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Strictly one-dimensional behavior emerging from a dispersive two-dimensional system:
Implications on metallic nanowires on semiconducting substrates
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We studied single and two Su-Schrieffer-Heeger wires on a simple cubic semiconducting substrate. The
wire-wire coupling is either perpendicular or diagonal hopping respecting the particle-hole and time-reversal
symmetries. The hybridization to the substrate renormalizes the model parameters of the wires toward the
hopping parameter of the substrate without changing the basic nature of perpendicular or diagonal coupling
and it can mediate effective perpendicular hopping but not diagonal hopping in the absence of direct wire-wire
coupling. This justifies the investigation of multi-uniform tight-binding wires with perpendicular or diagonal
hopping parameters while neglecting the substrate. Perpendicularly coupled uniform wires reveal an anisotropic
two-dimensional band dispersion. Diagonally coupled uniform wires reveal strictly one-dimensional bands
parallel to the wires direction if the intrawire hopping parameter is larger than twice the diagonal hopping
parameter despite strong dispersion perpendicular to the wires. Otherwise, they reveal strictly one-dimensional
bands parallel and perpendicular to the wires direction simultaneously. We established the possibility of real-
izing strictly one-dimensional properties emerging from dispersive two-dimensional systems if time-reversal
and particle-hole symmetries are respected. This can facilitate the investigations of Luttinger liquid in the
Au/Ge(001) and Bi/InSb(001) surface reconstructions.
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I. INTRODUCTION

Surface reconstructions of metallic atomic wires deposited
on semiconducting substrates attracted lots of attention as
platforms to realize features related to one-dimensional (1D)
electrons, e.g., Luttinger liquid phases [1,2], Peierls metal-
insulator transitions and charge-density-wave states [3–5].
For instance, the surface reconstruction Au/Ge(001) has
been investigated and debated as a candidate to realize one-
dimensional (1D) correlated conductors for more than two
decades [6–12]. No consensus has been reached on the
theoretically calculated exact structure of its surface recon-
struction that match the experimental results [13–15]. One
of the main issues is the apparent contradiction between the
Luttinger liquid behavior reported experimentally, using scan-
ning tunneling microscopy (STM) and spectroscopy (STS)
[1,12], and the strong dispersion perpendicular to the wires
direction found in angle-resolved photoemission spectroscopy
(ARPES), STM, and STS [12,16–18]. Another system that
reveals Luttinger liquid behavior is Bi deposited on InSb(001)
surfaces in angle-resolved photoelectron spectroscopy [2].
However, this behavior is observed for large coverage of Bi
on the InSb substrate, rendering the role of wire-wire coupling
unclear.

Theoretically, the 1D correlated electrons are described
primarily using “freestanding” 1D models which are then
extended to anisotropic two- (2D) and three-dimensional (3D)
systems [19–22]. However, metallic atomic wires on semi-
conducting substrates represent arrays of 1D wires coupled
to a 3D reservoir, giving them a strong asymmetric na-
ture and ruling out applicability of 2D and 3D anisotropic

extensions. Therefore, it is necessary to investigate the influ-
ence of the coupling to the 3D bulk semiconducting substrate
on the 1D features, and the possibility of substrate-mediated
coupling between the wires. A way of modeling was intro-
duced [23–26] for single and two uniform atomic nanowires
on a semiconducting substrate, amenable to investigations
using methods for correlated electronic nanowires. However,
the role of the substrate in mediating wire-wire coupling was
not settled.

In this work, we use another approach to understand the
impact of hybridization to the semiconducting substrate on
the wires. This approach consists of two steps. The first step
is to consider a single and two wires as topological insula-
tors in the BDI class, namely, as Su-Schrieffer-Heeger (SSH)
wires. The two wires are coupled either with perpendicular
or diagonal hopping, but not with both, in order to respect
the symmetries of the BDI class. The substrate is described
as a simple cubic lattice with conduction and valence orbitals
at each site, such that it respects the required symmetries of
the BDI class. We found that the hybridization to the sub-
strate does not change the basic nature of the wires model
parameters. However, it can effectively mediate perpendicular
hopping but not diagonal hopping in the absence of direct
wire-wire coupling. These findings justify the extension of
the number of wires while neglecting the substrate. Therefore,
in the second step we analyze uniform multiwire systems
coupled with either perpendicular or diagonal hopping but not
with both. We realized that the perpendicularly coupled wires
can have the 1D properties as in usual anisotropic 2D conduc-
tors [19–22]. However, the diagonally coupled wires reveal
strictly one-dimensional bands, despite a strong dispersion in
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FIG. 1. (a) Nearest-neighbor wires on substrate that can be per-
pendicularly coupled (b) Next-nearest-neighbor wires on substrate
that can be diagonally coupled.

the perpendicular direction if they are extended in 2D. This
finding demonstrates a way of possibility to realize strictly 1D
behavior emerging from dispersive two-dimensional uniform
multiwire systems.

The paper is structured as follows: We introduce the model
and the BDI class of topological insulators in Secs. II and
III, respectively. In Sec. IV we discuss free-standing single,
perpendicularly coupled and diagonally coupled SSH wires.
In Sec. V we discuss the wires presented in Sec. IV connected
to simple cubic semiconducting substrate. We discuss uniform
multiwire systems without a substrate in Sec. VI. Finally we
conclude in Sec. VII.

II. THE MODEL

We consider wire-substrate systems which are transna-
tional invariant along the wires direction, described by the
Hamiltonian

H = Hsbt + Hwires + Hhyb, (1)

where Hsbt describes the substrate, Hwires describes the wires
and Hhyb describes the hybridization between the wires and
the substrate. We label the repeated unit cell along the wires
direction by u, such that the total number of unit cells is Nu.
We restrict the coordinates (x, y, z) to be inside the unit cell u.
The thermodynamic limit corresponds to Nu → ∞. The peri-
odic boundary conditions (PBCs) along the wires direction (x
direction) corresponds to finite Nu, such that u = 1 = 1 + Nu.
The open boundary conditions (OBCs) along the same direc-
tion corresponds to finite Nu, such that u = Nu + 1 = 0. We
consider arbitrary number of SSH wires coupled to a semi-
conducting substrate as shown in Fig. 1, where the number of
wires is denoted Nw.

