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Resonance energies and linewidths of Rydberg excitons in Cu2O quantum wells
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Rydberg excitons are the solid-state analogs of Rydberg atoms and can, e.g., for cuprous oxide, easily reach a
large size in the region of µm for principal quantum numbers up to n = 25. The fabrication of quantum welllike
structures in the crystal leads to quantum confinement effects and opens the possibility to study a crossover from
three-dimensional to two-dimensional excitons. For small widths of the quantum well (QW), there are several
well-separated Rydberg series between various scattering thresholds, leading to the occurrence of electron-hole
resonances with finite lifetimes above the lowest threshold. By application of the stabilization method to the
parametric dependencies of the real-valued eigenvalues of the original three-dimensional Schrödinger equation,
we calculate the resonance energies and linewidths for Rydberg excitons in QWs in regimes where a perturbative
treatment is impossible. The positions and finite linewidths of resonances at energies above the third threshold
are compared with the complex resonance energies obtained within the framework of the complex-coordinate-
rotation technique. The excellent agreement between the results demonstrates the validity of both methods for
intermediate sizes of the QW-like structures, and thus for arbitrary widths.
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I. INTRODUCTION

Excitons are electron-hole bound states in semiconductors
[1]. The exciton states in bulk cuprous oxide (Cu2O) crystals
are featured by relatively large binding energies as well as
by unique radiative characteristics. The Rydberg states of
excitons are, in turn, remarkable due to the large spatial extent
of the wave function and thus high sensitivity to external fields
[2] and surrounding quasiparticles [3]. In cuprous oxide, the
typical size of the Rydberg exciton is in the order of µm for the
principal quantum number of about n = 25 [4–6]. The binding
energies of the Rydberg states are less than 10 meV, though
the tunability of the emitting light wavelengths makes them
convenient for practical applications. This flexibility can be
achieved by applying external fields [7,8] or by fabrication of
low-dimensional structures [9–12]. The latter can significantly
change the energy spectrum of electron-hole pairs: in addition
to features of the band structure, each quantum-confinement
subband produces a proper Rydberg electron-hole series [11].
As a result, due to the Coulomb coupling of the upper sub-
bands to the continuum of lower subbands, the electron-hole
resonant states appear in the spectrum above the electron-hole
scattering threshold.

Samples of cuprous oxide crystals of the size of the order
of µm are already produced, however, to date, their quality
allows one to observe only several lower exciton states [9].
Nevertheless, the technology is permanently developing and
low-dimensional samples of the size of hundreds of nm with
high radiative properties are expected to appear soon [10].
Very recently, the fabrication of thin films with widths of
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about 20–30 nm was reported by Awal et al. [13]. In this sense,
ways to decrease the nonradiative broadening of the excited
electron-hole states are especially important [14].

The simplest and most studied low-dimensional structure
is a quantum well (QW) [15]. The exciton states in such
a semiconductor structure have been actively studied for
many years [16]. For example, there are recent studies of
excitons in GaAs-, CdTe-, and GaN-based heterostructures
[17–19]. However, the electron-hole resonances in such struc-
tures have been studied less intensively, mainly because of
the square-unintegrable nature of the resonance wave function
and resulting additional nonradiative linewidth broadening.
Moreover, the results of earlier theoretical works on the broad-
ening of excitons in GaAs-based QWs due to coupling to
the continuum [20,21] contradict more recent analytical es-
timates [22]. Numerical investigations of electron-impurity
and electron-hole resonant states using the finite-difference
approach combined with the complex-coordinate-rotation
method [23–25] have been done in Refs. [12,26]. For the bulk
Cu2O, there are also only a few recent studies of resonance
linewidth broadenings [27,28]. There is still no systematic
study of the electron-hole resonances in QW-like structures,
neither for the well-known GaAs-based structures nor for the
recently appearing cuprous oxide ones.

