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Contact effects on electron transport along disordered borophene nanoribbons with line defects
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Line defects (LDs) in borophenes, which occur at the interface between two different boron sheets, have gar-
nered considerable interest. Motivated by recent advancements in the synthesis of diverse borophene polymorphs
and heterojunctions, we investigate the contact effects on electron transport through two-terminal disordered
borophene nanoribbons (BNRs) with a random distribution of LDs. The source and drain are chosen from
the following four semi-infinite electrodes: ν1/5 BNR, ν1/6 BNR, ν1/3 BNR, and square lattice (SL). Despite
the substantial reduction in the overall conductance of disordered BNRs, several resonant peaks can appear
in the transmission spectra, regardless of inhomogeneous model parameters, nanoribbon length and width,
and contact configuration. The amplitude of all the resonant peaks is exactly the conductance quantum G0

when both electrodes are taken as the ν1/5 or ν1/6 BNR. In contrast, the peak amplitude will be less than G0

when either electrode is taken as the ν1/3 BNR or SL. Notably, some resonant peaks completely vanish for the
contact configuration of the ν1/3 BNR, a phenomenon termed as the resonant peak filtering effect, which can be
understood from the structure-property relationships associated with the local current distribution. Additionally,
the distribution of conductance at off-resonant energies can be well fitted by the Anderson localization theory.
And the evolution of the resonant peaks with the nanoribbon width is also revealed. These findings contribute
to the understanding of structure-property relationships, which is valuable for designing borophene-based
nanodevices.
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I. INTRODUCTION

Following the successful synthesis of graphene in 2004
[1], research on two-dimensional (2D) materials has entered
a new era [2,3]. Owing to their unique electronic properties,
such as high carrier mobility [4,5] and quantum confinement
effects [6–8], 2D materials offer distinct advantages over
three-dimensional counterparts. Over the past two decades,
numerous 2D materials have been successfully synthesized,
including silicene [9,10], germanene [11,12], black phospho-
rene [13], and borophene [14,15]. With the development of
nanotechnology [16–19], these 2D materials find broad ap-
plications in the realm of nanoscale field-effect transistors
[20–22], quantum computation [23], optoelectronics [24], and
thermoelectric nanodevices [25].

The geometric structures of 2D materials is a crucial de-
terminant that significantly impacts their physical properties.
Borophene, in particular, stands out among numerous 2D
materials due to its structural polymorphism arising from
electron deficiency of boron [26–33]. It has been predicted
that a variety of stable borophene phases could be prepared on
different metal substrates by employing the cluster expansion
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method for extrapolating boron clusters into 2D configuration
[34,35], indicating that the borophene structures are sensitive
to metal substrates. Since its initial experimental synthesis by
two independent research groups [14,15], many borophene
polymorphs have been successfully achieved [36–43], provid-
ing an excellent platform for enhancing our understanding of
the structural-property relationships. These various borophene
phases can be characterized as triangular lattices comprising
boron atoms with unique patterns created by hollow hexagon
vacancies [44], and various borophene phases are typically
named according to their vacancy concentration, ν [26]. For
example, the β12, χ3, and honeycomb borophene sheets are
named as ν1/6, ν1/5, and ν1/3, respectively [15,39]. In addi-
tion, borophene nanoribbons (BNRs) with lengths extending
to hundreds of nanometers have recently been synthesized
[45,46], suggesting that the ν1/6 and ν1/5 BNRs can be viewed
as composed of (2, 2) and (2, 3) boron chains, respectively.
Here, the indices “an” and “aw” in (an, aw) represent the
number of atoms in the narrow and wide rows of a single
boron chain, respectively.

The electronic properties of borophene polymorphs have
undergone extensive study, resulting in numerous remark-
able advancements [47–55]. For instance, by employing
high-resolution angle-resolved photoemission combined with
first-principles calculations, Feng et al. substantiated the exis-
tence of Dirac fermions in ν1/6 borophene [47]. Subsequently,
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FIG. 1. (a) The schematic diagram depicts a two-terminal disordered BNR coupled to the source and drain at the left and right sides,
represented as yellow rectangles. The CSR represents a disordered BNR with LDs assembled from a random arrangement of (2, 2) and (2, 3)
chains. In this arrangement, a (2, 2) j chain is randomly followed by either a (2, 2) j̄ or (2, 3) j̄ chain, and a (2, 3) j chain is randomly followed by
either a (2, 2) j or (2, 3) j chain. Here, j̄ is equal to 1 (2) when j is equal to 2 (1). The length of disordered BNR in (a) is L = 13, representing
the number of chains in the CSR, and the width, defined as the number of rows, is N = 9. For different contact configurations, the source
and drain can be selected from four semi-infinite electrodes: (b) ν1/5 BNR, (c) ν1/6 BNR, (d) ν1/3 BNR, and (e) SL. (f) The unit cell of ν1/6

borophene, which contains five boron atoms called as a, b, c, d, and e. (g) The unit cell of ν1/5 one, which includes eight atoms labeled by u, v,
w, and x.

other intriguing band properties, including triplet fermions
[51] and a Dirac nodal line [52], are further theoretically
demonstrated in the ν1/6 borophene, suggesting the potential
of monolayer boron for application in high-speed electron
transport devices. Particularly, Norouzi et al. studied the
charge and spin transport properties of the ν1/6 BNR under the
influence of an exchange magnetic field, finding that the ν1/6

BNR could serve as an efficient spin filter [54]. Recently, sev-
eral mixed-phase borophenes [56–62] and BNRs [46] with an
intriguing line defect (LD) occurring at the interface between
two different single phase borophenes, such as ν1/6 and ν1/5,
are widely observed in various experiments. Theoretical in-
vestigations further suggest that the (2, 2) and (2, 3) chains can
serve as fundamental building blocks for constructing novel
borophene phases with LDs [63] and reveal a series of exciting
results, such as resonant tunneling [64], self-similarity [65],
and negative differential resistance [66].

The phase intermixing of borophene naturally leads to the
formation of borophene heterojunctions. New physical phe-
nomena may arise by combining two or more 2D materials
with different properties into 2D heterostructures [67–70].
Recently, several borophene heterostructures have been ex-
perimentally synthesized [71–74], providing a promising
opportunity to explore the rich electron transport proper-
ties of borophenes by considering the contact effects. The
contact effects play a crucial role in significantly influ-
encing the electron transport properties of 2D materials

[75–88]. For example, Stegmann et al. studied the elec-
tron transport in graphene nanoribbons using microwave
emulation experiments, finding that transport gaps could be
tuned by varying the contact geometry [83]. Čerņevičs et al.
investigated heterojunctions composed of graphene quantum
dots embedded in metallic armchair graphene nanoribbon
leads, revealing that the transport gap could be opened by
adjusting both the width of the lead and the strength of
the quantum dot-to-lead coupling [86]. However, borophene
heterostructures and the impact of contacts on the electron
transport properties of BNRs remain inadequately explored.

Building upon the successful experimental synthesis of
several borophene heterostructures [71–74], we theoretically
study the contact effects on the electron transport in two-
terminal disordered BNRs with a random distribution of LDs
by considering inhomogeneous model parameters, as illus-
trated in Fig. 1. Here, the source and the drain are chosen from
the following four semi-infinite electrodes: the ν1/6 BNR, the
ν1/5 BNR, the ν1/3 BNR, and the square lattice (SL), as shown
in Figs. 1(b)–1(e). We then discuss all these possible con-
tact configurations. Notice that the ν1/6 and ν1/5 borophenes
are prepared on Ag(111) substrate, whereas the ν1/3 one of
honeycomb, graphene-like structure has been successfully
synthesized on Al(111) substrate in experiments [39]. The
contact between the ν1/6 (ν1/5) borophene and the ν1/3 one
may then be realized by two alternative ways. First, after
the isolation from Ag(111) substrate by using adhesive pads
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[35], the ν1/6 (ν1/5) borophene will be placed nearby the ν1/3

borophene grown on Al(111) substrate. These two different
borophenes can then be stitched together by utilizing molec-
ular beam epitaxy [14,15] or cluster expansion methods [34].
Second, after the independent preparation of the ν1/6 (ν1/5)
borophene on Ag(111) substrate and the ν1/3 one on Al(111)
substrate, these two substrates will be combined laterally and
separated by an ultrathin insulating layer so that the two
different borophenes cannot interplay. By injecting sufficient
boron atoms, the ν1/6 (ν1/5) and ν1/3 borophenes could then be
coupled and the contact appears. In contrast, the SL electrode
is different from all the ν1/6, ν1/5, and ν1/3 BNRs, and it does
not correspond to any actual borophene structure. Notice that
many transport experiments are performed by taking normal
metals as the electrodes, which are coupled directly to the
two ends of measured materials of, e.g., graphene [2,3]. In
this situation, the SL can be used to simulate these normal-
metal electrodes, because the SL exhibits metallic behavior
as normal metals. For instance, in previous transport works
where graphene is coupled to normal metals, the SL elec-
trode has been widely employed to describe normal metals
instead of the contact between normal metals and graphene
[76,77,82,84,89,90]. The SL electrode can also be described
by the tight-binding model shown in Eq. (1).

