L∗ and L, for position pairs in �[α,β](�r). That is,
we will examine the scattered product density data{(

ρ
[α,β]
i j (r, r′; L∗), ρ

[α,β]
i j (r, r′; L)

)∀ (r, r′) ∈ �[α,β](�r)
}
,

(28)

and fit various correlation functions relating the two.

IV. INTERACTION SYMMETRIES IN FCC CRYSTALS

While it certainly could be of some utility to fit correlation
functions for all unique pairs of slip systems [α, β], it would
not be particularly parsimonious. If all 12 slip systems are
considered, there are a total of 144 slip-system interactions
(78 if these are considered symmetric under interchange of
α, β). Add to that the 4 tensorial components of the correla-
tion for each and things quickly get out of hand. However,
it is expected that some of these correlation functions are
measuring qualitatively similar behavior. More specifically, it
is expected that the spatial features of the correlation functions
will be somehow relative to a special coordinate system de-
pendent on the combination of slip systems being considered.
As a result, we may wish to revise the collection of equivalent
position pairs [Eq. (27)] to also treat certain classes of slip-
system interactions as equivalent.

With this motivation in mind, we take a brief digression
from the main investigation of correlation functions to ex-
amine relationships between slip systems, and from those
relationships to form certain equivalence classes. These equiv-
alence classes will allow us to define distinct classes of corre-
lation functions which can be averaged together in the sense
outlined in the previous section. For this work, we consider
only the case of fcc crystals, for which slip systems are com-
monly defined in terms of the faces and edges of the so-called
Thompson tetrahedron [6]. In this section, we will examine
the algebraic structure of the Thompson tetrahedron and their
resulting equivalence classes. Some of the results will be
standard (the relationships of various classes of slip systems
are well known in the theory of dislocation reactions in fcc
crystals [21,46]) but we will also make a distinction, namely,
that certain interactions have an associated handedness or
chirality. In doing so we reduce the number of slip-system
interactions which must be considered from 144 (or 78) to 6.

This classification problem to which this section is devoted
can be defined as follows. Given two slip systems α, β, let us
find the following:

(1) all other systems α′, β ′ such that the resulting disloca-
tion reaction is of the same type,

(2) a (possibly improper) coordinate transformation such
that the dihedral planes and Burgers directors of the two slip
systems are mapped onto constant positions in space, and

(3) signs according to which the Burgers vectors, and ac-
cordingly, the dislocation line sense, should be flipped in order
to map the Burgers vectors onto constant positions.

In order to devise such a scheme, we will first outline
the algebraic structure of the 12 slip systems in fcc crystals,
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TABLE I. Normal vectors and Burgers vectors defined.

Normal vectors Burgers vectors

Identifier Plane Identifier Direction

α (1̄1̄1̄) a [1̄01]
β (11̄1) b [011]
γ (111̄) c [1̄10]
δ (1̄11) d [110]

e [011̄]
f [101]

augmenting the well-known algebra of the 12 perfect disloca-
tions in fcc crystals described by the Thompson tetrahedron
[6]. This algebra will then allow us to enumerate six general
classifications of slip-system interactions and the transforma-
tions to which they naturally give rise. These classifications
correspond to the traditional classification according to the
reaction process which takes place between them, i.e., self,
cross-slip, coplanar, glissile junction, Lomer-type, and Hirth-
type interactions. We will also find that the latter four classes
can be further divided into left- and right-handed subclasses.

A. Algebraic operations on the Thompson tetrahedron

1. Vectors and directors on the Thompson tetrahedron

To begin, we must first define two sets of quantities,
namely, a set of slip plane normal vectors ni and Burgers
vectors bi. These are the faces and edges, respectively, of
a tetrahedron. As a result there are four {111}-type normal
vectors and six 〈110〉-type Burgers vectors, listed in Table I.6

The senses of the normals can be well defined as the outward-
facing normal vectors of the tetrahedral faces. However, it is
not possible to adequately define a sense of the Burgers vec-
tors, and as a result the sense of these in Table I is arbitrarily
chosen following [47].

One can see that the sign of the Burgers vector is irrelevant
by considering that the topological invariant of a dislocation
with line sense ξ and Burgers vector b is the outer product
ξ ⊗ b. Therefore, the dislocation is preserved upon reversal of
the sign of the Burgers vector so long as the line sense is also
reversed. Thus, it is more useful to our present purposes to
consider Burgers directors, which are nonpolar vectors com-
monly used in the theory of liquid crystals [48]. To consider
vectors as directors, we need an operation which can eliminate
the sign of the Burgers vectors. We will denote this sign
product as a dot product bi · b j :

bi · b j := bi · b j

|bi · b j | ∈ {±1}. (29)

This operation returns the alignedness of one Burgers vector
with respect to another, and as such is commutative. The
multiplication table of this sign product operator is shown in
Table II. This operation also has the expected property that the

6Note that these vectors are all defined rationally, and thus do not
have unit magnitude.

TABLE II. Dot product of Burgers vectors.

a b c d e f

a + + + − − 0
b + + + + 0 +
c + + + 0 + −
d − + 0 + + +
e − 0 + + + −
f 0 + − + − +

resulting sign is sensitive to the sign reversal of either input
vector:

bi · (−b j ) = (−bi ) · b j = −(bi · b j ) (30)

and so is well defined for the flipped Burgers vectors as well.

2. Wedge products of normal vectors and Burger directors

The two algebraic operations which will define the equiva-
lence classes of slip systems are as follows. There are natural
operations which arise in the discussion of planes and vectors.
First, an operation that takes two normal vectors and returns
the dihedral direction: the oriented line direction along which
the planes intersect. Second, an operation that takes two Burg-
ers directors and returns the plane to which they both belong.
We will define both of these as a wedge product. The wedge
product of two normal vectors ni ∧ n j is defined as

ni ∧ n j := 1
2 (ni × n j ) ∈ {±bk} (31)

and returns a direction which is a valid Burgers vector. The
multiplication table for this operation is shown in Table III;
one can see that it inherits anticommutativity from the cross
product. While this product will be of use for defining a
preferred polarity of the Burgers vectors, it does not lead to
interesting classifications of slip-system interactions.