For the electron-hole pairs in GaAs-based structures, where
the electron is much lighter than the hole, the problem can be
reduced to a lower-dimensional model of an electron-impurity
in a QW [12]. By contrast, comparable effective masses of the
electrons and holes in cuprous oxide complicate the resonance
calculation [6]. Furthermore, the perturbative solution of
the Schrödinger equation for Rydberg excitons is only pos-
sible for the two limiting models of strong (narrow QW) and
weak confinement (wide QWs, approaching the bulk crystal)
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[29]. However, for the model of intermediate QW widths, a
perturbative treatment is inapplicable and one has to solve the
original three-dimensional equation numerically. The numer-
ically obtained linewidth broadenings as well as reproduced
absorption spectra based on mechanisms of exciton coupling
to the continuum and to the phonon background can test the
applicability of the Fano theory of resonances [30]. Moreover,
the different parities of the subband eigenfunctions lead to a
trivial example of the bound states in the continuum [31–33]
and may further imply an existence of upperlying states with
negligible nonradiative broadening.

In this paper, we calculate and identify the energies and
linewidths of electron-hole resonances in semiconductor het-
erostructures with intermediate QW widths for which the
perturbative treatment is impossible. In our paper, we show
that the resonance parameters of Rydberg excitons in the
continuum background can be readily obtained for arbitrary
widths and relatively high energies. We use a hydrogenlike
two-band model of the electron-hole pair in a QW structure
[15] with the cuprous oxide material parameters [2], thus
simulating the Cu2O thin film sandwiched by vacuum or air.
Note that the hydrogenlike model provides qualitatively good
results to describe the exciton Rydberg series in the bulk up
to small deviations caused by the band structure [4]. Here, we
disregard features of the band structure, image charges [34],
and finite potential in the substrate, as well as other effects
which, for example, have been extensively employed to model
the electron-hole bound states in GaAs-based QWs [11,35].
Despite the above-mentioned assumptions, such a model leads
to the three-dimensional Schrödinger equation [36], which
produces the energy spectrum with quantum-confinement
subbands and many different branches of the continua. Due
to the Coulomb coupling of the upper quantum-confinement
subbands to the continuum of lower ones, multiple electron-
hole resonant states appear above the exciton states, namely,
above the scattering threshold Ee1 + Eh1, where Ee1 (Eh1) is
the lowest energy of the electron (hole) in the QW. We show
that the parity dependence of the eigenfunctions gives rise to
the Rydberg series of bound states in the continuum [33].

To identify resonances above the lowest scattering thresh-
old, we take advantage of the stabilization method [37–39]
and compare the results with data obtained by the complex-
coordinate-rotation technique. The complex-coordinate ro-
tation is a general and well-established method for the
computation of resonances in open quantum systems. The
method has already been used to investigate stationary sys-
tems, e.g., the resonant states of the hydrogen atom in external
fields [40,41], the helium atom [42], bulk and QW exci-
tons [8,26,27], as well as time-dependent scattering problems
[43,44]. All above-cited theoretical works on semiconduc-
tor physics use this method as a reliable tool for obtaining
the resonance energies and linewidth broadenings. Although
this approach is quite precise, it usually complicates the
Hamiltonian by introducing the artificial complex-rotational
parameters, and thus leads to a solution of the non-Hermitian
eigenvalue problem. An alternative technique which allows
one to estimate the resonance parameters without making a
complex rotation is the stabilization method. It has already
been applied in a variety of works [39,45–48]. It solely im-
plies rigid-wall boundary conditions at some distance from

the interaction domain. Taking this distance as a parameter,
the stabilization method is based on the observation of the
parametric dependence of the energies of the discretized con-
tinuum. The avoided crossings of the discretized-continuum
energy levels in the vicinity of the proper resonant energies
allow one to estimate the linewidth broadenings of the reso-
nances.

In our calculations, the B-spline basis is employed to pre-
cisely compute the energy levels of the electron-hole pairs as
well as their crossings and avoided crossings as a function
of the QW width. The B-spline basis representation of the
wave function allows for the fast and accurate solution of
the three-dimensional Hermitian eigenvalue problem. Besides
the high accuracy of the results produced by the high-order
B-spline calculations, the minimal support of the B splines
leads to minimal overlaps and thus to the band structure of the
matrices of the corresponding generalized eigenvalue prob-
lem. Moreover, the obtained parametric dependence of the
energies on the QW width further makes it possible to accu-
rately determine the linewidths of the electron-hole resonant
states by the stabilization method. Comparison of the results
computed by the stabilization method with ones obtained
from the non-Hermitian eigenvalue problem in the framework
of the complex-coordinate-rotation technique shows excellent
agreement. It justifies the validity of both methods for inter-
mediate sizes of QW-like structures, and thus for arbitrary
widths. This also paves the way for more detailed calcu-
lations and facilitates further analysis of the experimental
data [9].