Our results indicate that despite the substantial reduction
in the overall conductance of disordered BNRs, several res-
onant peaks still appear in the transmission spectra, even
in the presence of inhomogeneous tight-binding parameters.
More importantly, the profile and amplitude of these resonant
peaks at different electron energies can be declined to vary-
ing degrees for specific contact configurations, providing an
essential aspect of tunability to this system. The amplitude
of all the resonant peaks is exactly equal to the conductance
quantum G0, whereas the profile of certain specific resonant
peaks undergoes unique changes when utilizing the ν1/5 or
ν1/6 BNR as the electrodes. However, the amplitude of the
resonant peaks exhibits varying degrees of reduction when
the ν1/3 BNR or the SL is taken as the electrodes, which
contradicts the common belief that the amplitude of resonant
peaks should strictly align with the conductance quantum G0.
Particularly, the resonant peaks for the contact configuration
of the ν1/3 BNR can be categorized into three types: weakly
suppressed, partially suppressed, and completely suppressed.
Through the analysis of the spatial distributions of bond cur-
rents in the system, we have provided explanations for the
formation of these three types of resonant peaks. Moreover,
the number of resonant peaks also increases with the width
of the nanoribbons. We show that identical resonant peaks in
disordered BNRs can evolve with varying widths, regardless
of the contact configurations.

The remaining sections of the paper are organized as
follows. Section II introduces the model Hamiltonian and
Green’s function utilized for calculating the conductance and
the local bond currents distribution in the two-terminal disor-
dered BNRs. Section III presents the results and discussion.
Specifically, Sec. III A examines the contact effects on the
electron transport in disordered BNRs, Sec. III B investigates
the size-dependent electron transport in disordered BNRs,
Sec. III C studies the conductance fluctuations and the local-
ization in disordered BNRs, Sec. III D discusses the physical

origin of the different resonant peaks caused by the ν1/3 BNR
electrode, and Sec. III E explores the evolution of identical
resonant peaks in disordered BNRs with different widths.
Finally, the findings are summarized in Sec. IV.

II. MODEL AND METHOD

The Hamiltonian that describes the electron transport in
two-terminal disordered BNRs can be expressed as follows
[47,48]:

H =
∑

i

εia
†
i ai −

∑
〈i j〉

ti ja
†
i a j . (1)

Here, a†
i (ai) represents the creation (annihilation) operator at

site i. The term εi signifies the on-site energy at site i, while ti j

denotes the nearest-neighbor hopping integral between sites i
and j.

The two-terminal disordered BNRs can be separated into
three subsystems, i.e., the source electrode (l < 1), the central
scattering region (CSR) (1 � l � L), and the drain electrode
(l > L), as shown in Fig. 1(a). Here, l represents the chain
index, and L, defined as the number of chains in the CSR,
denotes the length of disordered BNRs. Thus the matrix form
of the Hamiltonian described by Eq. (1) reads

H =
⎛
⎝HS hSc 0

h†
Sc Hc hcD

0 h†
cD HD

⎞
⎠. (2)

Here, Hc is the Hamiltonian of the CSR and can be expressed
as follows:

Hc =

⎛
⎜⎜⎜⎝

h1,1 h1,2 0

h†
1,2 h2,2

. . .

. . .
. . . hL−1,L

0 h†
L−1,L hL,L

⎞
⎟⎟⎟⎠, (3)

HS (HD) is the Hamiltonian of the source and drain, and hSc

(hcD) represents the coupling Hamiltonian between the source
(drain) and the CSR. Furthermore, hl,l is the sub-Hamiltonian
of the lth chain, and hl−1,l is the coupling Hamiltonian be-
tween the (l − 1)th chain and the lth chain.

By employing the Landauer-Büttiker formula together with
the Green’s function method, the conductance of the two-
terminal disordered BNRs is written as

G = 2e2

h
Tr

(
�SGr

c�DGa
c

)
. (4)

Here, �S/D = i(�r
S/D − �a

S/D) is the linewidth function.
Gr

c(E ) = [Ga
c (E )]† is the exact retarded Green’s functions of

this system and reads

Gr
c(E ) = (

EI − Hc − �r
S − �r

D

)−1
, (5)

with E the electron energy and �r
S/D the retarded self-energy

owing to the coupling to the source and drain, which is
written as

�r
S = h†

Scgr
ShSc, (6a)

�r
D = h†

Dcgr
DhDc, (6b)
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where gr
S/D is the retarded surface Green’s function of the

semi-infinite source/drain electrode, which can be calculated
by using the iterative scheme [91,92]. To circumvent the direct
calculation of conductance from Eq. (4), we employ the recur-
sive Green’s function method [93], where the conductance in
Eq. (4) can be rewritten as

G = 2e2

h
Tr

[
(�S)1,1

(
Gr

c

)
1,L

(�D)L,L
(
Ga

c

)
L,1

]
, (7)

where (Gr
c)1,L is the submatrix of Gr

c [93]. Furthermore, the
bond currents flowing between the jth site of the lth chain
and the j′th site of the l ′th chain are as follows:

I(l, j)→(l ′, j′ ) = −2e

h

∫
dE [hl,l ′ ( j, j′)(G<

c )l ′,l ( j′, j)

− hl ′,l ( j′, j)(G<
c )l,l ′ ( j, j′)], (8)

where (G<
c )l,l ′ is the submatrix of exact lesser Green’s func-

tion G<
c .

To derive the submatrices of Gr
c and G<

c , we employ a
recurrence formula that utilizes the Green’s function obtained
from both left-to-right and right-to-left sweeps. In accordance
with the Dyson equation, the retarded Green’s function at the
first chain, obtained from the left-to-right sweep, is given by

(
Gr

c

)L→R

1,1 = [
EI − h1,1 − (

�r
S

)
1,1

]−1
. (9)

Here, the superscripts L → R and R → L signify the left-to-
right and right-to-left sweeps, respectively. Then, for the lth
(l ∈ [2, L − 1]) chain(

Gr
c

)L→R

l,l
= [

EI − hl,l − h†
l−1,l

(
Gr

c

)L→R

l−1,l−1hl−1,l
]−1

, (10a)

(
Gr

c

)L→R

1,l
= (

Gr
c

)L→R

1,l−1hl−1,l
(
Gr

c

)L→R

l,l
. (10b)

According to the fluctuation-dissipation relations, the initial
value lesser Green’s function reads

(G<
c )L→R

0,0 = g<
S = − fS

(
gr

S − ga
S

)
, (11)

where fS and fD denote the Fermi distributions in the source
and drain electrodes, respectively. Utilizing the aforemen-
tioned equations, the lesser Green’s function for each value
of l obtained from a left-to-right sweep can be further derived
as follows:

(G<
c )L→R

l,l = (
Gr

c

)L→R

l,l (�<)L→R
l,l

(
Ga

c

)L→R

l,l . (12)

Here, (�<)L→R
l,l represents the self-energy arising from the

coupling of the lth chain to all other chains on its left and
reads

(�<)L→R
l,l = h†

l−1,l (G
<
c )L→R

l−1,l−1hl−1,l . (13)

For the right-to-left sweep, similarly we have
(
Gr

c

)R→L

L,L = [
EI − hL,L − (

�r
D

)
L,L

]−1
. (14)

Then, the submatrices (Gr
c)R→L

l,l can be calculated from the
recursive equations:
(
Gr

c

)R→L

l,l = [
EI − hl,l − hl,l+1

(
Gr

c

)R→L

l+1,l+1h†
l,l+1

]−1
. (15)

Likely, the initial value of lesser Green’s function in the right-
to-left sweep reads

(G<
c )R→L

L+1,L+1 = g<
D = − fD

(
gr

D − ga
D

)
. (16)