The substrate Hamiltonian is given by

Hsbt =
∑
s=v,c

Hs, (2)

where the subscript v represents the orbitals of the valence
bands, and c represents the orbitals of the conduction bands,
such that

Hs =
∑
u,r

εsnu,s,r + ts
∑

u,〈rq〉

(
c†

u,s,rcu,s,q + H.c.
)

+ ts
∑

u,〈rq〉

(
c†

u,s,qcu+1,s,r + H.c.
)
. (3)

The operator c†
u,s,r creates a spinless fermion on the orbital s

localized on the site with coordinates r = (x, y, z), such that
x = 1, . . . , Lx/Nu, y = 1, . . . , Ly, and z = 1, . . . , Lz, where
Lx, Ly, and Lz are total lengths in the x, y, and z directions,
respectively. The substrate fulfills the PBCs in the y direction,
i.e., y = 1 = 1 + Ly, and the OBCs in the z direction, i.e., it
terminates at z = Lz. The fermion density operator on each
orbital is nu,s,r = c†

u,s,rcu,s,r. The first term in Eq. (3) set the
local potential εs = εv for the orbitals of valence bands, and
εs = εc for the orbitals of conduction bands. The second term
set the intraunit cell hopping and the third term set the in-
terunit cell hopping. We set tc = tv = ts and chose ts as energy
unit. We set εc = −εv = 7, such that a band gap is open in the
substrate band structure. Despite the homogeneous hopping
terms in the conduction and the valence bands of the substrate,
we distinguish between the intra- and interunit cell hopping
terms in the substrate due to the dimerization in the wires.
Therefore, we get Lx/Nu = 2.

The Hamiltonian of the wires is given by

Hwires =
∑

w=1,...,Nw

Hw +
∑

w=1,...,Nw−1

Hw,w+1, (4)

where Hw represents a SSH wire given by

Hw =
∑

u

tw
(
c†

u,rw
cu,qw

+ H.c.
)

+
∑

u

t ′
w

(
c†

u,qw
cu+1,rw

+ H.c.
)
. (5)

Here c†
u,rw

and c†
u,qw

(cu,rw
and cu,qw

) denote the creation (anni-
hilation) operators for a spinless fermion in unit cell u, where
rw = (1, yw, 0) and qw = (2, yw, 0). We set tw = ts + δw and
t ′
w = ts − δw, where the dimerization is given by setting −ts �
δw � ts. For simplicity, we set δw = δ for all w, i.e., tw = t and
t ′
w = t ′. Needless to mention, that for a single-wire system we

omit the summation over w.
In the case of a multiwire system, there can be perpen-

dicular or diagonal coupling between adjacent wires. The
perpendicular coupling is given by

H⊥ =
∑

w=1,...,Nw−1

Hw,w+1

=
∑

u

t⊥
(
c†

u,rw
cu,rw+1

+ H.c.
)

+
∑

u

t⊥
(
c†

u,qw
cu,qw+1

+ H.c.
)
, (6)
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and the diagonal coupling is given by

Hd =
∑

w=1,...,Nw−1

Hw,w+1

=
∑

u

td
(
c†

u,rw
cu,qw+1

+ H.c.
)

+
∑

u

td
(
c†

u,qw
cu,rw+1

+ H.c.
)

+
∑

u

td
(
c†

u,qw
cu+1,rw+1

+ H.c.
)

+
∑

u

td
(
c†

u,qw+1
cu+1,rw

+ H.c.
)
. (7)

It is important to mention that adjacent wires labeled by w
and w + 1 are not necessarily hybridized to nearest neighbors
sites on the surface of the substrate, i.e., yw+1 − yw � 1.

The hybridization between each wire and the substrate is
given by

Hhyb =
∑
w,s

Hw,s, (8)

where

Hw,s =
∑

u

tw,s
(
c†

u,s,rcu,rw
+ H.c.

)

+
∑

u

tw,s
(
c†

u,s,qcu,qw
+ H.c.

)
(9)

represents the hybridization of the wire sites rw = (1, yw, 0)
and qw = (2, yw, 0), with the orbitals of valence and conduc-
tion bands on sites r = (1, yw, 1) and q = (2, yw, 1) of the
substrate. We set tw,v = tw,c = tws.

For noninteracting wire-substrate systems with PBCs, H
can be written as a sum of commuting operators H (k j ), acting
only on the single-particle Bloch states, with the wave number

k j = 2π j

Nu
(10)

in the first Brillouin zone, where the quantum number j
satisfies −Nu/2 � j < Nu/2. The transformation of the full
wire-substrate Hamiltonian (1) to the momentum space in the
x direction is performed using the canonical transformation

cu,R = 1√
Nu

∑
j

ck j ,R
exp

(−ik ju
)
, (11)

where R = (x, y, z) represents the coordinates inside the unit
cell u. Unless it is explicitly stated, we omit the quantum
number j. Therefore, the substrate part of the Hamiltonian is
given by Hsbt = ∑

k Hsbt(k), such that

Hsbt(k) =
∑
s=v,c

Hs(k),

Hs(k) = εs

∑
r

nk,s,r + ts
∑
〈rq〉

(
c†

k,s,rck,s,q + H.c.
)

+ ts
∑
〈rq〉

(
c†

k,s,qck,s,r exp (−ik) + H.c.
)
. (12)

The wire-substrate hybridization part is given by Hhyb =∑
k Hhyb(k), where

Hhyb(k) =
∑

w=1,...,Nw

∑
s=v,c

Hws(k),

Hws(k) = tws
(
c†

k,s,rck,rw
+ H.c.

) + tws

(
c†

k,s,qck,qw
+ H.c.

)
.

(13)

As we stated before, we investigate how the wire-substrate
hybridization affects the intrawire hopping parameters and
whether it changes, preserves, or mediates wire-wire cou-
plings. Therefore, for the sake of simplicity, we discuss only
single and two adjacent wires coupled either by perpendicular
or diagonal hopping. The transformation of the single and two
wires to the momentum space will be discussed in Sec. IV.

III. TOPOLOGICAL INSULATORS IN THE BDI CLASS

To investigate the impact of the wire-substrate hybridiza-
tion on the properties of the wires, we consider the full
wire-substrate system as a topological insulator [27–29]. This
allows us to detect changes reflected on the topological
properties of the system. Band insulators are topologically
classified according to the so-called periodic table of the
topological insulators [30–33]. This classification depends on
the dimensionality, as well as whether one or more of the
following three symmetries are fulfilled.

The first symmetry is the chiral symmetry, which is present
due to the bipartite nature of the lattice, therefore, it is also
named sublattice symmetry. It guarantees the existence of
Hermitian unitary operator S acting within the unit cell and
anticommuting with the Hamiltonian, such that, for the Bloch
Hamiltonian H (k),

SH (k)S = −H (k), (14)

where k ∈ {k j} as defined in Eq. (10). Thus, H (k) can be
written in a completely block off-diagonal form

H (k) =
[

0 h(k)
h†(k) 0

]
. (15)

This symmetry restricts the arrangement of the wires on the
surface of the cubic lattice substrate in the wire-substrate
model (1). Specifically, it does not allow simultaneous per-
pendicular and diagonal coupling between the wires. In the
perpendicularly (diagonally) coupled wires, the laterally adja-
cent wire sites can only be connected with substrate sites that
belong to different (similar) sublattice, see Fig. 1. The chiral
symmetry can be present without requiring other symmetries.
However, systems that fulfill simultaneously time-reversal and
particle-hole symmetries must fulfill the chiral symmetry.
These are the two remaining symmetries required for the BDI
class.