II. THEORY AND METHODS

We now present and discuss the Hamiltonian of the exciton
in a QW, its energy spectrum, the B-spline basis for the effi-
cient numerical solution of the Schrödinger equation, and two
different methods for the computation of resonance energies
and linewidths.

A. Excitons in cuprous oxide QWs

The two-band model for the electron-hole pair in a cuprous
oxide QW is given as

H = Eg − h̄2

2me
�e − h̄2

2mh
�h

− 1

4πε0ε

e2

|re − rh| + Ve(ze) + Vh(zh) , (1)

with

Ve,h(ze,h) =
{

0, if |ze,h| < L/2

∞, if |ze,h| > L/2.
(2)

Here, me = 0.99 m0 and mh = 0.69 m0 are the effective
masses of the electron (e) and the hole (h), respectively,
Eg = 2.17208 eV is the band-gap energy, e is the electron
charge, ε0 is the electric constant, ε = 7.5 is the dielectric
constant, and L is the width of the QW. The infinite potential
in the substrate is an approximation, however, such an infinite-
barrier potential can be a reasonable model for a thin cuprous
oxide film surrounded by vacuum or air [10]. We separate the
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center-of-mass motion in the QW plane and use polar coor-
dinates (ρ, φ) to describe the relative motion. The rotational
symmetry around the z axis implies the conservation of the z
component of the angular momentum with quantum number
m, and we arrive at the three-dimensional equation

H�(ρ, ze, zh ) = E�(ρ, ze, zh ), (3)

with the Hamiltonian

H = Eg − h̄2

2μ

(
∂2

∂ρ2
+ 1

ρ

∂

∂ρ
− m2

ρ2

)
− h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

− 1

4πε0ε

e2√
ρ2 + (ze − zh)2

+ Ve(ze) + Vh(zh) . (4)

Here, μ is the reduced mass and the angular momentum quan-
tum number m = 0,±1,±2, . . . is a good quantum number.
Besides m, there is one additional exact quantum number, i.e.,
the parity πz = πzeπzh = ±1, which is related to the simulta-
neous exchange of ze → −ze and zh → −zh.

B. Energy spectrum

The Hamiltonian (4) defines the energy spectrum of the
electron-hole bound states and resonances in the QW. The
bound states correspond to the square-integrable solutions of
the Schrödinger equation, whereas the resonances are asso-
ciated to the square-unintegrable ones. A resonant state can
be considered as a quasibound state with a finite lifetime due
to an exponential decay, which can be described as �(t ) =
exp(−iEt/h̄)�(0) with a complex energy [49,50]

E = Eres − i
	

2
, (5)

where Eres is the resonance position and 	 > 0 is the
linewidth. It means that the resonance wave function does
not exponentially decrease as ρ → ∞, and thus these states
cannot be determined in terms of the Hermitian quantum
theory [25].

Each disjoint subsystem (the electron or the hole in the
QW) of the Hamiltonian (4) produces a series of quantum-
confinement energies Eei/h j (L) with i, j = 1, . . . ,∞. More-
over, the Coulomb attraction leads to Rydberg energy series
below each value of the sum

Ei, j (L) ≡ Eei(L) + Eh j (L) = h̄2(iπ )2

2meL2
+ h̄2( jπ )2

2mhL2
. (6)