The lesser Green’s function for the lth chain obtained from
right-to-left sweep reads

(G<
c )R→L

l,l = (
Gr

c

)R→L

l,l (�<)R→L
l,l

(
Ga

c

)R→L

l,l . (17)

Here, (�<)R→L
l,l represents the self-energy arising from the

coupling of the lth chain to all other chains on its right and
reads

(�<)R→L
l,l = hl,l+1(G<

c )R→L
l+1,l+1h†

l,l+1. (18)

Combining the Green’s functions obtained from two sweeps,
the exact retarded Green’s functions for the lth chain are given
by

(
Gr

c

)
l,l = [

EI − hl,l − h†
l−1,l

(
Gr

c

)L→R

l−1,l−1hl−1,l

−hl,l+1
(
Gr

c

)R→L

l+1,l+1h†
l,l+1

]−1
. (19)

Specifically, the exact retarded Green’s function of the Lth
(1st) chain can be directly determined by employing a left-
to-right (or right-to-left) sweep, given that the self-energy of
the source and drain electrodes is already known(

Gr
c

)
L,L =[

EI−hL,L −h†
L−1,L

(
Gr

c

)L→R

L−1,L−1hL−1,L −(
�r

D

)
L,L

]−1
,

(20a)

(
Gr

c

)
1,1 = [

EI − h1,1 − h1,2
(
Gr

c

)R→L

2,2 h†
1,2 − (

�r
S

)
1,1

]−1
.

(20b)

Then, we have
(
Gr

c

)
1,L = (

Gr
c

)L→R

1,L−1hL−1,L
(
Gr

c

)
L,L, (21)

and the conductance in Eq. (7) can be directly obtained from
left-to-right sweep. The exact lesser Green’s function of the
lth chain reads

(G<
c )l,l = (

Gr
c

)
l,l

[
(�<)L→R

l,l + (�<)R→L
l,l

](
Ga

c

)
l,l . (22)

Finally, we obtain the exact inter-chain lesser Green’s func-
tions by applying the Dyson-Langreth equations [94]:

(G<
c )l−1,l = (

Gr
c

)L→R

l−1,l−1hl−1,l (G<
c )l,l

+ (G<
c )L→R

l−1,l−1hl−1,l
(
Ga

c

)
l,l , (23a)

(G<
c )l,l−1 = (

Gr
c

)
l,l h

†
l−1,l (G

<
c )L→R

l−1,l−1

+ (G<
c )l,lh

†
l−1,l

(
Ga

c

)L→R

l−1,l−1. (23b)

Substituting Eqs. (22), (23a), and (23b) into Eq. (8) yields the
current density distribution of the system.

III. RESULTS AND DISCUSSION

For the disordered BNRs in the CSR, we consider the
length of L = 4000 with the ratio of the (2, 2) chain to the
(2, 3) one setting to 1:1. According to the experiments [15],
the width of BNRs is estimated to be 0.15N nm and it is
about 4.35 nm for N = 29. The conductance is averaged over
2000 disordered samples, unless stated otherwise. We sys-
tematically investigate all the possible contact configurations,
representing them as [source electrode, drain electrode]. For
instance, [ν1/5, ν1/6] denotes the contact configuration where
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TABLE I. The on-site energy εi and the hopping integral ti j

dependent on the number of adjacent atoms ξi [47,48].

ξi εi ti j (ξ j = 4) ti j (ξ j = 5) ti j (ξ j = 6)

4 −0.098t 1.06t 1.02t 0.895t
5 0.029t 1.02t 0.955t 0.92t
6 0.4225t 0.895t 0.92t

the source and drain electrodes are the ν1/5 and ν1/6 BNRs,
respectively. We emphasize that the exchange of the source
and drain electrodes does not alter the calculated results due
to the time-reversal symmetry.

The inhomogeneous tight-binding parameters with inver-
sion symmetry for the ν1/5 and ν1/6 BNRs are derived from
first-principles calculations, and their values are determined
by the number of adjacent atoms [47,48]. Here, we define ξi

as the number of adjacent atoms at site i. Notably, the on-site
energy εi depends on ξi, while the hopping integral ti j depends
on both ξi and ξ j , as detailed in Table I. As illustrated in
Figs. 1(f) and 1(g), the value of ξi is 4 for atoms labeled with
the letters a, e, u, and x, 5 for atoms labeled with the letters
b, d, v, and w, and 6 for atom labeled with the letter c. The
on-site energy and the hopping integral in the ν1/3 BNR and
the SL electrode are set to εi = 0 and ti j = t , as each atom has
an equal number of neighbors. The CSR and the ν1/3 BNR or
the SL electrode hopping integrals are denoted as t without
loss of generality.

A. Contact effects on the electron transport in disordered BNRs

To understand the distinctions among these electrodes, we
initially study the electron transport properties of various peri-
odic BNRs. Figure 2(a) shows the conductance G as a function
of energy E for periodic ν1/5 BNR, ν1/6 BNR, and ν1/3 BNR,
respectively, with size N = 29 and L = 4000. The transmis-
sion spectra of these periodic BNRs share some common
characteristics. First, all these periodic BNRs exhibit metal-
lic behavior, in agreement with experimental observations
[15,39]. Second, the transmission spectra of these periodic
BNRs are characterized by numerous quantized conductance
plateaus with integer multiples of G0 = 2e2/h. It is worth
noting that the positions of these conductance plateaus for
the ν1/5 and ν1/6 BNRs with inhomogeneous parameters are
shifted as compared with those of homogeneous parameters
[64]. Meanwhile, noticeable disparities in the transmission
spectra are apparent. In case of the ν1/3 BNR, the G − E curve
exhibits symmetry with respect to the line E = 0, attributed
to the preservation of the electron-hole symmetry, consis-
tent with graphene [2]. As the electron energy deviates from
E = 0, the conductance plateaus increase monotonously [see
the blue-solid line in Fig. 2(a)]. For the ν1/5 and ν1/6 BNRs,
their G − E curves exhibit asymmetry with respect to the line
E = 0 [see the black-solid and red-solid lines in Fig. 2(a)],
owing to the breaking of the electron-hole symmetry. The
conductance plateaus of the ν1/5 and ν1/6 BNRs exhibit non-
monotonic variations as E deviates from E = 0, resulting
in multiple conductance dips. For example, the conductance
dips are observed in the vicinity of E = 0 and E = −0.6t
for the ν1/6 BNR, as indicated by the magenta and green

FIG. 2. Electron transport along the periodic and disordered
BNRs under different contact configurations. (a) Energy-dependent
conductance G for periodic ν1/5 BNR, ν1/6 BNR, and ν1/3 BNR.
Energy-dependent averaged conductance 〈G〉 for disordered BNRs
with (b) identical and (c) different source and drain electrodes. The
left inset in (b) provides an enlarged image of the resonant peak at
E = −1.027t . The right inset in (b) provides an enlarged image of
the line-type resonant peaks at E ∼ −0.605t , and −0.619t . Here,
N = 29.

arrows in Fig. 2(a), respectively. Additionally, a conductance
dip emerges around E = −t for the ν1/5 BNR, as shown by the
violet arrow in Fig. 2(a). These unnoticed conductance dips
reveal the absence of electron-transport modes and may lead
to distinct transport properties for the contact configuration of
the ν1/5 and ν1/6 BNRs.

Figure 2(b) shows the averaged conductance 〈G〉 versus E
for disordered BNRs under the contact configurations where
the source electrode is the same as the drain one. There are
four contact configurations, namely [ν1/6, ν1/6], [ν1/5, ν1/5],
[ν1/3, ν1/3], and [SL, SL]. For all these contact configurations,
it is clear that the overall conductance is notably suppressed
as anticipated, owing to the successive scattering caused by
random LDs. However, numerous transmission peaks with
varying full widths at half maximum (FWHM) emerge in
the transmission spectrum due to the resonant tunneling [64].
In contrast to the resonant tunneling observed in disordered
BNRs with homogeneous parameters, substantial alterations
take place in the numbers, positions, and profiles of reso-
nant peaks. Specifically, multiple line-type resonant peaks
with very small FWHM emerge, exemplified by the resonant
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peaks at E ∼ −0.605t and −0.619t . Unlike the line-type res-
onant peaks in Dirac materials of graphene [95] and WSe2

superlattices [96] that appear dependent to the angle of in-
cident electrons, the line-type resonant peaks in disordered
BNRs maintaining consistent positions in all these contact
configurations. Indeed, the positions of all the resonant peaks
remain unaffected by changes in the contact configurations,
as they are inherently determined by the disordered BNR in
the CSR. Nevertheless, the profile and amplitude of these
resonant peaks are notably affected by changes in the contact
configurations.