Additionally, the wedge product bi ∧ b j is defined as

bi ∧ b j := (bi · b j )bi × b j ∈ {±nk} (32)

and returns a directed slip plane normal vector. The multi-
plication table for this operation is shown in Table IV. The
result of this product gives the slip plane to which the aligned
Burgers vectors belong in a right-handed sense. Consistently
with this interpretation, we see that this product is also anti-
commutative, but it is insensitive to the sign of either Burgers
vector:

bi ∧ b j = −(b j ∧ bi ) (33)
= (−bi ) ∧ b j (34)
= bi ∧ (−b j ) (35)
= (−bi ) ∧ (−b j ). (36)

TABLE III. Normal vector wedge product.

α β γ δ

α 0 a −c e
β −a 0 b −d
γ c −b 0 f
δ −e d −f 0

174103-7



JOSEPH PIERRE ANDERSON AND ANTER EL-AZAB PHYSICAL REVIEW B 109, 174103 (2024)

TABLE IV. Burgers director wedge product.

a b c d e f

a 0 −β α β −α 0
b β 0 −δ −β 0 γ

c −α γ 0 0 α −γ

d −β β 0 0 δ −δ

e α 0 −α −δ 0 δ

f 0 −γ γ δ −δ 0

The Burgers wedge product gives two interacting slip systems
a well-defined chirality with respect to each other. As we
will see below, this chirality actually represents an important
distinction within the traditional fcc slip-system interaction
classes, and will be essential to defining equivalent coordinate
systems as well.

B. Classification of slip-system interactions

Having defined these algebraic operations between slip
planes and Burgers directors, we may now define our 12
slip systems. Each allowable combination of slip plane and
Burgers vector is considered (i.e., those for which the Burg-
ers and normal vectors are orthogonal), and these arbitrarily
numbered combinations are shown in Table V.

These slip systems form nodes of a graph structure shown
in Fig. 1. We note that some of the edges of this graph are di-
rected, and some undirected. Two slip systems are connected
by a thin, undirected line if they share a Burgers vector. Two
edges are connected by a thick directed line if they share a
normal vector. The direction of these edges is specified such
that for two slip systems connected 1 → 2, the wedge product
of their Burgers directors is right handed on their shared
normal plane; i.e.,

b[1] ∧ b[2] = n[1] = n[2]. (37)

This graph structure is also shown superposed on the tra-
ditional net representation of the Thompson tetrahedron to
demonstrate the correspondence.

1. Classification conditions

The classification scheme is as follows. Self-interactions
are those for which α = β, or

self := {[α, β] : n[α] = n[β] and b[α] = b[β]}. (38)

Cross-slip interactions are those slip systems which share a
Burgers vector but glide on different slip planes, or

xslip := {[α, β] : n[α] �= n[β] and b[α] = b[β]}. (39)

Coplanar reactions occur when two dislocations on the
same slip plane react to form a dislocation segment with a

TABLE V. Slip-system definitions.

Slip system 1 2 3 4 5 6 7 8 9 10 11 12

Burgers vector a a b b c c d d e e f f
Normal vector α β β γ γ α δ β α δ γ δ

FIG. 1. The slip-system graph structure. Nodes represent slip
systems; nodes connected by an undirected edge share a Burgers
vector, while nodes connected by a directed edge share a slip-plane
normal vector. The direction of the edge between two nodes 1 → 2 is
chosen such that b[1] ∧ b[2] = n[1] = n[2]. The Thompson tetrahedron
is shown faintly superimposed on the graph for reference.

new Burgers vector which can still glide on the original slip
plane. This interaction class is given by

coplanar(χ ) := {[α, β] : b[α] ∧ b[β] = χn[α] and n[α] = n[β]},
(40)

where we have introduced a chirality χ = −1,+1 for left- and
right-handed interactions, respectively.

Glissile junction reactions occur when a similar process
occurs between dislocations on different slip systems, result-
ing in a third glissile segment on one of the two original slip
planes. We consider only the interactions where the resulting
segment would be glissile on the plane of the second reacting
segment.7 This corresponds to the case in which the first
Burgers vector is along the dihedral direction, i.e.,

glissile(χ ) := {[α, β] :(b[α] ∧ b[β] ) = χn[β] and n[α] �= n[β]}.
(41)

Lomer locks are a sessile junction segment formed when
two dislocations react to form a valid 〈110〉-type Burgers vec-
tor, but there does not exist a tetrahedral face which contains
both the dihedral direction (the line direction of the result-
ing segment) and the resulting Burgers vector [49,50]. For
a right-handed Lomer-type interaction, the dihedral direction
n[α] ∧ n[β] is right handed with respect to b[α] and left handed

7As a result of this asymmetric constraint, the glissile junction class
is the only class which is not symmetric under interchange of the two
slip systems considered.
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with b[β], i.e.,

lomer(χ ) := {[α, β] : (n[α] ∧ n[β] ) ∧ b[α] = χn[α]

and b[β] ∧ (n[α] ∧ n[β] ) = χn[α]}. (42)

Lastly, Hirth locks are a sessile junction formed when
dislocations with orthogonal Burgers vectors react, forming
a dislocation segment with a 〈100〉-type Burgers vector [51].
These segments are sessile because this is not a close-packed
direction and thus the energy barrier for slip along this di-
rection is prohibitively high [46]. Although it is possible to
use the requirement bi · b j = 0 to identify Hirth-type inter-
actions, this definition would ignore the chiral nature of the
interaction. Rather, we define it similarly to the Lomer-type
interactions, with the distinction that for a right-handed Hirth-
type interaction, the dihedral direction n[α] ∧ n[β] is right
handed with respect to both b[α] and b[β]:

hirth(χ ) := {[α, β] : (n[α] ∧ n[β] ) ∧ b[α] = χn[α]

and (n[α] ∧ n[β] ) ∧ b[β]∧ = χn[α]}. (43)

For a more intuitive representation of these conditions,
please refer to Fig. 2, which shows these conditions repre-
sented as the various unique classes of paths one can take
on the slip system graph structure shown in Fig. 1. The
classes and their right- and left-handed variants are shown
as well. From these graphical representations, it is clear that
the classes are not only defined by the types of connections
traversed between two slip systems, but also the direction
of the edges traversed. The former results in the traditional
classification scheme, while it is the directionality of the graph
edges which results in the handedness discussed above. For
completeness, a table of the interactions of all 144 combina-
tions of slip system is shown in Table VI, with left-handed
interactions highlighted.