For spinless fermions, time-reversal symmetry is defined
by the antiunitary operator T , which merely takes the complex
conjugate such that

T H (k)T −1 = H (−k) (16)

as long as the model parameters are restricted to real values.
The particle-hole symmetry for spinless fermions is defined
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by the symmetry under the transformation c†
u,R = Fu,Rcu,R,

where Fu,R = −1 if the site on R belongs to one sublattice,
and Fu,R = 1 if it belongs to the other sublattice. This lead to
the antiunitary operator P that satisfy

PH (k)P−1 = −H (−k). (17)

The wire-substrate model fulfills the time-reversal and
particle-hole symmetries such that T 2 = P2 = 1. The topo-
logical insulators in BDI class can have nontrivial topological
phases, if they have 1D but not 2D or 3D band structure.

Topological phases of the BDI class are characterized
by a topological invariant called the winding number W ∈
Z [27–29]. Crossing between phases with different W is a
topological phase transition, which is accompanied with clos-
ing the band gap rendering the system critical at the phase
transition. W can be defined for systems with PBCs as the
winding number of the graph Det(h(k)) around the origin of
the complex plane, for k ∈ [−π, π ), where h(k) is the block
off-diagonal matrix defined in Eq. (15). It can be obtained
using

W = 1

2iπ

∫ π

−π

∂

∂k
ln[Det(h(k))]dk. (18)

Trivial topological phases correspond to W = 0, while
nontrivial topological phases corresponds to W 
= 0. |W | gives
the number of edge localized states at energy E = 0 for sys-
tems with OBCs in the thermodynamic limit. Sometimes, it
is not trivial to transform H (k) into the off-diagonal form
in Eq. (15). Nevertheless, a way to obtain W [34] is by
constructing the overlap matrix U from the occupied energy
eigenvectors |u(k)〉, such that

Un,m(k) =
〈
un(k)

∣∣∣∣ ∂

∂k
um(k)

〉
. (19)

By integrating over the Brillouin zone, we get

W = 1

iπ

∫ π

−π

Det[Un,m(k)]dk. (20)

IV. FREE-STANDING SU-SCHRIEFFER-HEEGER WIRES

A. Band structures and single-particle spectral functions

The free-standing single SSH wire without a substrate is
described by reducing Hamiltonian (1) to H = Hw in (5). It
is a well-known example of topological insulators [27–29].
By transforming the single-wire Hamiltonian to momentum
space, we get its matrix form

H (k) =
[

0 t + t ′eik

t + t ′e−ik 0

]
, (21)

such that h(k) = t + t ′eik . We can obtain the square of energy
bands E2

l (k) by diagonalizing either

Ĥ (k) = h†(k)h(k) or H̄ (k) = h(k)h†(k), (22)

where l is the band index [35]. Thus, for the single SSH wire,
we obtain the two energy bands

El (k) = ±
√

t2 + t ′2 + 2tt ′ cos (k). (23)
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FIG. 2. Single-particle spectral function for single and two SSH
wires with Nu = 500 and δ = −0.3. (a) Single wire (b) two perpen-
dicularly coupled wires with t⊥ = 1.5. (c) Two diagonally coupled
wires with td = 1.5.

The band gap is given by

Eg = 4|δ|, (24)

while the top (bottom) of the upper (lower) band is fixed
at Eupper (0) = 2 [Elower (0) = −2] We can display the band
structures using the single-particle spectral function defined
as

A(k, ω) =
∑

l

δ(ω − El (k)), (25)

where δ(. . .) is the Dirac δ function. Such spectral function
is equivalent to the spectral dispersions seen in the angle-
resolved photoemission spectroscopy. To draw A(k, ω), we
substitute the Dirac δ function δ(. . .) by the Lorentzian func-
tion with η = 0.005. Figure 2(a) displays the single-particle
spectral function for a free-standing single SSH wire with
δ = −0.3. We clearly observe the band dispersions given by
Eq. (23).
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The two perpendicularly coupled SSH wires without a sub-
strate are described by H = ∑

w=1,2 Hw + H⊥. They possess
a mirror reflection symmetry between the two legs around the
line crossing the rungs midpoint. Therefore, it is more illus-
trative to transform the Hamiltonian to the basis of bonding,
d (−)

u,x , and antibonding, d (+)
u,x , operators, defined as

d (−)
u,x = 1√

2

(
cu,r1

− cu,r2

)
,

d (+)
u,x = 1√

2

(
cu,r1

+ cu,r2

)
. (26)

Therefore, we get

H (∓) =
∑

u

t
(
d (∓)†

u,1 d (∓)
u,2 + H.c.

)

+
∑

u

t ′(d (∓)†
u,2 d (∓)

u+1,1 + H.c.
)

∓ t⊥
∑

u

d (∓)†
u,1 d (∓)

u,1 ∓ t⊥
∑

u

d (∓)†
u,2 d (∓)

u,2 , (27)

where H (−) (H (+)) acts on bonding (antibonding) orbitals. By
transforming H (−) and H (+) to momentum space and diago-
nalizing them, we obtain the four bands

E (−)
l (k) = −t⊥ ±

√
t2 + t ′2 + 2tt ′ cos (k),

E (+)
l (k) = t⊥ ±

√
t2 + t ′2 + 2tt ′ cos (k), (28)

where E (∓)
l (k) are the dispersions of bonding and antibonding

bands, respectively. Both bonding and antibonding bands are
identical to the bands of the free-standing single SSH wire in
the absence of perpendicular hopping. The perpendicular hop-
ping acts as chemical potential with opposite signs, shifting
the bonding and antibonding bands, such that the top (bottom)
of the upper (lower) bonding band is given by E (−)

upper (0) =
2 − t⊥ [E (−)

lower (0) = −2 − t⊥], while the top (bottom) of the
upper (lower) antibonding band is given by E (+)

upper (0) = 2 + t⊥
[E (+)

lower (0) = −2 + t⊥]. The inner band gap inside the bonding
and antibonding bands is given by E (∓)

g = 4|δ|, matching the
band gap of a single SSH wire. The global band gap is given
by

Eg =
{

4|δ| − 2t⊥ if t⊥ < 2 and t⊥ < 2|δ|
−4 + 2t⊥ if t⊥ > 2,

(29)

otherwise, the system is gapless. Each of H (−) and H (+),
separately, breaks the particle-hole symmetry. In fact, the
transformation to bonding and antibonding representation
mixes the two sublattices in the perpendicularly coupled
wires. However, the lower (upper) bonding band is the chi-
ral partner of the upper (lower) antibonding band, rendering
the full system particle-hole symmetric. Figure 2(b) shows
the single-particle spectral function of perpendicularly cou-
pled two SSH wires with δ = −0.3 and t⊥ = 1.5. We clearly
observe the energy shift by −1.5 (1.5) of the bonding (an-
tibonding) bands in comparison with the single SSH wire
bands.