Specifically, in the contact configurations [ν1/5, ν1/5] and
[ν1/6, ν1/6], all the resonant peaks exhibit a consistent ampli-
tude of 〈G〉 = G0 [see the black-solid and red-dashed lines in
Fig. 2(b)]. Since both ν1/6 and ν1/5 BNRs consist of (2, 2)
and (2, 3) chains, they possess identical resonant states with
the disordered BNRs in the CSR, and no interface scatter-
ing occurs, as further demonstrated in Fig. 5. However, the
profile of some special resonant peaks is different between
these two contact configurations. In the contact configuration
[ν1/6, ν1/6], a portion conductance on the right side of the
resonant peak at E ∼ −0.095t disappears, and a small trans-
mission gap emerges [see the red-dashed line in Fig. 2(b)].
When revisiting the transmission spectrum of the periodic
ν1/6 BNR, a previously mentioned conductance dip around
E = 0 can be found, as indicated by the magenta-dashed lines
in Figs. 2(a) and 2(b). The conductance of the right part of
the line-type resonant peak at E ∼ −0.619t and the left part
of the line-type resonant peak at E ∼ −0.605t disappears,
enlarging the transmission gap between these two line-type
resonant peaks [see the red-dashed line in the right inset of
Fig. 2(b)]. The energy range of the enlarged transmission gap
is equal to that of the conductance dip around E ∼ −0.6t
in the transmission spectrum of the periodic ν1/6 BNR. Fur-
thermore, the conductance switches between G0 and 0 as E
increases from −0.619t to −0.605t , implying the potential
utility of disordered BNRs as electron energy filters. In the
contact configuration [ν1/5, ν1/5], similarly, a portion conduc-
tance on the left side of the resonant peak at E ∼ −1.027t
disappears [see the black-solid line in the left inset of Fig. 2(b)
for clarification]. One can also observe a conductance dip
appearing around E = −t in the transmission spectrum of
the periodic ν1/5 BNR [see the violet arrow in Fig. 2(a)].
Consequently, the contact effects induced by the ν1/5 and ν1/6

BNRs, influencing the profile of the resonant peaks, can be
linked to the conductance dip in their periodic counterparts,
arising from the absence of electron-transport modes in the
vicinity of the resonant energy.

The contact effects become more significant in the contact
configurations [ν1/3, ν1/3] or [SL, SL]. A comparison with the
contact configurations [ν1/5, ν1/5] and [ν1/6, ν1/6] reveals that
the amplitude of all the resonant peaks is less than G0, and
the magnitude of this reduction is dependent on the resonant
energy [see the blue-dotted and cyan-dashed-dotted lines in
Fig. 2(b)]. In particular, the resonant peaks in the contact
configurations [ν1/3, ν1/3] can be divided into three classes.
(i) The resonant peaks at energies E ∼ 0.693t , 0.249t , and
−0.342t as well as the line-type one at −0.605t are com-
pletely suppressed. (ii) The resonant peak at E ∼ −1.027t
and the line-type one at −0.619t are strongly suppressed with

〈G〉 ∼ 0.717G0 and 0.025G0, respectively. (iii) The resonant
peaks at E ∼ −0.769t , −0.095t , and 0.561t are weakly sup-
pressed, with the amplitude approaching G0. These results
suggest that the ν1/3 BNR can effectively serve as a selective
filter for specific resonant peaks, which we refer to as the
resonant peak filtering effect. In the contact configuration
[SL, SL], each resonant peak experiences varying degrees of
suppression compared to the [ν1/3, ν1/3]. In particular, the res-
onant peak at E ∼ −1.027t exhibits pronounced oscillations
and has the amplitude of 0.270G0, which is smaller than that
of the [ν1/3, ν1/3] [see the cyan-dashed-dotted line in the left
inset of Fig. 2(b)]. However, none of them are completely
suppressed, implying that the resonant peak filtering effect is
a unique characteristic of the ν1/3 BNR electrode. In contrast
to the contact configurations [ν1/5, ν1/5] and [ν1/6, ν1/6], there
is no observable conductance dip in the transmission spectrum
of the ν1/3 BNR [see the blue-solid line in Fig. 2(a)].

The variation in the amplitude of resonant peaks for dif-
ferent contact configurations can be attributed to distinct
scattering probability at the interface between different elec-
trodes and the CSR. Although all the electrodes are metallic,
their electron-transport modes are different. When the elec-
trodes are taken as either the ν1/6 BNR or the ν1/5 one, the
electron-transport modes in the electrodes are identical to
those in the CSR and no scattering occurs at the electrode-
CSR interface, because the CSR is composed of many ν1/6 and
ν1/5 BNRs. In this situation, the amplitude of resonant peaks
is exactly the conductance quantum G0. By contrast, when
the electrodes are taken as either the ν1/3 BNR or the SL, the
electron-transport modes mismatch with those in the CSR and
the scattering takes place at the interface. Then, the amplitude
is less than G0 and some resonant peaks can even disappear
when the ν1/3 BNR or the SL is chosen as the electrodes.
Similarly, when transition metals are used as the electrodes,
the amplitude of resonant peaks will be declined and some res-
onant peaks may even vanish, because the electron-transport
modes of transition metals is different from those in the CSR
due to distinct lattice structures. The physical origin of the
resonant peak filtering effect will be further discussed later.

We then consider contact configurations with distinct
source and drain electrodes, resulting in six unique contact
configurations. The corresponding 〈G〉 − E curves are de-
picted in Fig. 2(c), and the main results can be summarized
as follows: (i) The discussed contact effects are effective in
the contact configurations with different source and drain
electrodes. For example, the specific profile of resonant peak
at E ∼ −0.095t is observed in the transmission spectra for
the contact configurations where one of the electrodes is
the ν1/6 BNR [see the gray-solid, cyan-dashed-dotted, and
violet-dashed-dotted-dotted lines in Fig. 2(c)]. Resonant peak
filtering effect appears in the transmission spectra for the con-
tact configurations where one of the electrodes is the ν1/3 BNR
[see the red-dashed, cyan-dashed-dotted, and orange-dashed-
dashed-dotted lines in Fig. 2(c)]. The resonant peak at E ∼
−1.027t becomes high oscillations in the transmission spectra
for the contact configurations where one of the electrodes is
the SL [see the blue-dotted, violet-dashed-dotted-dotted, and
orange-dashed-dashed-dotted lines in Fig. 2(c)]. (ii) Differ-
ent contact effects are cumulative when considering distinct
source and drain electrodes. For instance, in the contact
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TABLE II. The amplitude of the resonant peak 〈G〉 at E ∼
−1.027t dependent on the contact configurations.

contact configuration 〈G〉(E ∼ −1.027t )

[ν1/5, ν1/5], [ν1/6, ν1/6], [ν1/5, ν1/6] G0

[ν1/3, ν1/3] 0.717G0

[SL, SL] 0.270G0

[ν1/5, ν1/3], [ν1/6, ν1/3] 0.834G0

[ν1/5, SL], [ν1/6, SL] 0.510G0

[ν1/3, SL] 0.471G0

configuration [ν1/5, ν1/6], the resonant peak at E ∼ −1.027t
has the same profile as that of [ν1/5, ν1/5], while the reso-
nant peak at E ∼ −0.095t has the same profile as that of
[ν1/6, ν1/6] [see the gray-solid line in Fig. 2(c)]. In the contact
configuration [ν1/6, ν1/3], the resonant peak filtering effect
evidently appears as that of [ν1/3, ν1/3], and the resonant peak
at E ∼ −0.095t has the same profile as that of [ν1/6, ν1/6]
[see the cyan-dashed-dotted line in Fig. 2(c)]. (iii) Consid-
ering distinct source and drain electrodes allows for tuning
the amplitude of resonant peaks into a broader range. Clearly,
the amplitude of the resonant peak at E ∼ −1.027t can be
varied across six different values by altering the contact con-
figurations, as summarized in Table II. This indicates that
the reduction in the amplitude of the resonant peaks is at-
tributed to the interface scattering between the CSR and the
SL electrode or the ν1/3 BNR electrode. At E ∼ −1.027t , the
former interface scattering strength surpasses the latter, and
the amplitude of the resonant peaks varies with changes in
the number of the SL electrode and the ν1/3 BNR electrode.
Consequently, choosing different electrodes for the source and
the drain enables simultaneous and distinct control over the
electron transport through disordered BNRs.