For a particular L, each such value appears to be a scattering
threshold, giving rise to a certain branch of the contin-
uum. In the case of strong confinement, exciton states and
electron-hole resonances with the respective parity are lo-
cated below the thresholds. In this limit, the exciton wave
function is factorized �ni j (ρ, ze, zh) = R2D

n (ρ)ψei(ze)ψh j (zh),
where R2D

n (ρ), n = 1, . . . ,∞ are the 2D Coulomb radial
eigenfunctions and ψei/h j (ze/h) are the quantum-confinement
eigenmodes [11]. The quantum numbers i, j, and the prin-
cipal quantum number n are the good ones. Note that the
Rydberg formula reads En = −ERyd/(n − 1/2)2 in two di-
mensions. For weaker confinement, the wave function is no
longer factorized and the quantum numbers of the states can
only be associated approximately. The resonances with differ-
ent parity can strongly overlap. Below the lowest threshold,

E1,1 = Ee1 + Eh1, there are the bound states. Above this
threshold, the resonant states appear in the continuum back-
ground [11], except for odd parity bound states, which, for
me > mh, appear up to the first odd parity threshold E2,1 =
Ee2 + Eh1. The decay of these odd parity bound states in the
continuum background of the even parity states is forbidden,
i.e., the widths are exactly 	 = 0 [33].

The energies of the states defined by Eq. (4) can be
obtained analytically only in the limiting cases of strong con-
finement or weak confinement, when the Coulomb potential
or the effect of QW barriers can, respectively, be treated as a
small perturbation [29]. For arbitrary QW width L, Eq. (3) can
only be solved numerically [36]. Moreover, the efficient nu-
merical approach allows one to apply the stabilization method
[37–39] or the complex-coordinate-rotation method [23,24] to
go beyond Hermitian physics and precisely estimate not only
the resonance energies but also the linewidths.

C. Computation of the energy spectrum

The Schrödinger equation (3) was already treated nu-
merically using the finite-difference and basis-expansion
approaches [36,51,52]. These methods are appropriate for the
bound-state calculations of lower exciton states. However, for
a precise determination of the Rydberg energies or resonances
associated to upper scattering thresholds, one has to use fine
grids over a broad calculation domain or take many basis func-
tions. Moreover, the integration of the quantum-confinement
basis functions having nonzero support over the whole domain
is usually also quite time-consuming.

To overcome these computational issues and accurately
estimate the resonance linewidths, we use the expansion of
the wave function over a basis of B splines [53]. The B
splines Bk

i (x), i = 1, . . . , n are piecewise polynomials of de-
gree k − 1, which can be generated by recursive formulas
with knots ti [54]. For example, for k = 1 the B splines
are piecewise-constant; for k = 2 they are piecewise-linear
functions. Some B splines with k = 4 and different knots are
illustrated in Fig. 1. Three important properties of B splines
should be mentioned. First, the B-spline of order k on a grid
of equidistant knots approximates an analytical function with
accuracy of about hk , where h is the step size of the grid.
Thus, high-order B splines can give a precise solution even
with a relatively small number of knots. Second, one can
choose the knots nonequidistantly and add ghost knots at the
boundaries in such a way as to have two B splines equal
to 1 in the two boundary points, while all other B splines
vanish in these points (see Fig. 1). Then, for example, zero
boundary conditions can be easily implemented by removing
the first and last B splines from the basis. Third, the B splines
are nonorthogonal functions, and thus Eq. (3) turns into a
generalized eigenvalue problem∑

n

Hmncn = E
∑

n

Omncn , (7)

with Omn the overlap matrix between the basis functions.
However, the B-spline functions have minimal support, i.e.,
each B spline Bk

i (x) = 0 for x /∈ [ti, ti+k], which significantly
reduces the number of integrations to calculate matrix ele-
ments. This leads to the band structure of matrices or to sparse
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FIG. 1. B-spline functions with (a) equidistant and
(b) nonequidistant spacing of knots and additional ghost knots
at the boundaries. When the first and last B splines are removed, the
functions satisfy vanishing boundary conditions.

matrices of the generalized eigenvalue problem (7) for one- or
higher-dimensional problems, respectively.