2. Equivalence spaces

The handedness is central to the classification problem that
presents itself to us in the analysis of correlation functions be-
cause it allows us to define coordinate transformations which
map the Burgers vectors and dihedral planes onto constant
directions. There are two such coordinate transformations
R[α,β]. In the case where the two interacting slip systems share
a slip plane normal, the rotation is given by

R[α,β] := (b[α]|χ (n[α] × n[β] )|n[α] )T . (44)

In the case where the two slip systems have different slip plane
normal vectors, the rotation is given by

R[α,β] := ((n[α] ∧ n[β] ) × n[β]|χ (n[α] ∧ n[β] )|n[β] )T . (45)

The result of these transformations is that for self- (as-
sumed right-handed) and coplanar interactions, the Burgers
vector of the first (or only) interacting slip system is aligned
to the x axis and the shared normal direction to the z axis.
The y axis is then defined in a right- or left-handed sense
depending on the chirality of the interaction. For the remain-
ing interactions [cross-slip (assumed right-handed), glissile
junction, Lomer-type, and Hirth-type] the dihedral direction
of the two planes is aligned to the y axis and the second slip
plane normal to the z axis. The x axis is then defined in a

FIG. 2. Classes of interactions on the Thompson tetrahedron.
Different classes of paths along the graph denote different slip-
system interactions. The first slip system of a given interaction is
marked by a diamond, the second by a square. Shown are (a) self-,
(b) cross-slip, (c) coplanar, (d) glissile junction, (e) Lomer-type, and
(f) Hirth-type interactions. Right- and left-handed interactions are
marked.

right- or left-handed sense according to the chirality of the
interaction.

These all represent simple coordinate rotations, although
according to the interaction handedness these will be proper
or improper rotations. Proper or improper, they map the di-
hedral planes and Burgers vectors onto constant directions in
what will for the remainder of the work be referred to as the
equivalence space of the respective class of interactions.

3. Burgers reversals

Lastly, we also define a sign by which the Burgers vector
and line direction of the two slip systems ought to be reversed
in order to make use of the above spatial rotations. Like the
rotation tensors, the behavior is dependent on the two slip
systems sharing or not their slip plane normal. In the case
where the slip plane normal is shared, the second sign ought to
be reversed according to the sign product of the two Burgers
vectors:

s[α] = 1, s[β] = b[α] · b[β]. (46)
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TABLE VI. Enumeration of all interaction types.

In the case where the slip-plane normal is not shared,
both signs are reversed according to the sign product of the
respective Burgers vector with the dihedral direction:

s[α] = b[α] · (n[α] ∧ n[β] ), (47)

s[β] = b[β] · (n[α] ∧ n[β] ). (48)

C. Final remarks regarding classification scheme

In closing this section of the analysis, we show how these
equivalence classes will be leveraged in the analysis of the
two-point density data. Whereas previously we were consid-
ering the behavior of the product density

ρ[α,β](r, r + �r; L), (49)

we will now be considering the qualitatively equivalent behav-
ior of distinct groups of interactions. That is, for [α, β] ∈ type,
where type is some class of interactions as outlined above, we
now consider the behavior of the following product density:

ρ[type](r̃,r̃ + �r̃; L) ∼ s[α]s[β]ρ[α,β](r, r + (R[α,β] )−1�r̃; L),

(50)

where r̃ here denotes a vector in the equivalence space and we
have flipped both dislocation vectors ρ[α], ρ[α] by the Burgers
signs s[α], s[β].

In this manner, a given interaction class now can be treated
in toto by revising our definition of the equivalent pairs
[Eq. (27)] to include all pairs which share a separation vector
in the equivalence space:

�[type](�r̃) :=
⋃

[α,β]∈type

�[α,β]((R[α,β] )−1�r̃). (51)

With this classification scheme in hand, we have reduced
the number of unique correlation tensors which need to be
calculated from 144 to 6.

V. CALCULATION OF CORRELATION FUNCTIONS

The current correlation calculations are performed using
the same library of discrete dislocation dynamics simulations
used in [33]. In summary, this represents 45 unique simu-
lations of dislocations in copper which were run to 0.3%
plastic strain in uniaxial ([100] loading axis) strain-controlled
simulations using the MICROMEGAS code [47]. Because this
code is lattice based, the lines were resampled to the mid-
points of the discrete segments in order to fully populate the
angular space [52]. The dislocation densities in these simula-
tions evolved from an initial value of 2 µm−2 to an average
final value of 6 µm−2 and the simulation domain measured
4.40 × 4.87 × 5.74 µm.

We have made use of the cloud-in-cell function [53] as our
choice of weight function for averaging the dislocations:

wL(r) :=
{∏3

i=1

(
1 − |ri|

L

)
for |ri| < L,

0 otherwise.
(52)

For the details of the analytical line integral of this weight
function over the straight segments used in discrete disloca-
tion dynamics simulations, please refer to Appendix B. The
main result is that for a collection of line segments λi with
line tangents t̂ i passing through the cube �L of side length
2L surrounding the point r, the line integral of each can be
evaluated as a weight wL(λi). This allows us to calculate both
a vector-valued dislocation density and a scalar line density as
[cf. Eq. (23)]

ρ(r; L) =
∑
λi

t̂ iwL(λi), (53)

ρ(r; L) =
∑
λi

wL(λi ). (54)

These may not be of equivalent magnitude for volumes
containing more than one dislocation line. The line bundle
approximation only requires that the points where |ρ| is not
approximately equal to ρ are of little interest.

The majority of the density calculations performed utilized
a discrete mesh of 720 cubic voxels along the longest box
dimension. The fundamental length L∗ was taken as equiva-
lent to this mesh spacing, 8.1 nm. The continuum density field
calculations were performed using coarse-graining lengths L
that were multiples of the mesh spacing, from 5 times the
mesh spacing (40.5 nm) to 10 times this spacing (81 nm). A
small minority of the calculations were performed comparing
the continuum coarse-graining length of 81 nm and varying
the fundamental discrete length L∗ from 16.2 nm down to
8.1 nm by increasing the number of mesh elements along the
longest box dimension.