B. Contact effects on the electron transport
in disordered BNRs of varying sizes

Next, we investigate the contact effects on the electron
transport in disordered BNRs with different sizes. In the fol-
lowing section, our primary focus will be on the two contact
configurations: [ν1/6, ν1/6] and [ν1/5, ν1/3]. Figure 3(a) shows
〈G〉 vs E for disordered BNRs with different widths N in
the contact configuration [ν1/6, ν1/6]. Clearly, resonant peaks
with amplitude G = G0 are observed across various widths,
emphasizing the resonant tunneling in disordered BNRs. With
N varying from 2 to 36, the total number of resonant peaks
increases due to the rising density of resonant states in disor-
dered BNRs. The subsequent discussion in Sec. III E covers
the underlying evolution of resonant peaks in disordered
BNRs with different N . However, there are some features that
warrant attention here. For N = 2, resonant peaks appear at
E ∼ −0.095t and −1.027t , with a small transmission gap for
the peak at E ∼ −0.095t [see the black-solid line in Fig. 3(a)].
Consistently, as previously discussed, two identical resonant
peaks, featuring the same profile and amplitude, are consis-
tently observed for N = 29 at the same energy in the same
contact configuration [see the red-dashed line in Fig. 2(b)].
The resonant peaks observed in the transmission spectrum of
N = 4 [see red-dashed line in Fig. 3(a)] are also discernible

FIG. 3. Electron transport through disordered BNRs with dif-
ferent widths N for contact configurations (a) [ν1/6, ν1/6] and
(b) [ν1/5, ν1/3].

that of N = 29. Furthermore, the line-type resonant peaks
are observed around E = −0.6t in disordered BNRs with
N = 12 and N = 36, like N = 29 [see the blue-dotted and
cyan-dashed-dotted lines in Fig. 3(a)], suggesting the presence
of identical resonant peaks across different values of N in
disordered BNRs. The presence of identical resonant peaks
further suggests the consistency of contact effects on resonant
peaks at the same energy in disordered BNRs with different N .
For example, a transmission gap is observed for the resonant
peak at E ∼ −0.095t for the disordered BNRs with N = 2
and 29.

Figure 3(b) displays the same information as Fig. 3(a), but
in the contact configuration [ν1/5, ν1/3]. Similar to the contact
configuration [ν1/6, ν1/6], the number and position of resonant
peaks vary with N . Despite the larger number of resonant
peaks in N = 2 compared to N = 4, the overall count of
resonant peaks rises with increasing N , as further illustrated
in Fig. 9(b). The profile and amplitude of these resonant peaks
are notably affected, owing to the contact effects of the ν1/5

and ν1/3 BNR electrodes. Likely, identical resonant peak also
appears in disordered BNRs with different N . All the resonant
peaks in disordered BNRs with N = 2 and 4 [see the black-
solid and red-dashed lines in Fig. 3(b)] can be found in the
transmission spectrum of N = 29 with the same contact con-
figuration [see the red-dashed line in Fig. 2(c)], with the same
profile and amplitude. Compared to the contact configuration
[ν1/6, ν1/6], the resonant peak at E ∼ −0.342t in the disor-
dered BNR with N = 4 is filtered in the contact configuration
[ν1/5, ν1/3], similar to the identical one in N = 29, owing to
the resonant peak filtering effect of the ν1/3 BNR electrode.
Furthermore, the resonant peak filtering effect of the ν1/3 elec-
trode is also observable in disordered BNRs with N = 12 and
N = 36 [see the blue-dotted and cyan-dashed-dotted lines in
Fig. 3(b)]. Consequently, the contact effects exert significant
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FIG. 4. Electron transport through disordered BNRs with vary-
ing length L for different contact configurations. (a) and (b) show 〈G〉
as a function of energy E for different L, with contact configurations
[ν1/6, ν1/6] and [ν1/5, ν1/3], respectively. (c) and (d) depict 〈G〉 vs
L for contact configurations with identical and different source and
drain electrodes at E ∼ −1.027t , respectively. Similarly, (e) and (f)
show the same as (c) and (d) but at E ∼ 0.249t . Here, N = 29.

influence on the electron transport in disordered BNRs of
varying widths.

Figures 4(a) and 4(b) depict 〈G〉 as a function of E for dis-
ordered BNRs with length ranging from L = 1000 to 20 000
for the contact configurations [ν1/6, ν1/6] and [ν1/5, ν1/3], re-
spectively. Despite the suppression of the resonant peaks in
disordered BNRs for the contact configuration [ν1/5, ν1/3],
the amplitude of the resonant peaks in both contact con-
figurations remains constant with increasing L. This further
indicates that the decrease of the peak amplitude is attributed
to the interface scattering between the ν1/3 BNR electrode
and the CSR, irrespective of L. Furthermore, it highlights the
robustness of resonant peaks and the existence of delocal-
ized states in disordered BNRs, consistent with experimental
observations [57]. For L = 1000, the resonant peaks in the
transmission spectrum exhibit large FWHM [see the black-
solid line in Figs. 4(a) and 4(b)]. Thus the profile of the
resonant peaks at E ∼ −0.095t and E ∼ −1.027t due to the
contact effects of the ν1/5 and ν1/6 BNR electrodes becomes

pronounced, respectively. By increasing the length from L =
1000 to 20 000, 〈G〉 decreases at all the energies except for
the resonant ones, resulting in a reduction of the FWHM
for all the resonant peaks. For L = 10000 and 20 000, the
profile of the resonant peaks will not be affect by the ab-
sence of electron-transport modes in the ν1/5 and ν1/6 BNR
electrodes, due to the significant reduction in the FWHM
[see the blue-dotted and cyan-dashed-dotted lines in Figs. 4(a)
and 4(b)]. Moreover, the resonant peak filtering effect of the
ν1/3 BNR electrode remains valid for all the values of L
[see Fig. 4(b)].

To further investigate the length-dependent electron trans-
port in disordered BNRs, Figs. 4(c) and 4(e) illustrate 〈G〉
versus L at E ∼ −1.027t and E ∼ 0.249t , respectively, con-
sidering the contact configurations with identical source and
drain electrodes. Here, E ∼ −1.027t and 0.249t [indicated
by magenta stars in Figs. 4(a) and 4(b)] correspond to the
resonant peaks that are strongly and completely suppressed
by the ν1/3 BNR electrode, respectively. The results are cal-
culated from 1×107/L disordered samples. By examining
Figs. 4(c) and 4(e), significant differences between various
contact configurations in 〈G〉 − L curves can be identified:
(i) In the contact configuration [ν1/5, ν1/5], 〈G〉 at the resonant
energy of E ∼ −1.027t consistently remains G0 regardless
of L [see the black-solid line in Fig. 4(c)], as there exists
only one electron-transport mode in the ν1/5 electrode for
E ∼ −1.027t [see the black-solid line in Fig. 2(a)]. While for
E ∼ 0.249t , 〈G〉 decreases as L increases initially, eventually
approaching G0 when L exceeds 103 [see the black-solid
line in Fig. 4(e)]. (ii) In the contact configuration [ν1/6, ν1/6],
〈G〉 at E ∼ −1.027t and E ∼ 0.249t decreases as the L in-
creases, eventually approaching G0 when L exceeds 103 [see
the red-dashed line in Figs. 4(c) and 4(e)]. (iii) For the contact
configuration [ν1/3, ν1/3], 〈G〉 at E ∼ −1.027t is declined to
0.717G0 when L > 103, and remains stable further with a
continued increase in L to L > 106 [see the blue-dotted line
in Fig. 4(c)]. While 〈G〉 at E ∼ 0.249t is directly declined to
0 when L exceeds 103 due to the resonant peaks filtering effect
[see the blue-dotted line in Fig. 4(e)]. (iv) For the contact con-
figuration [SL, SL], 〈G〉 at E ∼ −1.027t and 0.249t decreases
to a value smaller than G0 when L > 103, and also remains
stable by further increasing L [see the cyan-dash-dotted line
in Figs. 4(c) and 4(e)]. Moreover, a pronounced fluctuation
in 〈G〉 is observed when L > 105, attributed to the variations
around the 〈G〉-E curve, particularly around the resonant peak
at E ∼ −1.027t . These results indicate that L = 103 is the
critical length for disordered BNRs to achieve stable reso-
nant peaks across all the contact configurations. Since within
this length, all the conductance contributed by non-resonant
states decreases to nearly zero due to the successive scattering
caused by random LDs, regardless of the contact configura-
tions. The conductance contributed by resonant states remains
unaffected by L, whereas the interface scattering between the
disordered BNR and the ν1/3 BNR or the SL electrode leads
to a reduction in the resonant peaks.