The two diagonally coupled SSH wires without a substrate
are described by H = ∑

w=1,2 Hw + Hd . Using the bonding
and antibonding operators, we transform the Hamiltonian into

the two bonding and antibonding Hamiltonians

H (∓) =
∑

u

t(∓)
(
d (∓)†

u,1 d (∓)
u,2 + H.c.

)

+
∑

u

t ′
(∓)

(
d (∓)†

u,2 d (∓)
u+1,1 + H.c.

)
. (30)

Here t(−) = t − td and t ′
(−) = t ′ − td for the bonding Hamilto-

nian, while t(+) = t + td and t ′
(+) = t ′ + td for the antibonding

Hamiltonian. Each of H (−) and H (+), separately, resembles
an independent single SSH wire and respects all the required
symmetries for the BDI class. The transformation to bonding
and antibonding representation does not mix the two sublat-
tices in the diagonally coupled wires. Therefore, the reflection
symmetry imposes additional requirements to classify the
topological phases, as we see in Sec. IV B. By transforming
Hamiltonians (30) to the momentum space and diagonalizing
them, we get the two bonding bands

E (−)
l (k) = ±

√
t2
(−) + t ′2

(−) + 2t(−)t
′
(−) cos (k), (31)

and the two antibonding bands

E (+)
l (k) = ±

√
t2
(+) + t ′2

(+) + 2t(+)t
′
(+) cos (k). (32)

The inner band gap inside the bonding and antibonding
bands is equal to the global band gap given by Eq. (24),
indicating that all the upper (and lower) bonding and an-
tibonding bands matches at El (±π ). The top (bottom) of
the upper (lower) bonding band is given by E (−)

upper (0) =
2t(−) [E (−)

lower (0) = −2t(−)], while the top (bottom) of the up-
per (lower) antibonding band is given by E (+)

upper (0) = 2t(+)

[E (+)
lower (0) = −2t(+)]. The bonding bands become completely

flat at td = t or td = t ′. Figure 2(c) displays the single-particle
spectral function of two diagonally coupled wires with td =
1.5 and δ = −0.3. We observe clearly the energy dispersions
given by Eqs. (31) and (32).

B. Phase diagrams

The single SSH wire has a nontrivial (trivial) topological
phase for δ > 0 (δ < 0), with W = 1 (W = 0) identified using
Eq. (18), with critical point at δ = 0. As we realized before,
the bonding and antibonding Hamiltonians of the perpendic-
ularly coupled SSH wires break the particle-hole symmetry
if they are considered separately. Therefore, we transform the
full Hamiltonian of the two wires to momentum space and
apply the chiral transformation to get the off-diagonal part

h(k) =
[

t + t ′e−ik t⊥
t⊥ t + t ′eik

]
. (33)

It is clear that, ∀ k, Det(h(k)) ∈ R, hence there is no topolog-
ically nontrivial phase for the perpendicularly coupled SSH
wires. The phase diagram contains either regions with trivial
topological phase or with gapless phase, given by Eq. (29) and
shown in Fig. 3(a). Due to the preservation of the symmetries
required for the BDI class in each of the bonding and anti-
bonding Hamiltonians of the diagonally coupled SSH wires,
we can define the winding number W− (W+) of the bonding
(antibonding) bands. We realize that, for td > ts, there is a
gap closing at δ = 0 without changing the winding number
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FIG. 3. Topological phase diagrams of (a) two perpendicularly
coupled SSH wires and (b) two diagonally coupled SSH wires.

W . This is due to the additional reflection symmetry, which
imposes a second topological index, namely, the difference
�W = W− − W+, which distinguishes between the topologi-
cal nature of the bonding and antibonding bands. Therefore,
we can distinguish four topological phases in the phase dia-
gram of the diagonally coupled wires. In the first phase with
td < ts and δ > 0, both bonding and antibonding bands are
trivial, hence, W = 0 and �W = 0. The second phase is for
td < ts and δ < 0, where both bands are nontrivial, hence,
W = 2 and �W = 0. In the third phase with td > ts and
δ > 0, the bonding band is nontrivial while the antibonding
band is trivial, hence, W = 1 and �W = 1. In the forth phase
with td > ts and δ < 0, the bonding band is trivial while the
antibonding band is nontrivial, hence, W = 1 and �W = −1.
The phase diagram of the diagonally coupled SSH wires is
displayed in Fig. 3(b). We mention here that the diagonally
coupled wires with δ = 0 and td < ts should reveal topological
phases at criticality according to Refs. [36,37]. However, this
is out the scope of our investigation, thus we postponed it to
future investigation.

C. Energy spectrum and local density of states for wires
with open boundary conditions

The nontrivial topological phases in 1D are distinguished
by localized edge states with zero energy eigenvalue, for sys-
tems with OBCs in real space at the thermodynamic limit such
that the number of the localized states at each edge is |W |.

FIG. 4. Energy spectrum of single and two SSH wires with
OBCs and Nu = 200 (a) as a function of δ for a single wire, (b) as a
function of t⊥ for two perpendicularly coupled wires with δ = −0.3,
and (c) as a function of td for two diagonally coupled wires with
δ = −0.3.

The edge localization is distinguished by the enhancement
of spectral weight of the zero-energy eigenstates at the edge
of the wires, with fast decay while moving away from the
edge. Strictly speaking, the localized edge states will have
exactly zero-energy eigenvalue in the thermodynamic limit.
For finite Lx, they have energy eigenvalues very close to zero
energy for large enough Lx. Figure 4(a) shows the energy
eigenvalues Eλ as a function of δ for a single SSH wire with
Lx = 400 (λ is the eigenvalue index). The energy eigenvalues
of localized edge states are very close to Eλ = 0 for δ < 0
and disappear for δ > 0, in consistence with the topological
phases of the single SSH wire discussed in Sec. IV B. There
are no localized edge states with zero-energy eigenvalue for
perpendicularly coupled wires with OBCs. Figure 4(b) dis-
plays the energy spectrum for two perpendicularly coupled
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wires with δ = −0.3 as a function of t⊥. The edge states of
each wire at t⊥ = 0 split for t⊥ 
= 0 into four states, which
have the energy eigenvalues Eλ = ±t⊥. This is due to the per-
pendicular hopping acting as chemical potential in Eq. (27).
Again, the symmetries of BDI class are only preserved for
the combined bonding and antibonding Hamiltonians, there-
fore, the two negative-energy bonding states are the chiral
partners of the two positive-energy antibonding states. This
confirm the absence of nontrivial topological phase in the
perpendicularly coupled wires. These four states disappear for
δ = 0.3 (not shown). Figure 4(c) displays the energy spectrum
for diagonally coupled wires with δ = −0.3 as a function
of td . It reveals the transition between two nontrivial phases
where the critical point is at td = 1. For td < 1, there are two
localized states in each edge at zero energy, while for td > 1,
there is one localized state in each edge at zero energy. The
zero-energy localized edge states disappear for δ = 0.3 and
td < 1, but only two remain for δ = 0.3 and td > 1, consistent
with the phase diagram of two diagonally coupled wires (not
shown).