When applying B splines to the QW problem with the
Hamiltonian (4), it should be noted that the QW potentials
imply zero boundary conditions at ze,h = ±L/2. This can
be achieved by a proper choice of the B-spline basis. The
boundary conditions in the ρ direction are less obvious. The
wave function ψ is finite but not necessarily zero at ρ = 0.
To implement a zero boundary condition at ρ = 0, we use the
substitution ψ = χ/

√
ρ. As a result of the substitution, the

B-spline expansion of χ is employed with the Hamiltonian

H = Eg − h̄2

2μ

(
∂2

∂ρ2
− m2 − 1/4

ρ2

)
− h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

− 1

4πε0ε

e2√
ρ2 + (ze − zh)2

(8)

and the zero boundary conditions at ze,h = ±L/2. Note that
now the QW potentials in Eq. (4) are ignored in Eq. (8). We
artificially introduce an additional zero boundary condition
at a large value ρ = ρmax, thus making a boxlike geometry
in this direction. If the parameter ρmax is sufficiently large,
the spectrum of bound states below the scattering threshold
is well approximated. However, without application of further
methods, we obtain a discretized continuum instead of the true
resonances above the thresholds.

In our calculations, we use the expansion

χ (ze, zh, ρ) ≈
Ñze∑
l=1

Ñze∑
m=1

Ñzh∑
n=1

clmnBk
l+1(ze)Bk

m+1(zh)Bk
n+1(ρ)

(9)

with B splines of order k = 5 and equidistant knots in the
z directions, but nonequidistant knots in the ρ direction, as
similarly illustrated in Fig. 1(b). In Eq. (9), Ñq = Nq + k − 4,
where Nq is the number of physical knots in the q direction.
For all directions, k − 1 ghost knots were inserted at the

boundaries, to be able to define at least k − 1 B splines at
each interval. For the ρ direction, the ith knot between the
ghost knots is calculated via

ρi+k−1 =
(

i − k

Nρ − 1

)3

ρmax . (10)

We used 30 physical knots for the ρ direction and 22 knots
for each of the two z coordinates. The matrix elements
were calculated numerically by application of a 15-point
Gauss-Kronrod formula [55]. To speed up calculations, only
matrix elements that do not vanish due to the finite support
of the B splines are calculated. The generalized eigenvalue
problem (7) with symmetric, sparse, and banded matrices was
solved by LAPACK routines [56].

D. Stabilization method

The stabilization method allows for the calculation of
the complex resonance energies directly from the Hermitian
eigenvalue problem with the Hamiltonian (8). The idea is to
analyze the real-valued spectrum of the Hamiltonian (8) as
a function of the box size parameter ρmax. This yields the
so-called stabilization diagram, i.e., a graph containing curves
Ej (ρmax) with j counting the (real-valued) eigenvalues. For
sufficiently large values of ρmax, the energies belonging to
resonant states stabilize, i.e., they are almost independent of
ρmax with the exception of regions close to avoided crossings
with energies of the discretized continuum in the box. The
density of states �(E ) is then extracted from the slopes of the
curves in the stabilization diagram as [38,39]

�(E ) = 1

�ρmax

∑
j

∣∣∣∣dEj (ρ ′
max)

dρ ′
max

∣∣∣∣
−1

Ej (ρ ′
max )=E

. (11)

In open systems, the density of states is typically given as a
superposition of Lorentzians and, therefore, in the final step,
the energy positions Eres and widths 	 of isolated resonances
can be extracted from the density profile (11) by fitting

�(E ) 	 π−1 	/2

(Eres − E )2 + 	2/4
. (12)

E. Complex-coordinate-rotation method

The basic idea of the complex-coordinate-rotation method
is to do the transformation r → r eiθ with θ > 0, which yields
a non-Hermitian Hamiltonian. The energies of the bound
states are invariant under this transformation, while the en-
ergies of the continuum states are rotated into the lower half
of the complex plane by the angle 2θ . Most interesting for
our application is the impact on resonant states. The complex
eigenvalues, corresponding to the resonant states, are located
in the sector of the angle 2θ between the lowest rotated branch
of the continuum and the real axis. They are independent or
only weakly dependent of the angle of the rotation if the angle
is large enough to contain the unknown eigenvalue.