Having density fields in hand, we now turn our attention to
how these are used in the scheme discussed above to calculate
correlation functions. As outlined above, once grouped into
spatial equivalence classes, for every separation distance �r̃,
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we have the scattered data

{(
D[type]

i j (r, r′),C[type]
i j (r, r′)

)∀ (r, r′) ∈ �[type](�r)
}
, (55)

where we have relabeled the discrete product density
D[type]

i j (r, r′) := ρ
[type]
i j (r, r′; L∗) and continuum product den-

sity C[type]
i j (r, r′) := ρ

[type]
i j (r, r′; L) for notational clarity. An

investigation of the correlation amounts to, for every separa-
tion distance, fitting the following linear relationship between
the two:

D[type]
i j (�r̃) := C[type]

i j (�r̃)g[type](i, j)(�r̃), (56)

where g[type](i, j)(�r̃) := 1 + d [type](i, j)(�r̃) is a more compact
relationship for this slope. Notice, this is simply a compact
notation for Eqs. (17) and (18), the definition of the correla-
tion. This compact notation represents the data-driven context
in which we will evaluate the correlation functions.

For this reason, we outline a series of fitting methods
for g[type](i, j)(�r̃). These include ordinary least-squares fitting
with discrete (OLSD) and continuum residuals (OLSC), and
a principal component analysis of the covariance matrix (PC).
All three methods make use of the covariance matrix

cov(D,C,�r̃) :=
⎛
⎝ 〈D2〉(�r̃)

D2∞
〈CD〉(�r̃)

CD∞
〈CD〉(�r̃)

CD∞
〈C2〉(�r̃)

C2∞

⎞
⎠, (57)

where the averages are now understood as empirical averages
over the set �[type](�r̃):

〈 f 〉(�r̃) = 1

|�[type](�r̃)|
∑

(r,r′ )∈�[type] (�r̃)

f (r, r′). (58)

Here, |�[type](�r̃)| represents the number of pairs in the set
�[type](�r̃). Additionally, each average is measured relative
to the uncorrelated [in the sense of Eq. (25)] average. That
is, for some function h(C, D) := h1(C)h2(D) satisfying the
requirements of Eq. (25), we may express the uncorrelated
average as

h∞
(
C[type]

i j , D[type]
i j

) =
⎡
⎣ 1∑

(α,β )∈type |S[α]|
∑

(α,β )∈type

∑
r∈S[α]

h1
(
ρ

[α]
i (r; L)

)
h2

(
ρ

[α]
i (r; L∗)

)⎤⎦

×
⎡
⎣ 1∑

(α,β )∈type |S[β]|
∑

(α,β )∈type

∑
r∈S[β]

h1
(
ρ

[β]
j (r; L)

)
h2

(
ρ

[β]
j (r; L∗)

)⎤⎦. (59)

Each of the four fitting schemes outlined above utilize the
covariance averages, as follows:

gOLSC(�r̃) := 〈D2〉(�r̃)

〈CD〉(�r̃)

CD∞
D2∞

, (60)

gOLSD(�r̃) := 〈CD〉(�r̃)

〈C2〉(�r̃)

C2
∞

CD∞
, (61)

gPC(�r̃) := β
(1)
D

β
(1)
C

, (62)

where β(1) := (β (1)
D , β

(1)
C ) represents the eigenvector of the

covariance matrix corresponding to the highest eigenvalue.
This expansion is performed as follows:

cov(D,C) := (β(1)|β(2) ) ·
(

σ 2
(1) 0
0 σ 2

(2)

)
· (β(1)|β(2) )T

(63)

with σ 2
(1) � σ 2

(2). That is, the covariance matrix is diagonal-
izable into two statistically uncorrelated linear combinations
of C and D. The eigenvector corresponding to the combi-
nation with the larger variance is chosen as a correlation
function [Eq. (62)]. As an additional measure of the variance
in the scatter relationship [Eq. (55)] which is not captured by
the linear correlation relationship, we will also examine the

following relation as the fluctuation variance:

σ 2
f = σ 2

(2)

σ 2
(1) + σ 2

(2)

. (64)

The relative strength of the principal component analysis just
described is that the random components of the data along
each principal component (the correlation fit line and the
remaining fluctuation variance) are statistically uncorrelated.
For a more detailed description of principal component anal-
ysis, cf. [54].

VI. RESULTS

We begin this section with a figure showing the scattered
nature of the product density data (Fig. 3) as an aid for concep-
tually understanding the correlation fitting procedure. The first
plot shows a spatial correlation function with several points
labeled. Corresponding to each of these points in the separa-
tion space, the product density at the two scales is represented
as scattered data [cf. Eq. (55)]. The linear relationship passes
through the origin [this is required due to the lack of constant
terms in Eq. (18)8] but differs from point to point; this results

8The lack of constant terms in the definition of the correlation
relation is no accident. Rather, it is a corollary of a certain property
of the coarse-grained densities in line bundle ensembles, namely,
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FIG. 3. Scatter plots of discrete and continuum density product data. (a) Volumetric representation of the edge-edge self-correlation
function given for reference of separation space locations. The slip plane (hexagon), Burgers direction (blue line), and coarse-graining volume
(cube) are shown for reference. In this figure, blue regions are anticorrelated regions (d < 1), and red regions are positively correlated (d > 1).
(b)–(f) Scatter plots of the underlying discrete and continuum density products, and the linear relationship which the correlation function
describes. In (a), blue regions correspond to anticorrelated regions (g < 1) and red to correlated regions (g > 1)), while transparent regions
correspond to uncorrelated regions (g = 1). Orienting features of (a) include the Burgers vector direction (blue line), slip plane (hexagon), and
the coarse-graining volume (cube). The points in separation space examined in (b)–(f) are shown as well. In (b)–(f), the dotted line represents
the relation that would obtain in the perfectly uncorrelated case (a slope of unity). The solid lines show the principal components of the
covariance matrix. The slope of the larger component is taken as the correlation value and reported in each plot. Points in (b)–(f) are colored
according to the effective polarization [Eq. (65)], with blue denoting low polarization (�1) and red denoting high polarization (≈1) according
to the color bar shown on the right.

in a correlation field that is a function of separation distance
[cf. Fig. 3(a)].