The localized edge states can be identified using the local
density of states (LDOS) defined as

Du,rw (ω) =
∑

l

|ψl (u, rw)|2δ(ω − Eλ), (34)

where |u, rw〉 is the real-space basis representing the wire, and
ψl (u, rw) = 〈u, rw|φl〉, such that |φl〉 are the energy eigenvec-
tors of H . The LDOS corresponds to spectral lines observed
in the scanning tunneling spectroscopy measurements of sur-
faces. Figure 5(a) displays the LDOS at one edge of single
SSH wire with δ = −0.3 and Lx = 400. The largest spectral
weight at zero energy is on the site at the edge of the wire, i.e.,
first site at u = 1. The spectral weight decays rapidly by going
to the following unit cells in the same sublattice and vanishes
in the sites of the other sublattice. The other edge displays
identical LDOS spectral lines by interchanging the sublattices
(not shown). Figure 5(b) displays the local density of states at
one edge of two perpendicularly coupled wires without sub-
strate with δ = −0.3 and t⊥ = 1.5. The localized edge states
shift from ω = 0 energy to ω = ±1.5. Figure 5(c) displays the
local density of states at the edges of two diagonally coupled
wires with δ = −0.3 and td = 0.5. The spectral weight has a
peak inside the gap at ω = 0 due to the two localized edge
states. The spectral weight remains with the peak inside the
gap at ω = 0 for td = 1.5 (not shown), but with smaller weight
than the td = 0.5 case due to only one localized state at the
edge.

V. SU-SCHRIEFFER-HEEGER WIRES ON SUBSTRATE

We discuss the effect of hybridizing the former wires to
the semiconducting substrate, in such a way that respects the
symmetries required for the BDI topological insulators. The
single SSH wire can be positioned arbitrary parallel to the x
direction, such that each wire site is on top of the adjacent sur-
face site. The perpendicularly and diagonally coupled wires
can be positioned in a similar way along the x direction, but
respecting the restrictions imposed by the symmetries of BDI
class. We chose the two wires to be the closest adjacent per-
pendicularly (diagonally) coupled wires that hybridize with

 0
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FIG. 5. LDOS as defined in Eq. (34) at one edge of single and
two SSH wires with δ = −0.3 and Nu = 200. (a) LDOS on sites from
the same sublattice in first five unit cells at one edge of single SSH
wire. (b) LDOS of first two unit cells of two perpendicularly coupled
SSH wires with t⊥ = 1.5. (c) LDOS of first two unit cells of two
diagonally coupled SSH wires with td = 0.5. Panels (b) and (c) share
the same lines key.

laterally nearest-neighbor (next-nearest-neighbor) sites on the
substrate, similar to Fig. 1. In the following we compare these
three different wire-substrate constructions with the former
free-standing wires.

A. Band structures and single-particle spectral functions

Figure 6 shows the single-particle spectral function for
wire-substrate systems with Lx = 1000, Ly = 16, Lz = 8, and
δ = −0.3. In Fig. 6(a), the spectral function A(k, ω) is calcu-
lated for a single SSH wire with wire-substrate hybridization
tws = 4. We can distinguish two bands with spectral dispersion
similar to those of the free-standing single SSH wire but with
broadened spectral line and weaker spectral weight due to the
hybridization to the substrate. For very weak hybridization,
the two bands are very close to those seen in Fig. 2(a). By
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FIG. 6. Single-particle spectral function for single and two SSH
wires on semiconducting substrate with Nu = 500, Ly = 16, Lz = 8,
δ = −0.3, and tws = 4. (a) Single wire. (b) Two perpendicularly
coupled wires with t⊥ = 1.5. (c) Two perpendicularly coupled wires
with t⊥ = 0. (d) Two diagonally coupled SSH wires with td = 1.5.
(e) Two diagonally coupled wires with td = 0.

increasing the wire-substrate hybridization to tws = 4, we re-
alize the reduction of the band gap, while the top (bottom)
of the upper band (lower band) remains without significant
change. The more we increase the wire-substrate hybridiza-
tion the more these bands approach the band dispersion of the
single wire with δ = 0. Therefore, we deduce that the wire-
substrate hybridization reduces the dimerization effectively
toward δeff = 0. It does not change the basic nature of the
intrawire hoppings.

The two SSH wires on the substrate can be transformed to
the bonding and antibonding representations. Then, the wire-
substrate hybridization takes the form

Hws = tws√
2

∑
s=v,c

∑
u

{[
c†

u,s,r

(
d (+)

u,1 + d (−)
u,1

) + H.c.
]

+ [
c†

u,s,q

(
d (+)

u,2 + d (−)
u,2

) + H.c.
]

+ [
c†

u,s,r′
(
d (+)

u,1 − d (−)
u,1

) + H.c.
]

+ [
c†

u,s,q′
(
d (+)

u,2 − d (−)
u,2

) + H.c.
]}

, (35)

where r = (1, 1, 1), q = (2, 1, 1), r′ = (1, 2, 1), and q′ =
(2, 2, 1). The transformation of the two wires to the bond-
ing and antibonding representation mixes the two sublattices
in the substrate hybridization to the perpendicularly coupled
wires, but it does not mix them in the hybridization to the
diagonally coupled wires. Figures 6(b) and 6(c) show single
particle spectral functions of two SSH wires with δ = −0.3
hybridized with nearest-neighbor sites on the surface. Fig-
ure 6(c) shows the case of perpendicularly coupled wires with
t⊥ = 1.5 and tws = 4. We can distinguish two bonding and two
antibonding bands similar to those of free-standing perpendic-
ularly coupled wires. For very weak perpendicular hopping,
the two bonding (antibonding) bands are very close to those
of free-standing two perpendicularly coupled wires displayed
in Fig. 2(b), with almost the same energy shift from the bands
of a single SSH wire. The absolute value of these energy
shifts decreases by increasing the wire-substrate hybridiza-
tion to tws = 4, which indicates a reduction in the effective
perpendicular hopping t eff

⊥ . Moreover, the gap inside the re-
lated bonding (antibonding) bands reduces, which indicates
a reduction of the effective dimerization |δeff|. Figure 6(c)
shows the case of t⊥ = 0 and tws = 4. At very weak perpen-
dicular hopping, the two band dispersions are very close to
those of the free-standing single SSH wire seen in Fig. 2(a).
By increasing the wire-substrate hybridization to tws = 4, we
realize a splitting of the two bands into four bands related
to the bonding and antibonding bands seen in free-standing
perpendicularly coupled wires, which indicates the increase
of effective wire-wire coupling t eff