For our problem, the complex-coordinate rotation is re-
stricted to the ρ coordinate because the system is open only
in this direction. The boundary conditions in the z directions
must not be changed by a complex rotation. The substitution
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FIG. 2. Spectrum of the Hamiltonian (8) with respect to (a) the
threshold E1,1(L) and (b) the threshold E2,2(L) as a function of the
QW width. Note that the energy scales differ from the energy scale
in Fig. 4, where absolute values are given. The angular quantum
number is m = 1, and the box size parameter is ρmax = 500 nm. The
five resonant states at L = 8 nm, which are investigated with the
stabilization method and the complex-coordinate-rotation method
are highlighted in (b) by red markers.

ρ → ρeiθ transforms the Hamiltonian (8) to

H = Eg − e−2iθ h̄2

2μ

(
∂2

∂ρ2
− m2 − 1/4

ρ2

)
− h̄2

2me

∂2

∂z2
e

− h̄2

2mh

∂2

∂z2
h

− 1

4πε0ε

e2√
e2iθρ2 + (ze − zh)2

. (13)

This leads to the generalized eigenvalue problem (7) with non-
Hermitian, complex symmetric matrices, which is efficiently
solved by using the ARPACK package [57]. Note that the
angle θ must be chosen appropriately to obtain convergence
of the results [50].

III. RESULTS AND DISCUSSION

In Fig. 2(a), we present the real-valued energy eigenval-
ues for excitons in cuprous oxide QWs described by the
Hermitian Hamiltonian (8) as a function of the width L of

the QW. The computations have been performed for angular
quantum number m = 1 and for a fixed value of the box size
parameter ρmax = 500 nm. The first four thresholds Ei, j (L) =
Eei(L) + Eh j (L) [see Eq. (6)] are marked as colored lines. For
a better visualization of the bound states, the energy of the
first threshold E1,1 has been subtracted. As explained above,
only the bound states, i.e., the even parity states below the
threshold E1,1 and the odd parity states below the threshold
E2,1 are converged states, which do not depend on the box
size ρmax. The energy levels of the bound states exhibit the
crossover from the model of the narrow QW (2D Coulomb
potential) at low values of L to the model of the bulk crystal
(3D Coulomb potential) at large L [11]. When the QW width
is increased, the thresholds gradually descend to the lowest
one. As a result, the states associated to upper thresholds get
down below the lowest threshold and the number of bound
states increases. In contrast to the limiting cases, for inter-
mediate QW widths the principal quantum number n and the
quantum-confinement ones i and j lose their status as good
quantum numbers. However, it remains possible to assign ap-
proximate quantum numbers to most of the states. A detailed
discussion of the bound states is given in Ref. [29]. All other
states above the respective thresholds are, in principle, the un-
physical discretized continuum states. The continuum region
becomes more pronounced in Fig. 2(b), where we show the
same states as in (a) but with respect to the threshold E2,2. We
highlight five of the discretized continuum states with approx-
imate principal quantum numbers n = 3 to 6 (belonging to
different thresholds) at QW width L = 8 nm by red markers.
Such a QW width corresponds to the crossover region of QW
widths, when none of the limiting models is applicable. On
the one hand, this region is interesting due to the fact that
Rydberg excitons with principal quantum numbers n ∼ 3 to 6
are significantly disturbed compared to bulk excitons. On the
other hand, the Rydberg series related to the different channels
do not overlap too strongly to complicate the analysis of
spectra and the discussion. A recent study demonstrated the
feasibility of fabricating nanostructures composed of Cu2O
at this scale [13]. Since these states are in the continuum,
the related resonances have nonzero linewidths. Note from
Fig. 2(b) that there is an additional discretized continuum
state a little bit below the second marked resonance state at
L = 8 nm. It originates purely from the rigid-wall boundary
conditions, therefore we disregard this unphysical eigenvalue.