An entirely uncorrelated product density would result in
the scattered data falling perfectly on the line of unit slope
passing through the origin. The principal components of the
covariance matrix for the scattered data at each point are
shown in Figs. 3(b)–3(f) as black lines, the length of which
denotes the variance along each component. The direction
of the longer component gives the PC fit for the correlation
function [Eq. (62)], which is reported in each plot. This direc-
tion also defines the fluctuation direction (these two directions
are orthogonal), and the length of the shorter component is
related to the fluctuation variance [Eq. (64)]. Thus, Fig. 3 not
only shows qualitatively what the correlation represents, but
also the limits of the information it contains. This limitation,
quantified by the fluctuation variance, will be revisited at the

that the coarse densities are absolutely continuous with respect to
the discrete densities [33].

end of the present section and we will examine its implications
in a later section.

One additional feature of the scatter plots in Figs. 3(b)–
3(f) is that the the effective polarization of each data point is
shown. That is,

Pol =
√

|ρ(r)|
ρ(r)

|ρ(r′)|
ρ(r′)

. (65)

It is worth noting that the linear relationship is especially
erroneous for data points with low effective polarization; such
points have high discrete product density but low continuum
product density and cluster along the vertical line that would
represent an infinite value of the correlation. Such data obvi-
ously violate the line bundle assumption; however, we note
that they represent a negligibly small portion of the total data.

Figure 4 shows a typical self-correlation field (self in the
sense defined in Sec. IV, as pertaining to density products
of like slip system). Results for the various fitting methods
outlined above are shown for separation distances which lie
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FIG. 4. Various fits for the self-correlation function in the slip plane. Self-correlation functions are shown for separation vectors in the slip
plane, where �rb and �ra are the separation in the Burgers vector direction and the line direction of an edge dislocation, respectively. The three
methods of fitting the correlation are compared, namely, ordinary least squares with continuum (OLSC) and discrete (OLSD) residuals, and
the principal component (PC, cf. Fig. 3). These are shown for the screw-screw, screw-edge, and edge-screw components of the self-correlation
function. The morphology of the correlation function is unaffected by the choice of fitting method, although the magnitude of the respective
maxima differs slightly between the three methods. The faint hexagons represent the boundaries of the fundamental and coarse-graining
volumes (cube of side length 2L∗ and 2L, respectively).

in the slip plane, i.e., those separation vectors which have
no component in the slip-plane normal direction. The three
unique tensor components of the self-correlation field (screw
edge and edge screw are symmetric under inversion of separa-
tion space) are shown for the three fitting methods described
in Eqs. (60)–(62). The distinctive morphologies of the self-
correlation field can be seen in this figure. All of the fitting
methods demonstrate roughly equivalent morphologies, dif-
fering mainly in the magnitude of their respective extrema.
The principal component analysis fitting method, however,
will be utilized in the remainder of the paper because of
the property that the error axis is statistically uncorrelated

(in the sense of null covariance) to the correlation axis. This
fluctuation axis, briefly discussed above, will be the subject of
later discussion. Next we move on to the full cross-correlation
results for each type of density field combination enumerated
in Sec. IV. Reporting on the cross correlation is one of the
main objectives of this work. First, in Fig. 5 we show the
radial convergence of these cross correlations. The spherical
correlation functions shown in Figs. 5(b)–5(g) are the average
correlation value over the spherical shell of radius r:

g(r) := 1

4πr2

∫ 4π

0
r2d� g(r). (66)
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FIG. 5. Radial plots for all correlation functions. (a) Cylindrical correlation function [Eq. (67)] for the self-correlation. (b)–(g) Spherical
correlation function [Eq. (66)] from the correlation functions corresponding to each interaction class.

Because of the strong anisotropy of the self-correlation func-
tion surrounding the slip plane, we also compute for that
correlation function a cylindrical correlation function. This is
computed as the average over the disk of height L and radius
s centered on the origin:

g(s) := 1

2πsL

∫ L/2

−L/2
drn

∫ 2π

0
dϕ g(r). (67)

In addition to these radial correlation functions, full volumet-
ric contour plots are also shown in Fig. 6 to display the full
spatial morphology of the correlation functions.

Of foremost significance to the dislocation system is the
range of the correlation functions, which is displayed by
the radial convergence shown in Fig. 5. As these ranges de-
fine the degree of nonlocality which must be considered for
corrections to the Peach-Koehler functional, it is reassuring
that these converge to uncorrelated values in most cases by
two to four times the coarse-graining length. Of particular
prominence are the longer-ranged and more strongly cor-
related cross-slip and glissile-junction-type correlations. Of
least prominence are the coplanar correlations, which densi-
ties it would seem are almost completely uncorrelated in the
simulations analyzed.

Additional insights into the features of the correlation func-
tions can be gained from the volumetric renderings. In Fig. 6,
it is clear that at least some degree of anisotropy is evident
in all cross correlations. The self-correlation is seen to be
strongly anisotropic, with significant variation in the slip plane
(cf. Fig. 4) as well as strong anticorrelations (g < 1) for small
distances normal to the slip plane. The dominance of these

anticorrelated regions just off the slip plane can be seen in
the cylindrical and radial correlations of the self-interaction
type [Figs. 5(a) and 5(b)]. While not as dramatic as in the
self-correlations, the cross correlations do display some weak
anisotropies. Notably, they seem to decay more slowly in the
direction of the dihedral between their two slip planes.

Of considerable interest to any implementation of the cor-
relation functions is the question whether these functions vary
as the system evolves, that is, as the total dislocation line
length in the volume increases. Two additional parameters are
the choices of fundamental and coarse-graining lengths, the
length scales associated with the discrete and continuum rep-
resentations of the dislocation densities. These remain fixed in
a continuum theory, but in principle they should affect the cor-
relation functions. Screw-screw self-correlation calculations
which independently vary each of these parameters are shown
in Fig. 7. The significant dependencies are on the relationship
between the discrete and continuum coarse-graining lengths.
These are seen in the first two series of plots [Figs. 7(a)
and 7(b)]. In the former [Fig. 7(a)], correlation functions are
calculated from density fields with 16 nm fundamental length
and coarse-graining lengths increases from 32 to 81 nm. In
the latter [Fig. 7(b)], the coarse-graining length is held fixed
at 81 nm while the fundamental length is decreased from 16 to
8 nm. From these plots, it can be seen that the relevant spatial
features of the self-correlation functions are relative to the
discrete and continuum coarse-graining lengths. This strong
dependence demonstrates that the correlations arise as fea-
tures of the spatial averaging process itself, rather than some
particularly favored dislocation arrangements. Additionally,
the dependence of the correlation function on plastic strain
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FIG. 6. Volumetric plots of all correlation functions. Volumetric isosurfaces of the correlation functions for all interaction classes are
colored according to the value of the correlation function. The color scale, denoting the value of the correlation, is constant across all plots.
The transparency scale of each plot ranges from the maximum deviation from unit correlation (opaque) to uncorrelated (unit correlation,
transparent). For spatial reference, several relevant spatial features are shown. Cubes show the coarse-graining volume (cube of side length
2L). Hexagons show the intersection of the slip planes of the respective slip system with the cube of side length 6L. Dotted line shows the
intersection of the two slip planes if applicable. Blue and orange lines show the Burgers vector of the first and second slip systems, respectively.

is shown in Fig. 7(c). The correlation functions are seen to
be stable with respect to strain, showing little evolution over
the course of the simulation. This relationship will be further
elaborated in the discussion section to follow.