⊥ . In fact, similar splitting
exists for the case of t⊥ = 0 and finite but small value of tws,
but it is very small to be observed. Therefore, in the absence
of direct perpendicular hopping, the wire-substrate hybridiza-
tion can mediate an effective perpendicular hopping. The gap
inside the related bonding (antibonding) bands decreases by
increasing tws, which indicates a reduction of the effective
dimerization δeff. Generally, the increase of wire-substrate hy-
bridization reduces the effective dimerization toward δeff = 0
but renormalizes the effective perpendicular hopping toward
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t⊥ = ts. Again, the wire-substrate does not change the basic
nature of the intrawire hoppings, but it also does not change
the basic nature of the perpendicular hopping. However, it can
mediate an effective perpendicular hopping in the absence of
direct one.

Figures 6(d) and 6(e) show single-particle spectral func-
tions of two SSH wires with δ = −0.3, hybridized with
next-nearest-neighbor sites on the surface. Figure 6(d) shows
the case of td = 1.5 and tws = 4. At very weak diagonal
hopping, the wire-related band dispersions are very close to
those of free-standing diagonally coupled two wires seen in
Fig. 2(c). By increasing the wire-substrate hybridization to
tws = 4, we realize the reduction of the bandwidth of each
of the four bands, which indicates the reduction of effective
diagonal hopping. Moreover, we realize the reduction of the
band gap, which indicates the reduction of effective dimer-
ization. Figure 6(e) shows the case of td = 0 and tws = 4. At
very weak diagonal hopping, the two band dispersions are
very close to those of the free-standing single SSH wire seen
in Fig. 2(a). By increasing the wire-substrate hybridization to
tws = 4, we realize that the two bands remain similar to the
single SSH wire bands, but with reduced band gap. This be-
havior indicates that the wire-substrate hybridization reduces
the effective dimerization while keeping vanished diagonal
hopping. Therefore, in the absence of direct diagonal hopping,
the wire-substrate hybridization does not mediate effective
diagonal hopping. The bonding and antibonding bands of
free-standing diagonally coupled wires match at the bands
edges with k = ±π . Nevertheless, there is a small energy
difference at k = ±π between the bonding and antibonding
bands for wires with td = 0, td = 1.5 and wire-substrate hy-
bridization tws = 4, however, hardly distinguishable in the
single-particle spectral function. This behavior indicates a
very small difference in the rate of renormalizing the parame-
ters t(∓) and t ′

(∓) in Eq. (30) between bonding and antibonding
bands despite vanishing diagonal hopping. Moreover, the
bonding bands of free-standing diagonally coupled wires be-
come completely flat at t(−) = 0 or t ′

(−) = 0. However, for
wires with td = 1.5 and tws = 4 the bonding bands approach
to become flat, but the hybridization to the substrate slightly
deforms the bonding bands with very weak dispersion as
≈ cos(2k), also hardly distinguishable in the single-particle
spectral function. However, this behavior does not change the
topological phase, as long as the band gap does not close.
Generally, the wire-substrate hybridization to diagonally cou-
pled wires does not change the basic nature of the intrawire
hoppings, but it also does not change the basic nature of
the diagonal hopping and cannot mediate effective diagonal
coupling in the absence of a direct one.

B. Phase diagrams

The wire-substrate hybridization preserves the sign of
dimerization but reduces its absolute value to |δeff| until it van-
ishes at infinitely large hybridization. Thus, the wire-substrate
hybridization renormalizes the intrawire hoppings toward ts,
as we observed in the analysis of single-particle spectral func-
tions. Therefore, the topological phase of single SSH wire
is preserved for finite wire-substrate hybridization. This is
demonstrated by calculating the winding number as a function

of δ and tws, which is displayed in Fig. 7(a). Indeed, the wire-
substrate system remains in the topological trivial (nontrivial)
phase for δ > 0 (δ < 0) for finite values of tws.

The reduction of the effective dimerization and the renor-
malization of the perpendicular hopping of perpendicularly
coupled wires on substrate toward ts are observed in Figs. 7(b)
and 7(c). They display the δ-tws phase diagram of two SSH
wires coupled with t⊥ = 2.1 and t⊥ = 0, respectively. For
t⊥ = 2.1 and tws = 0, the system is in a trivial insulating phase
with W = 0, where the gap of the full system depends only on
the perpendicular hopping according to the second condition
in Eq. (29). By increasing the wire-substrate hybridization,
this gap closes, and the system undergoes a phase transition
to a gapless phase as expected, due to the renormalization of
the wires model parameters toward the model parameter of the
substrate and remains gapless since the uniform perpendicu-
larly coupled wires are in a gapless phase. We can deduce,
using Eq. (29), that the critical wire-substrate hybridization
does not change by changing the dimerization if the bare per-
pendicular hopping t⊥ > 2ts. At t⊥ = 0 and tws = 0, the gap of
the full system is the gap due to the dimerization. Increasing
the hybridization to substrate mediates effective perpendicular
hopping but reduces the effective dimerization. Thus, we can
deduce, from the first condition in Eq. (29), that the criti-
cal wire-substrate hybridization will increase by increasing
the bare dimerization δ. Indeed, we observe, in Fig. 7(c), a
monotonic increase of the gapless region by increasing the
wire-substrate hybridization in the δ-tws phase diagram.

The reduction of effective dimerization and diagonal hop-
ping in diagonally coupled wires on substrate are observed in
Fig. 7(d). It displays the δ-tws phase diagram of two SSH wires
coupled with td = 1.1. At tws = 0, the system is in a nontrivial
phase with W = 1. Then, it undergoes a phase transition from
the topological phase with W = 1 to the topological phase
with W = 0 (W = 2) for δ > 0 (δ < 0) by increasing the
wire-substrate hybridization. For td = 0, the substrate does
not mediate effective interwire coupling. Thus the two wires
remain in their decoupled wires phase, i.e., W = 0 for δ > 0
and W = 2 for δ < 0, which is displayed in Fig. 7(e).

The wire-substrate hybridization can only drive a topo-
logical phase transition between phases that already exist in
perpendicularly or diagonally coupled wires, due to renor-
malization of the bare model parameters. Therefore, the
discussion of the phase diagram confirms our previous
findings from single-particle spectral functions, that the wire-
substrate hybridization does not change the basic nature of
the wires model parameters, and it can mediate effective per-
pendicular hopping but not effective diagonal hopping in the
absence of direct wire-wire coupling.