Although Fig. 2 provides a massive amount of information
on the dependence of Rydberg energies on the QW width,
it is not sufficient to determine the resonance linewidths. To
this end, we employed the two above-mentioned methods.
As a first technique, we apply the stabilization method to
obtain the energies and linewidths of these resonances from
the real-valued numerical data of energy levels in the con-
tinuum region. To this aim, the stabilization diagram shown
in Fig. 3(a) has been calculated in the region from ρmax =
300 nm to ρmax = 700 nm. Clearly visible is the stabilization
of several resonant states as segments of approximately ver-
tical lines separated by avoided crossings. For five selected
resonant states, lower and upper segments, labeled a and b
in what follows, are highlighted by solid and dashed colored
lines, respectively. If these resonant states were bound states,
they would not depend on the box-size parameter ρmax and
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FIG. 3. Application of the stabilization method for the QW width
L = 8 nm and m = 1 for the resonances highlighted in Fig. 2(b).
Note that here we show absolute resonance energies, which differ
from the values in Fig. 2(b), where the threshold energy E2,2(L)
has been subtracted. (a) Stabilization diagram in the region from
ρmax = 300 nm to ρmax = 700 nm. Segments belonging to the studied
resonant states are highlighted by the colored solid and dashed lines.
They refer to states 1–5 in Fig. 2(b). (b) Logarithm of the density of
states as a function of energy E . Colored peaks marked as a and b are
obtained from the solid and dashed segments in (a), respectively. For
a better visualization, �(E ) is shifted upwards by a small value �0,
so log(�) is bounded from below by a constant value. The crosses
and dots represent �(E ) calculated by Eq. (11). The dashed lines
represent the fits to the Lorentzian shape given in Eq. (12).

thus appear, without undergoing any avoided crossings, as
exactly vertical lines in the stabilization diagram. The devi-
ations from exact vertical lines and, in particular, the avoided
crossings with some of the ρmax-dependent continuum states
indicate the coupling to the continuum, i.e., the stabilized
states are resonances with finite lifetimes. Their slopes and
avoided crossings allow for the computation of their line
shapes via Eq. (11). The density of states resulting from the
application of Eq. (11) to the highlighted segments in Fig. 3(a)
is presented in Fig. 3(b) and exhibits peaks with various
widths and heights at the resonance positions. These peaks are
fitted by Eq. (12) to a Lorentzian shape to obtain the resonance
positions Eres and linewidths 	. The corresponding values
obtained by the stabilization method are given in columns 5

TABLE I. Complex resonance energies (in meV) of the five
selected states with approximate principal quantum numbers n = 3
to 6, which refer to the thresholds E2,2 and E3,1 obtained with the sta-
bilization method and the complex-coordinate-rotation method. The
assigned approximate quantum numbers of the QW eigenstates and
the principal quantum numbers n are listed in the first three columns.
The linewidths of the resonances are given as 	 = −2 Im E . For
the analyzed states, the stabilization method was applied to two
different segments highlighted by solid and dashed colored curves
in Fig. 3 (see text), resulting in the values denoted by indices a and
b, respectively.

Stabilization method Complex rotation

i j n segment Re E Im E Re E Im E

2 2 3 1a 45.6577 −0.0815 45.6607 −0.0798
1b 45.6547 −0.0812

2 2 4 2a 49.9181 −0.0242 49.9189 −0.0239
2b 49.9164 −0.0229

3 1 3 3a 51.5645 −0.0670 51.5665 −0.0691
3b 51.5613 −0.0705

2 2 5 4a 53.4736 −0.0060 53.4738 −0.0060
4b 53.4738 −0.0062

2 2 6 5a 54.6914 −0.0020 54.6915 −0.0020
5b 54.6914 −0.0019

and 6 of Table I. Note that the density of states as well as
Lorentzian fits labeled a and b are obtained, respectively, from
the lower and upper series of highlighted segments in the sta-
bilization diagram [Fig. 3(a)]. Both fits for a given resonance
and, as a result, the corresponding complex energies in Table I
are nearly identical. This indicates that the sum in Eq. (11) is
well approximated by the first terms.