Figures 4(d) and 4(f) show 〈G〉 versus L at E ∼ −1.027t
and E ∼ 0.249t , respectively, considering the contact config-
urations where the source electrode differs from the drain one.
Several crucial characteristics can be summarized as follows.
(i) The ν1/5 BNR and ν1/6 BNR electrodes do not affect the
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FIG. 5. Conductance fluctuations in disordered BNRs with con-
tact configuration [ν1/6, ν1/6]. (a) Averaged conductance 〈G〉 and
standard deviation δG for disordered BNRs. (b) and (c) show the
conductance distribution P(G) at E ∼ −0.095t and −0.123t , indi-
cated by the cyan stars in (a), respectively. The inset of (b) shows the
same data of P(G) from (b) in a restricted range of conductance. The
black-dashed line in (c) is the fitting curve obtained from Eq. (24),
with s = 0.981. Here, N = 29.

amplitude of the resonant peaks at E ∼ −1.027t and 0.249t
when L > 103 [see the black-solid line in Figs. 4(d) and 4(f)].
In contrast, the ν1/3 and SL electrodes will lead to the decrease
of resonant peaks. (ii) If one of the electrodes is the ν1/5

BNR, the 〈G〉 at E ∼ −1.027t is independent of L [see the
black-solid, red-dashed, and blue-dotted lines in Fig. 4(d)].
(iii) If one of the electrodes is the ν1/3 BNR, the conductance
at E ∼ 0.249t drops to 0 when L > 103 [see the red-dashed,
cyan-dashed-dotted, and orange-dashed-dashed-dotted lines
in Fig. 4(f)]. (iv) When considering the SL electrode, 〈G〉 at
E ∼ −1.027t displays more pronounced fluctuations as the
value of L exceeds 105 [see blue-dotted, violet-dashed-dotted-
dotted, and orange-dashed-dashed-dotted lines in Fig. 4(d)].
Consequently, the length-dependent electron transport in
disordered BNRs is strongly dependent on the contact con-
figurations. The amplitude of resonant peaks can be adjusted
by modifying the source and drain electrodes when L > 103,
allowing the creation of a stable conductance smaller than G0.

C. Conductance fluctuations and localization
in disordered BNRs

To further understand the role of the contact effects
and random LDs on the electron transport along disordered
BNRs, we examine the conductance fluctuations. Figure 5(a)
shows the energy-dependent averaged conductance 〈G〉 and
the standard deviation δG for disordered BNRs with N =
29 under the contact configurations [ν1/6, ν1/6]. Here, δG ≡√

〈G2〉 − 〈G〉2. It is noteworthy that the standard deviation
at every resonant peak satisfies δG ∼ 0, indicating that the
resonant tunneling can occur in any disordered BNR with
arbitrary arrangements of LDs [see the red-dashed line in

Fig. 5(a)]. As E deviates from the resonant energy, δG gradu-
ally increases. When the electron energy is further away from
the resonant energy, δG decreases until it ultimately reaches
zero. Moreover, it is evident that δG is exactly zero within the
energy range of a small transmission gap in the resonant peak
at E ∼ −0.095t , indicating that the contact effects induced by
the ν1/6 BNR electrode is consistent across various disordered
samples.

To further characterize the conductance fluctuations of
these systems, we calculate the distributions of conductance
P(G). Here, we take the resonant peak at E ∼ −0.095t as
an example, and the result is applicable to any resonant
peak. We focus on two specific energies: E ∼ −0.095t , rep-
resenting the energy of the resonant peak, and E ∼ −0.123t ,
corresponding to the energy of maximal δG. For the relia-
bility of the results, P(G) is determined through a statistical
analysis of 105 disordered samples. It is clear that P(G0) =
100% when E ∼ −0.095t , signifying that all the samples
exhibit an identical conductance of G = G0 in this energy.
This result remains valid even when a restricted range of
conductance is considered, thereby confirming the robustness
of the resonant tunneling [see the inset of Fig. 5(b)]. When
the energy gradually deviates from the resonant energy, the
conductance distribution widens, and δG gradually increases.
When E ∼ −0.123t , δG reaches its maximum value, and its
conductance distribution is shown in Fig. 5(c). It is clear that
the conductance of all the disordered samples is distributed
within the range [0, G0], indicating the presence of only one
channel in this system when E ∼ −0.123t . Within a scaling
theory of Anderson localization, it is shown that the P(G)
can be fitted by the following expression without free fitting
parameters:

Ps(G) = C
[acosh(1/

√
G)]1/2

G3/2(1 − G)1/4
e−(1/s) acosh2(1/

√
G), (24)

which is used to study the conductance distribution of the
disordered zigzag graphene nanoribbon near the Fermi energy
[97]. Here, C is a normalization constant, and s = L/λ with λ

the mean free path. The value of s can be determined numer-
ically through the relation −〈lnG〉 = L/λ [98]. As depicted
in Fig. 5(c), the conductance distribution around the resonant
energy of E ∼ −0.123t is precisely described by Eq. (24),
suggesting that the off-resonant states undergo standard
Anderson localization due to the structural disorder induced
by random LDs.

As a comparison, Fig. 6(a) displays the energy-dependent
averaged conductance 〈G〉 and standard deviation δG for the
disordered BNR with N = 29 in the contact configuration
[ν1/5, ν1/3]. It is evident that despite the decrease in the am-
plitude of the resonant peaks due to the presence of the ν1/3

BNR electrode, the condition δG ∼ 0 holds for every res-
onant peak. This implies that the conductance of resonant
peaks consistently remains at a specific value smaller than
G0 in every disordered sample. Given that their amplitude
also remains independent of the size of the disordered BNRs,
we can conclude that these resonant peaks with amplitude
less than G0, result from the interface scattering between the
CSR and ν1/3 electrode. Therefore disordered BNRs can be
employed to attain a fixed conductance less than G0, akin to
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FIG. 6. Conductance fluctuations in disordered BNRs with con-
tact configurations [ν1/5, ν1/3]. (a) Averaged conductance 〈G〉 and
standard deviation δG for disordered BNRs. (b) and (c) show the
conductance distribution P(G) at E ∼ −1.027t and −1.009t , indi-
cated by the cyan stars in (a), respectively. The inset of (b) shows the
same data of P(G) from (b) in a restricted range of conductance. The
black-dashed line in (c) is the fitting curve obtained from Eq. (24),
with s = 1.236. Here, N = 29.

the “0.7-anomaly” observed in quantum point contacts due
to the many-body effects [99–101]. Moreover, δG is exactly
zero when G disappears due to the contact effects of the
ν1/5 and ν1/3 BNR electrodes. As a result, the contact effects
of various electrodes on the electron transport along disor-
dered BNRs remain consistent across different disordered
samples.

Then, we compute P(G) at E ∼ −1.027t and E ∼
−1.009t . The former corresponds to the energy of the reso-
nant peak with amplitude of G ∼ 0.834G0, while the latter
corresponds to the energy of the maximum δG within the
resonant peak. Figure 6(b) shows the conductance distribu-
tion P(G) at E ∼ −1.027t . Remarkably, it is evident that
P(0.834G0) = 100%, signifying that all the disordered sam-
ples share identical amplitude of resonant peaks at G ∼
0.834G0, even within a restricted range of conductance [see
the inset of Fig. 6(b)]. When E ∼ −1.009t , the conduc-
tance is redistributed between the range of [0, G0] and can
be well fitted using the expression Eq. (24) [see Fig. 6(c)].
These results suggest that for certain disordered samples,
the conductance at off-resonant energies can be greater than
that at the resonant energies, which contradicts expectations
based on the contact configuration [ν1/6, ν1/6]. This is at-
tributed to the energy-dependent interface scattering strength
between the CSR and the ν1/3 BNR electrode. For elec-
trons with resonant energies, the strength of the interface
scattering they experience is fixed and independent of the
disordered sample. While for electrons with off-resonant en-
ergies, the strength of the interface scattering varies with
changes in the disordered sample, which may lead to a larger
conductance.