C. Energy spectrum and local density of states
with open boundary conditions

The investigation of energy spectrum and LDOS of wire-
substrate systems with OBCs confirms our findings discussed
in the single-particle spectral functions and phase diagrams.
The single SSH wire coupled to a substrate with OBCs reveals
persistence of the localized edge state seen in a free-standing
wire with δ < 0 while increasing the wire-substrate hybridiza-
tion. This is seen in Fig. 8(a), which displays the energy
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FIG. 7. Topological phase diagrams of single and two SSH wires
on semiconducting substrate. (a) Single wire. (b) Two perpendicu-
larly coupled wires with t⊥ = 2.1. (c) Two perpendicularly coupled
wires with t⊥ = 0. (d) Two diagonally coupled wires with td = 1.1.
(e) Two diagonally coupled wires with td = 0.
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FIG. 8. Energy spectrum of single and two SSH wires on a semi-
conducting substrate with OBCs, Nu = 200, Ly = 4, and Lz = 4 as
a function of tws (a) for a single wire with δ = −0.3, (b) for two
perpendicularly coupled wires with t⊥ = 0 and δ = −0.3, and (c) for
two diagonally coupled wires with td = 1.5 and δ = 0.3.

spectrum of a single SSH wire, with δ = −0.3 coupled to a
substrate, as a function of tws. The edge states of the single
SSH wire are confirmed by calculating the LDOS at one edge
of the wire. Figure 9(a) displays the LDOS on the wire sites,
for the SSH wire with δ = −0.3 coupled to the substrate
with tws = 4. Most of the spectral weight at zero energy is
concentrated at the very last site at the edge and decreases
rapidly by moving away from the edge while keeping in the
same sublattice. The spectral weights vanish at the same edge
but on sites belonging to the other sublattice.

Two freestanding decoupled wires with δ < 0 possess
localized edge states at zero energy, two at each edge of
each wire. The hybridization of these two wires with the
substrate induces effective perpendicular wire-wire hopping,
if they are connected to nearest-neighbor sites on the sur-
face. This effective perpendicular hopping shifts the energies
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FIG. 9. Local density of states as defined in Eq. (34) at one
edge of single and two SSH wires on semiconducting substrate with
OBCs, Nu = 200, Ly = 4, and Lz = 4. (a) Single wire with δ = −0.3
and tws = 4. (b) Two perpendicularly coupled wires with t⊥ = 0, δ =
−0.3, and tws = 2. (c) Two diagonally coupled wires with td = 1.5,
δ = 0.3, and tws = 2. Panels (b) and (c) share the same lines key.

of the chiral localized edge states away from zero, similar to
the bare perpendicular hopping in the free-standing perpen-
dicularly coupled wires. The effective perpendicular hopping
has a nonlinear relation with the wire-substrate hybridization.
Figure 8(b) displays the energy spectrum of such two wires
with δ = −0.3, where we clearly see the nonlinear shift of
chiral states above and below the zero energy by increasing
the wire-substrate hybridization. The energy shift of localized
edge states is accompanied with a reduction of the global
bulk gap, resulting from the interplay between the reduction
of effective dimerization and the increasing of effective per-
pendicular hopping, similar to the first condition in Eq. (29).
Figure 9(b) displays the LDOS at one edge of this two wire
system with tws = 2. The spectral weight at the edge is shifted
symmetrically away from the zero energy, due to the effective
perpendicular wire-wire hopping.

The number of localized edge states depends on the ef-
fective diagonal wire-wire hopping in diagonally coupled
wires at fixed dimerization. Figure 8(c) displays the energy
spectrum of diagonally coupled SSH wires on a substrate
with δ = 0.3 and td = 1.5. At tws = 0, the two-wire sys-
tem possesses one zero-energy localized chiral state shared
by the two wires at each edge. By increasing the wire-
substrate hybridization, we observe the closing of the bulk gap
due to the reduction of the effective diagonal hopping. Then,
the localized edge states disappear above the critical value of
the wire-substrate hybridization, in consistence with the phase
diagram in Fig. 7(d). Figure 9(c) displays the LDOS at the
edge of this two wire system with tws = 2. Most of the spectral
weight at zero energy concentrates at the very last two sites
at the edge, and decreases rapidly by moving away from the
edge while keeping in the same sublattice. The spectral weight
vanishes at the same edge but on sites belonging to the other
sublattice.

Again, the discussion of the edge states confirm that the
wire-substrate hybridization does not change the basic nature
of the wires model parameters, and it can mediate effective
perpendicular hopping but not effective diagonal hopping in
the absence of direct wire-wire coupling.

VI. MULTI-WIRE SYSTEMS AND IMPLICATIONS
ON RECONSTRUCTIONS OF ATOMIC NANOWIRES

ON SEMICONDUCTING SURFACES

Establishing the effect of the hybridization to the substrate
as a renormalization of the wires parameters toward the pa-
rameters of the substrate without changing the basic nature of
the model parameters and finding that the hybridization to the
substrate can mediate effective perpendicular hopping but not
effective diagonal hopping justifies, in the absence of direct
wire-wire coupling, neglecting the substrate and discussing
an arbitrary number of wires only perpendicularly coupled or
only diagonally coupled. So far, we used the SSH model for
the wires to establish the impact of the substrate on the wires,
using their nature as topological insulators in the BDI class.
However, we can restrict our discussion to uniform metallic
wires respecting the symmetries of the BDI class.

We consider the wires described by Hamiltonians (4), (6),
and (7) with δ = 0. Thus, the number of unit cells is Nu = Lx,
R in Eq. (11) reduces to rw and t = t ′ = 1. Therefore, by
transforming Hamiltonians (4), (6), and (7) to momentum
space along the wires direction, we get

Hwires(k) =
∑

w=1,...,Nw

2t cos (k)c†
k,rw

ck,rw
, (36)

H⊥(k) =
∑

w=1,...,Nw−1

t⊥
(

c†
k,rw

ck,rw+1
+ H.c.

)
, (37)

and

Hd (k) =
∑

w=1,...,Nw−1

2td cos (k)
(

c†
k,rw

ck,rw+1
+ H.c.

)
, (38)

respectively. Due to the chiral, time-reversal and particle-hole
symmetries, we combine only Eqs. (36) and (37) [Eqs. (36)
and (38)] for perpendicularly (diagonally) coupled wires. In
both cases, we get the Hamiltonian H (k) in the form of a
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tridiagonal Nw × Nw matrix:

H (k) =

⎡
⎢⎢⎢⎣

2t cos (k) g(k) 0 · · ·
g(k) 2t cos (k) g(k) · · ·

0 g(k) 2t cos (k) . . .
...

...
. . .

. . .