Lastly, the portion of the variance at each separation
distance which was unexplained by the correlation func-
tion (cf. Fig. 3) is shown in Fig. 8. While the correlation
was defined to capture the error which is introduced in the
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(a)

(b)

(c)

FIG. 7. Dependencies of screw-screw self-correlation on various calculation parameters. (a) Self-correlations calculated with various
coarse-graining lengths and a fixed fundamental length. (b) Self-correlations calculated with various fundamental lengths and a fixed
coarse-graining length. (c) Self-correlations calculated from configurations with various values of plastic strain. Note, all separation distances
scaled by the coarse-graining length.

discrete product density by naively assuming it to be equal
to the continuum product density, some error remains even
after defining a correlation function. This is due to the clo-
sure of the density hierarchy at order two as well as the
suppression of the fully six-dimensional dependence of the
correlation function. Nonetheless, the noticeable spread off
the correlation axis in the scattered data shown in Fig. 3 still
only accounts for no more than 5% of the total variance at
any separation distance. Of note, however, is that the areas
with the highest fluctuation variance correspond to the areas
of strong correlation (g > 1). These regions, occurring near
the boundary of the coarse-graining region, arise due to the
small continuum field values which occur near the bound-
aries of the coarse-graining volume in the “unconnected”
direction.

VII. DISCUSSION

The calculated correlation functions reported in the previ-
ous section, while changing little with strain, depend strongly
on the size of the coarse-graining volume. This suggests that
correlations arise due to the averaging of a field of planar
lines, rather than encoding a contingent arrangement of the
microstructure. This is in contrast to theories at longer length
scales, where the correlation begins to capture the length scale
of such a microstructure [55]. Nonetheless, the correlations
measured above still encode important kinetic information. In
this section we discuss our interpretation of what information
that is by examining the impact of the presented results on
future investigations in vector density continuum dislocation
dynamics. In particular, we will examine the implications of
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FIG. 8. Fluctuation variances of the self-correlation calculation. Displayed are the fluctuation variance field for the self-correlation
calculation as a fraction of the total variance in the product density data at each point [Eq. (64)] for separation vectors in the slip plane.

these correlation functions for mean-field continuum disloca-
tion dynamics. However, we also discuss some implications of
our findings which gesture towards the possibility of stochas-
tic theories of continuum dislocation motion as well.

A. Correlation effects in mean-field continuum
dislocation dynamics

Current vector-density continuum dislocation dynamics
simulations only treat the mean-field portion of the kinetic
equations [Eqs. (20)–(22)]. That is, they ignore the correlation
force given by Eq. (22). The mean-field force term is gener-
ally evaluated by considering the mechanical solution to the
eigenstrain produced by the Kröner-Nye tensor [22,27]:

∇ · σ(r) = 0, (68)

σ(r) := C : [∇u − βp(r)]sym, (69)

βp(r) = ∇z(r) + χ(r), (70)

∇ × χ(r) = α(r), (71)

α(r) :=
NS∑

η=1

ρ[η](r) ⊗ b[η]. (72)

These equations allow the total displacement field, and hence
the stress field σ, to be calculated from the dislocation ar-
rangement. They do so in the following manner. The total
displacement gradient is (additively) decomposed into an elas-
tic part and a plastic part. These are distinguished by the
constitutive relation [Hooke’s law, Eq. (69)], whereby only
the elastic distortion is used to compute the stress field. The
plastic distortion, of course, can be decomposed [Eq. (70)]
into a compatible part, i.e., a part which can be represented
by a gradient of some plastic displacement field z, and an
incompatible part χ which has a nontrivial curl. The closure
fault of this plastic distortion corresponds precisely to the

Burgers circuit definition of dislocations, allowing the curl
of the incompatible distortion to be represented in terms of
the Kröner-Nye tensor α. The Kröner-Nye tensor, being a
measure of the geometrically necessary dislocation content of
the crystal region, is given straightforwardly in terms of the
dislocation densities [Eq. (72)]. In practice, the constitutive
equations [Eqs. (69) and (68)] give a second-order differential
equation for the elastic displacements u − z in terms of the
dislocation arrangement. Once these displacements are fixed,
Hooke’s law [Eq. (69)] yields the stress field. This solution
scheme, known as field dislocation mechanics (FDM), is com-
monly solved by finite element [22] or spectral methods [27].

A well-known but oft-minimized downfall of the FDM
approach is that the short-range stress contribution is ig-
nored, resulting in a dislocation transport equation which is,
a priori, incorrect [31]. One creative approach to solve this
problem is to utilize FDM within discrete dislocation dy-
namics (DDD) simulations to solve for the long-range stress
field while solving the short-range stresses and dislocation
transport in terms of the discrete dislocation lines [10]. This
may prove advantageous to discrete dislocation dynamics
formalisms by reducing computational cost, but continuum
formalisms are necessary to push into geometrically nonlinear
regimes of strain [23,56]. In continuum dislocation dynamics,
a correlation-dependent correction to the transport equation is
necessary to capture the effects of short-range stresses.

The specific form of the correlation force term F [α]
C

leverages the weak line bundle assumption to allow a straight-
forward calculation of the effective stress field needed to
recapture the true dislocation dynamics. While the mean-field
contribution to the mechanics is best calculated by FDM
(with which it is possible to treat the nuances of geometric
nonlinearity), the correlation portion can be treated using the
infinitesimal stress kernel due to the short-range nature of
the integral: the stress kernel converges as O(r−1) and the
correlations presented here are of finite range.