D. Physical origin of different resonant peaks
induced by ν1/3 electrode

As previously mentioned, the resonant peaks in the dis-
ordered BNRs with the ν1/3 electrode can be classified into
three categories based on the extent of suppression. Here, we
explored the physical origin of the different resonant peaks
induced by the ν1/3 electrode. To illustrate this, we present
the spatial distributions of bond currents for disordered BNRs
in the contact configuration [ν1/6, ν1/6], according to Eq. (8).
Here, the results are shown for a specific disordered sam-
ple, and our findings hold for arbitrary disordered samples.
Figures 7(a)–7(c) illustrate the spatial distributions of bond
currents at the resonant energies E ∼ −0.095t , −0.342t , and
−1.027t in the contact configuration [ν1/6, ν1/6], correspond-
ing to weakly suppressed, entirely suppressed, and strongly
suppressed resonant peaks due to the contact effects of the ν1/3

electrode, respectively. For any resonant energy, the spatial
distributions within both the (2, 2) and (2, 3) chains remain
unchanged as L increases, allowing electrons to propagating
through the disordered BNR without experiencing dissipation,
highlighting the nature of the resonant tunneling. However,
at different resonant energies, the bond current distributions
exhibit noticeable variations due to their distinct electron-
transport modes. These differences in distribution are crucial
in yielding varied suppression in different resonant peaks by
the ν1/3 BNR electrode.

For E ∼ −0.095t , there is a continuous flow of current
along the outer edges of each (2, 2) chain and along the
armchair edges inside each (2, 3) chain [see Fig. 7(a)]. Specifi-
cally, there is almost no current passing through the hexagonal
central atoms of the (2, 3) chain, allowing us to neglect these
central atoms and treat the (2, 3) chain as the unit cell of
the ν1/3 BNR. Even though the tight-binding parameters are
distinct, this electron-transport mode is potentially present in
the ν1/3 BNR electrode at the same resonant energy. Hence,
if the ν1/3 BNR electrode shares the same electron-transport
mode at E ∼ −0.095t , electrons will not encounter any in-
terface scattering, and the resonant peaks at E ∼ −0.095t
will be well preserved in the contact configuration of the
ν1/3 BNR electrode. For E ∼ −0.342t , the current flowing in
the (2, 3) chain primarily passes through the central atoms
and propagates along the horizontal direction, with almost no
current distribution along the hexagonal edges [see Fig. 7(b)].
Furthermore, the vortex currents manifest at the upper and
lower triangles of the central atoms in the (2, 3) chain, with
their magnitude comparable to the inter-chain current. How-
ever, this electron-transport mode cannot match with any
of the electron-transport modes in the ν1/3 BNR electrode.
Therefore the resonant peak at E ∼ −0.342t is completely
suppressed in the contact configuration of the ν1/3 BNR elec-
trode. The situation at E ∼ −1.027t falls somewhere between
the two just mentioned. As depicted in Fig. 7(c), the current
flows along the outer edges of each (2, 2) chain, resem-
bling the situation at E ∼ −0.095t , while inside each (2,
3) chain, it follows in a zigzag path. Although the zigzag
path involves both the edges and the central atoms of the
(2, 3) chain, the current predominantly enters the (2, 3)
chains through the hexagonal edges, which is also allowed
for the electron-transport modes in the ν1/3 BNR electrode.
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FIG. 7. The spatial distributions of bond currents at the resonant energies, (a) E ∼ −0.095t , (b) ∼ − 0.342t , and (c) ∼ − 1.027t , are
illustrated for a disordered BNR in the contact configuration [ν1/6, ν1/6]. These correspond to weakly suppressed, entirely suppressed, and
strongly suppressed resonant peaks, respectively, due to the contact effect of the ν1/3 electrode. The bond currents are indicated by red arrows,
with the size proportional to their magnitude. Here, N = 29 and L = 4000. For clarity, only partial chains is displayed.

However, the involvement of central atoms in this process
causes mode mismatch, leading to the interface scattering
and consequently a decrease in the amplitude of the resonant
peaks. Consequently, the distinct resonant peaks induced by
the ν1/3 electrode can be comprehended through the anal-
ysis of the structure-property relationships associated with
the local current distribution of the ν1/3 and ν1/6 BNRs. In
fact, the weakly suppressed, entirely suppressed, and strongly
suppressed can be attributed to the parallel, orthogonal, and
overlapping wave functions between the electron states in the
ν1/3 BNR electrode and the resonant states in the disordered
BNRs.

In addition, the distributions of bond current exhibit a clear
periodicity along the width direction. For E ∼ −0.095t and
E ∼ −1.027t , the current distribution in the disordered BNR
with N = 29 can be divided into 10 basic BNRs with a width
of Ni = 2 and a period of 3 [see Figs. 7(a) and 7(c)]. For
E ∼ −0.342t , the current distribution can be divided into 6
basic BNRs with a width of Ni = 4 and a period of 5 [see
Fig. 7(b)]. This can be linked to the earlier finding in Fig. 3,
where identical resonant peaks can be found among the dis-
ordered BNRs with N = 29 and N = 2 as well as N = 4.
The fact is that the bond current distributions for the resonant
peaks at E ∼ −0.095t and −1.027t in disordered BNRs with
N = 2 match with those in the basic BNRs with Ni = 2. Sim-
ilarly, the bond current distributions for the resonant peak at
E ∼ −0.342t in disordered BNRs with N = 4 coincide with
those in the basic BNRs with Ni = 4 (data not shown). Cru-
cially, these results signify the evolution of resonant peaks in
disordered BNRs with varying widths N , as further elaborated
in Figs. 8 and 9.

E. Two evolution phenomena for the resonant peaks
in disordered BNRs with different width

We then focus on the evolution of resonant peaks in dis-
ordered BNRs with various N . Figure 8(a) shows 〈G〉 vs E

for disordered BNRs with N = 29, 14, and 15 for the contact
configuration [ν1/6, ν1/6]. It clearly appears that some reso-
nant peaks for N = 29 perfectly superimpose on all those for
N = 14 [see the black-solid and red-dotted lines in Fig. 8(a)],
including the resonant peak at E ∼ −0.095t , suggesting that
resonant peaks at the same energy in disordered BNRs with
different N suffer from the same contact effects. More in-
terestingly, the remaining resonant peaks for N = 29 overlap
well with all those for N = 15 by appropriately adjusting
peak positions [see the black-solid and blue-dashed lines
in Fig. 8(a)]. Here arises the question: will the resonant
peaks for N = 15 and their corresponding ones in N = 29

FIG. 8. Electron transport along disordered BNRs with widths
N = 29, 14, and 15 for contact configurations (a) [ν1/6, ν1/6] and (b)
[ν1/5, ν1/3], respectively.
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FIG. 9. A 2D plot of FWHM for all of the peaks vs N and E by considering the contact configurations (a) [ν1/6, ν1/6] and (b) [ν1/5, ν1/3].
(c) Evolution of disappearing peaks in the contact configuration [ν1/5, ν1/3] as compared to the [ν1/6, ν1/6]. The cyan and red lines display the
evolution route of two resonant peaks initially appearing in disordered BNRs with width Ni = 2 and 4, respectively.

experience the same contact effects, even though their en-
ergies are different? However, no direct evidence could be
provided in the contact configuration [ν1/6, ν1/6].

Figure 8(b) shows 〈G〉 versus E for the disordered BNRs
with N = 29, 14, and 15 by considering the contact con-
figuration [ν1/3, ν1/5]. Similarly, it is also evident that some
resonant peaks for N = 29 perfectly superimpose on all
those for N = 14 [see the black-solid and red-dotted lines
in Fig. 8(b)], while the remaining ones overlap well with
all those for N = 15 by appropriately adjusting peak posi-
tions. As previously mentioned, the resonant peaks at E ∼
0.693t, 0.249t,−0.342t,−0.605t for N = 29 are completely
suppressed in the contact configuration [ν1/3, ν1/5], owing
to the contact effects of the ν1/3 BNR electrode [see the
black-solid lines in Figs. 8(a) and 8(b)]. The resonant peaks
at identical energies, E ∼ 0.693t,−0.342t , and −0.605t in
the disordered BNR with N = 14 are entirely suppressed,
consistent with expectations. Notably, the resonant peak at
0.311t for N = 15, corresponding to the one at 0.249t for
N = 29, is also completely suppressed [see the blue-dashed
line in Fig. 8(b)]. This suggests that the contact effects on
the resonant peaks is consistent between N = 15 and N = 29,
despite the change in peak position. The above phenomenon
is widely observed in other disordered BNRs with odd widths
N = No. Therefore we conclude that all of the resonant peaks
of disordered BNRs with odd width No could be assembled
from the ones with N = (No − 1)/2 and N = (No + 1)/2,
namely, evolution phenomenon (EP) I. The EP I is present
in disordered BNRs, irrespective of the contact configura-
tions. The contact effect is consistent for the resonant peaks
in N = (No − 1)/2 and N = (No + 1)/2 with their respective
counterparts in N = No.