We now apply a second technique and compare the
data obtained by the stabilization method with the results
of the complex-coordinate-rotation method, i.e., with the
eigenvalues of the non-Hermitian Hamiltonian (13). In our
calculations, the angle of the coordinate rotation is θ = 0.1.
We note that the results presented in Fig. 4 and Table I are
fully converged to numerical accuracy for rotation angles in
the region θ ∼ 0.1–0.2. The resonance positions in the com-
plex energy plane for the QW width L = 8 nm and the angular
momentum quantum number m = 1 are shown in Fig. 4. The
Rydberg bound states are located on the real axis with Im E =
0. The scattering thresholds Ei, j given in Eq. (6) are marked
by colored vertical lines. Clearly visible are the accumulation
of even parity bound states with πz = +1 below the first scat-
tering threshold E1,1, the accumulation of odd parity bound
states with πz = −1 below the second (odd parity) scattering
threshold E2,1, and the discretized continuum states related to
the various scattering thresholds, which are rotated into the
lower half of the complex plane by the angle 2θ . Although
the Rydberg series of the odd parity bound states is in the
continuum background of the even parity states, the states of
different parities are uncoupled. As a result, the calculated
Im E of these odd parity bound states are zero to numerical
precision. The remaining states are the resonance states with
finite lifetimes, i.e., Im E < 0; they are denoted by colored
markers. The five selected resonances, which have already
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FIG. 4. Eigenvalues of the complex-coordinate-rotated
Hamiltonian (13) for the QW width L = 8 nm and the angular
momentum quantum number m = 1. Note that the resonance
positions are shifted compared to Fig. 2(b), since no threshold
energy has been subtracted. The first five threshold energies Ei, j are
shown as colored lines. The five selected resonances, which have
been analyzed by application of the stabilization method, are marked
by red markers, while all other resonances are represented by blue
dots. The even parity resonance below the threshold E2,1 is marked
by an arrow.

been studied by application of the stabilization method, are
marked by red markers. Their resonance energies are listed
in the two last columns of Table I. One can see excellent
agreement between the results of the stabilization method and
the complex-coordinate-rotation method.

When the QW width is small, the quantum-confinement
thresholds are well separated. When the QW width is in-
creased, the thresholds gradually descent to the lowest one.
As a result, the resonances of the current threshold get down
below the adjacent lower thresholds. For QW width L = 8 nm,
such a penetration is shown by a small number of resonances,
that simplifies the current analysis. For example, this can
clearly be seen in Fig. 4 by the even parity resonance with the
distinct complex eigenvalue E = (27.8840 − i0.1107) meV
marked by the arrow, which is below the E2,1 scattering
threshold.

IV. CONCLUSIONS

In QWs, multiple Rydberg series of electron-hole reso-
nances appear above the lowest scattering threshold due to
the Coulomb coupling of the upper quantum-confinement
subbands to the continuum of lower ones. These Rydberg
series are well separated in the case of strong confine-
ment, therefore the approximate perturbative treatment of the

scattering problem is possible [22]. For arbitrary QW widths,
in particular, for intermediate thicknesses, a precise determi-
nation of the resonance parameters can only be done using a
numerical solution. In our paper, we identified the Rydberg
series of electron-hole resonances in cuprous oxide QW and
accurately calculated their energies and linewidths for the
thickness, for which the resonances of different thresholds do
not significantly overlap. To this end, the efficient numerical
method based on the expansion of the wave function of the
original three-dimensional Schrödinger equation over a ba-
sis of B splines was developed, which made it possible to
study the dependence of the numerical solution on the size
of the calculation domain in the broad range of the parameter
variance. The lifetimes of the resonant states were calcu-
lated using the stabilization method, allowing us to derive
the density of states and the resonant parameters from the
solution of the real-valued eigenvalue problem. The obtained
numerical results are compared with the data calculated by
the complex-coordinate-rotation method. The agreement of
the results allows us to demonstrate the applicability of both
methods to study electron-hole resonances in QWs of arbi-
trary widths. In particular, we obtained that, independent of
the QW thickness, the two lowest Rydberg series of states,
below the second threshold, are bound states. The first series
is associated to the even parity bound states and the second
one is associated to odd parity bound states in the even parity
continuum. As a result, for strong confinement, the nonva-
nishing broadening is proper to the upper-lying resonance
states. However, with the crossover to weak confinement, the
partial overlap of the Rydberg series is increased, resonance
energies decrease, and analysis of the results becomes more
complicated.

The presented methods to study the selected electron-hole
resonances open the opportunity to investigate other features
of resonant states, e.g., the threshold effects of resonances
by varying the QW width. Moreover, taking into account the
full valence band structure of cuprous oxide and using the
eigenstates for the simulation of absorption spectra will allow
for detailed comparisons of our theoretical results with future
experimental measurements.
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