The degree of nonlocality which needs to be considered in
a model that evaluates the correlation effects can be gleaned
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from the radial convergence of the correlation functions
(Fig. 5). As previously noted, these decay to an uncorrelated
state over two to four coarse-graining lengths. We note that, by
construction, the coarse-graining length represents the typical
variation length of the density field. As a result, a local density
approximation to the correlation force functional would be in-
appropriate. While it is possible that gradient theories may be
considered to deal with this nonlocality, further investigation
is needed to understand what mathematical tools would be
needed to evaluate the nonlocal correlation force integral.

Having briefly touched upon possible implementations of
the correlation force, we now ask the following: What is
gained by incorporation of the short-range stress effects?
Energetically, the correlation introduces an alternative mech-
anism to store strain energy in local neighborhoods (i.e., at
small separations). Kinetically, this should result in the system
preferring the coagulation of dislocation densities to minimize
the more costly long-range strain energies. This shielding
effect is thought to be the key to the onset of dislocation
pattern formation in deformed metals. It is well known that
the inclusion of a posteriori phenomenological local energy
storage terms (i.e., Taylor-type hardening terms) in CDD
models leads to rudimentary pattern formation, although at
low strains compared to experiment [25,57,58]. Our expecta-
tion is that inclusion of the short-range stress effects in the
form of correlation-dependent transport terms will naturally
give rise to dislocation patterns without the need to resort to
ad hoc terms designed to force pattern formation [39].

B. Stochastic effects

A closure of the density hierarchy at any order will at some
level mean projecting away the fluctuations of the higher-
order densities (i.e., higher than 2-point). These fluctuations
are commonly ignored, but they do play a role in the true
dynamics of the system, especially when the six-dimensional
pair space is reduced to a three-dimensional separation space.
As was immediately clear in the present investigation of the
correlation functions (cf. Fig. 3), the linear relationship be-
tween the discrete and continuum density products D = gC
does not account for all of the variance in the value of D.
In fact, as is seen from Figs. 3 and 8, a significant amount
of fluctuation variance remains in the sense of Eq. (51). This
variance could be incorporated into the model by means of
a suitable stochastic process. In such a case, the stochastic
process would be superadded to the correlation relationship
as follows:

D[type]
i j (r, r′) = C[type]

i j (r, r′)g[type](i, j)(r − r′)

+ X [type](i, j)
s (r − r′). (73)

The exact stochastic process that would best suit this relation-
ship is beyond the scope of this work. However, for heuristic
purposes, we consider the following:

X [type](i, j)
s (�r) := 1

g[type](i, j)(�r)
ς (�r)Bs, (74)

where Bs is some elementary stochastic process, say a Brow-
nian motion. By the dependence on g−1, this process is
naturally uncorrelated to the correlation effects (via the prin-
cipal component analysis). The standard deviation of this

process ς can then be given a suitable functional form in terms
of the distance along the correlation axis, as it appears from
Fig. 3 that there are scaling effects at play.

The above is not meant, by any means, to be a firmly held
hypothesis. Rather, it is simply a gesture at one possible di-
rection of development one might pursue in order to consider
the effects of higher than second-order density fluctuations. If
pursued, this line of reasoning would be well suited to inves-
tigations in terms of established projection operator methods
such as the GENERIC framework [59]. This projection operator
approach to the stochastic effects would differ in method but
be similar in results to two-dimensional investigations into
the density-based mobility of dislocations [60]. That is, the
higher-order effects could alter the drag law defining the rela-
tionship between effective Peach-Koehler force and the time
derivative of the density field.

VIII. CONCLUDING REMARKS

In this work, we have given a full treatment of the coarse-
grained kinetics proper to a vector-density based theory of
continuum dislocation dynamics. The kinetic theory which
we developed naturally gave rise to dislocation correlation
functions, which were defined in a straightforward manner.
Utilizing a chiral classification of the fcc slip systems, we
were able to show that the full number of correlation functions
needed to describe the kinetics of the vector densities is 24,
corresponding to 6 interaction classes and interactions be-
tween 4 various combinations of vector-density components.
All 24 of these correlation functions were then computed
from discrete dislocation dynamics simulations. The same
were seen to depend strongly on the coarse-graining length
used to define the continuum vector density, but only weakly
on the cumulative plastic strain and total dislocation density.
This implies that the correlations in vector-density schemes
primarily encode line connectivity information rather than
some favorable microstructural arrangement of dislocations.

The evaluation of the correlation functions unveiled sev-
eral key features thereof. First, the dislocation correlations
were found to be of moderate range on the order of two to
four times the coarse-graining lengths. The self-correlations,
corresponding to the interaction of dislocations of like slip
system, were seen to be more strongly anisotropic than the
correlation of dislocations of unlike slip systems. Of these
cross correlations, the cross-slip-type interactions were seen
to have the strongest correlations, while the coplanar-type
interactions showed negligible correlation.

The implications of this work for future progress in vector-
density continuum dislocation dynamics are profound. In
discussion of these implications we especially note the effect
of the correlation functions on driving forces in the trans-
port equations, where it is expected that these correlations
can open a mechanism for dislocation pattern formation in
deformed metals. Additionally, we discussed the stochastic
fluctuations not captured in the correlation function which the
present investigation brought to light and how these might
lead in future investigations to a coarse-grained mobility
function.

In summary, we have presented here the complete correla-
tion information necessary to compute the average evolution
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of the dislocation density field. The full set of dislocation
correlation functions now lies at our fingertips and the short-
range interactions of dislocations can now be recovered in
vector-density continuum dislocation dynamics. With this
tool, we have scaled one more barrier in our understanding of
dislocations systems: What new plastic phenomena may now
lie within our sight?
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APPENDIX A: FORM OF THE PEACH-KOEHLER
FUNCTIONAL

In discrete dislocation dynamics, the velocity law used is
normally one of overdamped motion. That is, there is some
force field f which acts on a dislocation, and the velocity
simply linearly related to that force:

Bv(r) := f (r), (A1)

where B is a viscous drag coefficient. In face-centered-cubic
crystals, a tensorial factor of (I − n[α] ⊗ n[α] ) is applied to
project the force onto the slip plane [44], but this will be
omitted for brevity.