Based on the above discussion, it is known that the disor-
dered BNR with N = 29 possesses identical resonant peaks
as those observed in the disordered BNRs with N = 2, 4,
and 14. To further elucidate this phenomenon, Figs. 9(a) and
9(b) display a 2D plot of FWHM for all of the peaks as
functions of N and E for the contact configurations [ν1/6, ν1/6]
and [ν1/5, ν1/3], respectively. In Fig. 9(b), only the resonant

peaks with amplitude larger than 0.5G0 are taken into ac-
count for clarity. It is evident that numerous red points appear
in the vicinity of E = −0.6t for the contact configuration
[ν1/6, ν1/6], indicating the widespread presence of the line-
type resonant peaks [see Fig. 9(a)]. Due to the resonant
peak filtering effect and the interface scattering of the ν1/3

BNR electrode, the number of resonant peaks in Fig. 9(b)
is significantly decreased as compared to those in Fig. 9(a).
However, it is evident that the number of resonant peaks
increases with the width N for both contact configurations,
aligning with the previous discussion. Moreover, the FWHM
of all the resonant peaks ranges from nearly 0 to 0.1t , which
provides an ideal standard for identifying different resonant
peaks in the disordered BNRs with different N . By tracing res-
onant peaks with the same energy and FWHM in disordered
BNRs with different values of N , an interesting EP can be
identified.

For the contact configuration [ν1/6, ν1/6], identical resonant
peaks are observed at E ∼ −0.095t for N = 2, 5, 8, . . . and
at E ∼ −0.342t for N = 4, 9, 14, . . . [see the cyan and red
dashed lines in Fig. 9(a)]. While for the contact configura-
tion [ν1/5, ν1/3], similar phenomenon can also be detected
that identical resonant peaks exist at E ∼ −0.095t for N =
2, 5, 8, . . . [see the cyan-dashed line in Fig. 9(b)]. Therefore
we conclude that a resonant peak that first emerges in the
disordered BNR with N = Ni will reappear at the same en-
ergy E in various BNRs with N = α(Ni + 1) − 1, where α

is an integer and Ni + 1 is the period. This characteristic is
referred as EP II, which compensates for EP I. Because of the
resonant peak filtering effect induced by the ν1/3 BNR, some
resonant peaks will completely vanish for the contact config-
uration [ν1/5, ν1/3], as discussed above. Figure 9(c) shows the
evolution of disappearing peaks by subtracting the points in
Fig. 9(b) from those in Fig. 9(a). One can see that the disap-
pearing peaks usually possess small FWHM [see the red and
blue squares in Fig. 9(c)], indicating that the resonant peaks
with small FWHM is more sensitive to external factors like the
electrode. Additionally, the disappearing resonant peaks occur
at E ∼ −0.342t for N = 4, 9, 14, . . . [see the red-dashed line
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in Fig. 9(c)], which is the same as EP II. This implies that
a resonant peak that first disappears in the disordered BNR
with N = Ni, induced by the resonant peak filtering effect,
will always disappear at the same energy in various BNRs
with N = α(Ni + 1) − 1. Note that 29 = 10×(2 + 1) − 1 =
6×(4 + 1) − 1, the disordered BNR with N = 29 includes
all the resonant peaks of N = 2 and N = 4. As the resonant
peak at E ∼ −0.342t in the disordered BNR with N = 4 is
completely suppressed by the ν1/3 BNR, the resonant peak at
the same energy also disappears in the disordered BNR with
N = 29.

The EP II can be understood by considering a disordered
BNR with N = α(Ni + 1) − 1, which can be divided into α

basic BNRs with width Ni. Here, the mth basic BNR includes
the rows from n = mi − Ni to mi − 1, and is separated from
the (m + 1)th one by the mith row, with 0 < m < α and mi =
m(Ni + 1). For instance, the BNR with N = 29 can be divided
into 6 basic BNRs with Ni = 4, which are separated by the
5th, 10th, 15th, 20th, and 25th rows [see Fig. 7(b)]. Then, the
Hamiltonian Hc of disordered BNR with width N can then be
rewritten as:

Hc =

⎡
⎢⎢⎢⎢⎢⎢⎣

H1 A11 0 · · · 0

A†
11 R1 A21

. . .
...

0 A†
21 H2

. . . 0
...

. . .
. . .

. . . Aα,α−1

0 · · · 0 A†
α,α−1 Hα

⎤
⎥⎥⎥⎥⎥⎥⎦

, (25)

where Hm and Rm are the sub-Hamiltonians of the mth
basic BNR and the mith row, respectively, and Amn the
hopping matrix from the mith row to the mth basic BNR
when n = m and from the mth BNR to the mi − 1th row
when n = m − 1. Since the mth and m + 1th BNRs are mir-
ror images about the mith row, the eigenstates of Hm and
Hm+1 are the same with identical eigenenergies, and the hop-
ping matrices satisfy Am+1,m = A†

m,m. Assuming the resonant
state of the mth basic BNR is described by the Schrödinger
equation of

Hm|�0〉 = Er|�0〉, (26)

with |�0〉 the wave function and Er the resonant energy.
Accordingly, the wave function |�〉 of Hc can then be con-
structed as:

|�〉 = √
α/α(|�0〉, 0,−|�0〉, . . . , (−1)α−1|�0〉)
 (27)

and the resonant state of disordered BNR with width N can be
described by Schrödinger equation:

Hc|�〉 = Er|�〉. (28)

As a result, the disordered BNR with width N = α(Ni + 1) −
1 share the identical resonant peaks with the basic disor-
dered BNR with width Ni. During the simulation of electron
transport in nanoribbons, the main source of computational
complexity arises from the width of the nanoribbons. As the
width of the nanoribbon increases, higher computational costs

are incurred. However, these two EPs allow us to deduce the
resonant peaks of wide disordered BNR from the narrow one
without the need for practical calculation.

IV. CONCLUSION

In conclusion, we study theoretically the contact effects on
the electron transport through two-terminal disordered BNRs
by considering inhomogeneous tight-binding parameters. We
demonstrate that, although the overall electron transport abil-
ity is significantly affected by randomly distributed LDs,
several resonant peaks appear in the transmission spectra,
irrespective of inhomogeneous parameters, nanoribbon length
and width, and contact configurations. The profile and ampli-
tude of resonant peaks can be modified by considering various
contact configurations. Specifically, in the contact configura-
tions [ν1/5, ν1/5] or [ν1/6, ν1/6], the profile of certain specific
resonant peaks changes due to the absence of electron-
transport modes in the electrodes, while the amplitude of all
the resonant peaks remains at G0. In the contact configuration
[ν1/3, ν1/3] or [SL, SL], the amplitude of all the resonant peaks
decreases to values below G0. Particularly, the resonant peaks
under the contact configuration [ν1/3, ν1/3] can be categorized
into three types: weakly suppressed, strongly suppressed, and
completely suppressed. This categorization indicates the pres-
ence of the resonant peak filtering effect, elucidated through
the analysis of the local bond current distributions. Further-
more, we find that distinct contact effects accumulate when
considering different source and drain electrodes. Besides,
we show that the number of resonant peaks increases with
N , and resonant peaks in disordered BNRs with varying N
may undergo a similar contact effect. By tracking all the
resonant peaks in disordered BNRs with different N , we can
confirm the existence of two evolution phenomena. This study
systematically explores the electron transport through disor-
dered BNRs with LDs under various contact configurations,
offering an effective method for tuning the electron transport
properties in disordered BNRs. Overall, our results can help
to understand the structure-property relationships and hold
significant application prospects in the fabrication of elec-
tronic devices based on BNRs. Finally, we point out that we
only consider the electron transport across the rows of hollow
hexagons, and different phenomena will be observed for elec-
tron propagation along the rows of hollow hexagons because
of the anisotropy of the borophene, which may deserve further
investigation.
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