Very early in the development of dislocation theory, it
was realized that the configurational force which acts on the
dislocation line, the negative of the work done by moving
a dislocation some small distance, is given by the famous
Peach-Koehler force [7]:

f (r) := (b[α] · σ(r)) × ξ(r) (A2)

= [b[α] · (σ0 + σ (int) )] × ξ[α], (A3)

where we have introduced the stress field σ and its decompo-
sition into a homogeneous remote stress σ0 and the internal
stress field σ (int) arising from the other dislocations in the
system.

In an isotropic elastic medium, the internal stress field
can be expressed as an integral with respect to the discrete
dislocation density [61]. That is, the internal stress field is a
functional of the discrete dislocation density:

σ
(int)
i j =

NS∑
β=1

∫
M

σ̂
[β]
i jk (r − r′)[β]�

[β]
k (r′)d3r′, (A4)

where σ̂
[β]
i jk represents the third-rank Green’s function for the

stress field produced by a dislocation with Burgers vector b[β].
This Green’s function is given by

4π

μ
σ̂

[β]
i jk (r) = 1

2

(
s[β]

i (r)δ jk + s[β]
j (r)δik

) + 1

1 − ν
S[β]

i jk (r),

(A5)

s[β]
i (r) := (b[β] × ∇)i

(
1

|r|
)

, (A6)

S[β]
i jk (r) := (b[β] × ∇)k

(
Gi j − 2δi j

|r|
)

, (A7)

Gi j (r) := (∇ ⊗ ∇)|r| = δi j

|r| − rir j

|r|3 . (A8)

It can be seen that the stress kernel itself is independent
of any line information. Thus, it suffices to express the of
Peach-Koehler force as a vector valued functional of the line
information as follows:(
F [α]

PK[ξ ⊗ �[β](r′)]
)

l

:= ε jklb
[α]
i ξ

[α]
k (r)

⎛
⎝σ 0

i j +
NS∑

β=1

∫
M

σ̂
[β]
i jm(r − r′)�[β]

m (r′)d3r′

⎞
⎠

(A9)

As a final comment regarding notation, we note the brackets
represent an integration over r′. Additionally, the quantity in
brackets denotes all dependencies on the line information.
This notation will be utilized throughout the main text to refer
to the Peach-Koehler functional.

APPENDIX B: LINE INTEGRATION
OF THE CLOUD-IN-CELL WEIGHT FUNCTION

For reference, we give here the line integral of a straight
line segment with respect to the cloud-in-cell weight function.
In our previous work [33] we used a form of this that had a
small error (fourth order in a parameter always less than 1),
following a typographical error in [10]. It should be noted that
the correct form is found in the preprint of the same [62].
However, we will restate the form of this line integral for
clarity.

We would like to integrate the dislocation configuration
with respect to our cloud-in-cell weight function wL given by
Eq. (52). In general, this evaluation will be centered at some
rD; for brevity, we consider it to be centered at the origin. The
support of the weight function �L is given by a cube of side
length 2L centered on the origin. This cube is composed of
eight octants �m, cubes with side length L with one corner on
the origin.

Because the discrete dislocation configuration is composed
of straight line segments (L = ⋃

q λq), we represent the dislo-
cations which contribute to the line integral at this point by
λ(L)

p . Each segment λ can be expressed in parametric form
in terms of its origin x, end point x + t , and a dimensionless
parameter a ∈ [0, 1] as

rλ(a) := x + at . (B1)

It then remains to compute the integral of the weight function
along this line.

In order to integrate the absolute value functions present,
we use �m to break the line into segments on which the sign
of the three coordinates remains constant. Letting a±

m represent
the line parameters at which λ enters and leaves �m,9 we can
represent by sm

i = ±1 the sign of the coordinate ri(a) in the
range a ∈ [a−

m, a+
m]. Utilizing the following expansion of the

9The line parameters of intersection with a rectangular grid can be
efficiently computed using Siddon’s algorithm [63].
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cloud-in-cell function [Eq. (52)],

wL(x, s) := 1

L1L2L3

⎡
⎣1 −

∑
i

si

Li
xi +

∑
i< j

sis j

LiL j
xix j

+ s1s2s3

L1L2L3
x1x2x3

⎤
⎦, (B2)

the integral along this portion of the line can be evaluated as
follows:

Im := |t|
∫ a+

m

a−
m

wL(rλ(a), sm)da (B3)

= |t|(a+
m − a−

m ) − |t|
∑

i

si

Li
Ai + |t|

∑
i< j

sis j

LiL j
Bi j

+ s1s2s3

L1L2L3
C123, (B4)

where we individually compute the various coordinate prod-
uct integrals:

Ai :=
∫ a+

m

a−
m

(xi + ati )da (B5)

=
[

axi + 1

2
a2ti

]a+
m

a−
m

, (B6)

Bi j :=
∫ a+

m

a−
m

(xi + ati )(x j + at j )da (B7)

=
∫ a+

m

a−
m

[xix j + a(xit j + x jti ) + a2tit j]da (B8)

=
[

axi + 1

2
a2(xit j + x jti ) + 1

3
a3tit j

]a+
m

a−
m

, (B9)

Ci jk :=
∫ a+

m

a−
m

(xi + ati )(x j + at j )(xk + atk )da (B10)

=
∫ a+

m

a−
m

[xix jxk + a(xixkt j + x jxkti + xix jtk )

+ a2(xitit j + xit jtk + x jtitk ) + a3tit jtk]da (B11)

=
[

xix jxk + 1

2
a2(xixkt j + x jxkti + xix jtk )

+ 1

3
a3(xitit j + xit jtk + x jtitk ) + 1

4
a4tit jtk

]a+
m

a−
m

.

(B12)

Finally, this allows us to express the total line integral,
given by

Iλ = |t|
∫ 1

0
wL(rλ(a))da (B13)

=
8∑

m=1

Im. (B14)

The total of the line integral for all segments passing
through �L gives a scalar line density field, while incorpo-
rating the line direction gives the vector density field:

ρ(rD; L) =
∑

q

I
λ

(L)
q

, (B15)

ρ(rD; L) =
∑

q

I
λ

(L)
q

t
λ

(L)
q

|t
λ

(L)
q |

. (B16)

If only a single segment passes through the volume, the scalar
density and the norm of the vector density will be equal. In
general, however, this is not the case, and the polarization
|ρ|/ρ is generally less than unity due to the presence of two
or more straight line segments.
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