⎤
⎥⎥⎥⎦. (39)

By diagonalizing Hamiltonian (39), we get the energy bands

El (k) = 2t cos (k) + 2g(k) cos

(
lπ

Nw + 1

)
, (40)

where l = 1, . . . , Nw.
For perpendicularly coupled wires, we set g(k) = t⊥. Then,

the Fermi wave number kFl of each energy band l is given by

kFl = arccos

(
− t⊥

t
cos

(
lπ

Nw + 1

))
. (41)

Therefore, the number of Fermi wave numbers is equal to
the number of bands. For Nw → ∞, the Fermi wave numbers
extend in the whole 1D Brillouin zone, i.e., −π < kFl � π .
This is consistent with 2D perpendicularly coupled wires with
PBCs in both directions, for which we define the transforma-
tion

cu,rw
= 1√

NuNw

∑
k,p

ck,p exp (−iku) exp (−iprw), (42)

where the wave numbers k and p are the wave numbers
parallel and perpendicular to the wires direction, respectively,
defined similar to Eq. (10). The dispersion relation is given by

E (k, p) = 2t cos (k) + 2t⊥ cos (p). (43)

Figure 10(a) and 10(b) show it for t⊥ = 0.3 and t⊥ = 0.7,
respectively. The Fermi wave numbers, parallel (kF ) and per-
pendicular (pF ) to the wires direction, are given by the relation
setting E (k, p) = 0, where the 1D behavior is well established
for the anisotropic systems with t⊥ � t , at finite temperature
with thermal energies well above ≈t⊥ but below the energy
scale of 2D and 3D orders [19].

The diagonally coupled wires behave strikingly different.
The energy bands are given by setting g(k) = 2td cos(k) in
Eq. (40). Thus, we realize that all energy bands have only the
two Fermi wave numbers kFl = ±π/2, rendering each of them
a strictly 1D effective band. The 2D diagonally coupled wires
reveal interesting behavior. The transformation to momentum
space in both directions gives rise to the energy dispersion

E (k) = E (k, p) = 2t cos (k) + 4td cos (k) cos (p), (44)

displayed in Fig. 10(c) for td = 0.3 and 10(d) for td = 0.7.
When 2td < t , the first Brillouin zone has two Fermi lines,
extending along the p direction exactly at kF = ±π/2. This
is a characteristics of strictly 1D bands emerges from 2D
system. Nevertheless, the bands are dispersive along the p
direction. However, when 2td > t the Brillouin zone contains
four Fermi lines. Two lines extend along the p direction ex-
actly at kF = ±π/2 and two lines extend along the k direction
exactly at pF = arccos(−t/2td ). This resembles a system of
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FIG. 10. (a), (b) Energy dispersions given by Eq. (43) of two-
dimensional perpendicularly coupled uniform wires with t⊥ = 0.3
and t⊥ = 0.7, respectively. (c), (d) Energy dispersion given by
Eq. (44) of two-dimensional diagonally coupled uniform wires with
td = 0.3 and td = 0.7, respectively. The intrawire hopping is t = 1.

strictly 1D bands along one direction accompanied with other
strictly 1D bands along the perpendicular direction, both
emerges from 2D system.

Therefore, 2D dispersion alone does not rule out the
emergence of strictly 1D behavior as it was suggested
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in Au/Ge(001) surface reconstruction [16–18]. The analy-
sis of uniform multiwire systems can facilitate the debate
on the experimental results of the Au/Ge(001) surface
reconstruction. The crystal structure of the Ge(001) substrate
is bipartite. Therefore, it is important to understand how the
wires are coupled together and hybridized with the substrate,
i.e., whether they are perpendicularly like or diagonally like
coupled wires, or they have other sort of hybridization and
wire-wire coupling. However, while it is plausible to as-
sume the time-reversal symmetry in the absence of external
magnetic field or magnetic impurities, the electronic band
structure of the semiconducting substrate does not generally
respect the particle-hole symmetry. From the other side, cor-
related 1D metals that reveal Luttinger liquid behavior are
derived by linearizing the energy bands around Fermi points,
rendering free-standing 1D correlated conductors particle-
hole symmetric at low energies [19–22]. Therefore, it is
important to investigate the hybridization of metallic wires
that respect the particle-hole symmetry to semiconducting
substrates that break it. This should be followed or accom-
panied by ab initio calculations of more realistic models of
Au/Ge(001) reconstructions.

From another side, the Bi/InSb(001) reconstruction reveals
Luttinger-liquid behavior [2], although it is prepared with
large coverage of Bi on the InSb(001) surface. This raises the
question on the strength and nature of the wire-wire coupling.
The Bi/InSb(001) is much less investigated as a candidate
of possible 1D physics in comparison to the Au/Ge(001)
especially using STM or STS. Indeed, our findings motivate
detailed investigations on the exact surface structure to un-
cover the exact mechanism of emergent Luttinger liquids of
1D correlated metals.

The problem in the previous attempts to discus the exis-
tence of Luttinger liquids in the Au/Ge(001) reconstruction
was in trying to make the interpretation as 1D character
“against” 2D character. However, we think that the exist-
ing techniques (STM, STS, ARPES, etc.) offer a way to
resolve the debate on the 1D vs 2D character. The analy-
sis of previous and future experiments have to consider the
possibility of emergent exactly 1D character from 2D disper-
sive systems and possible effective diagonal coupling. The
already-seen power-law decay of the local density of states
in STM and ARPES experiments is solid evidence for a 1D
correlated metal [1,12]. The nonlocal ARPES measurements
reveal clear 2D dispersion, but the shape of the Fermi surface
is debated. However, the latter has 1D character even in in-
vestigations supporting 2D character and ruling out Luttinger
liquid [12,16,18]. To compare with experiments, we state
the need of theoretical investigations of correlated diagonally
coupled chains and explicit calculations of Luttinger liquid
properties.

As example of interacting wires we can consider spinless
fermions with nearest-neighbor intrawire interaction similar
to that considered in Refs. [25,26]. Two such interacting
wires, coupled with perpendicular hopping, lead to a charge
density wave insulator at any finite value of the perpendic-
ular hopping [19]. However, if the two interacting wires are
coupled with diagonal hopping, this leads to two Luttinger
liquids with different charge velocities [19], but up to our
knowledge, we did not find analytical investigation on the

transition to charge density wave insulator of such system
by increasing the interaction. This finding clarifies the re-
sults in Ref. [26] for two nearest and next-nearest-neighbor
wires without direct wire-wire coupling. We can safely state
that the two nearest-neighbor wires are charge density wave
insulators due to the substrate mediated perpendicular hop-
ping. The next-nearest-neighbor wires are decoupled spinless
fermion wires since the substrate will not mediate effective
diagonal hopping. However, the substrate still imposes the
superpositions of bonding and antibonding fermions in the
wires rendering the wire-wire interaction possible among
them. Therefore, the next-nearest-neighbor wires reveal 1D
Luttinger liquid phase, but the transition to the charge density
wave insulating phase seen in Ref. [26] should be clarified in
more details. Extending the number of interacting wires with
diagonal hopping renders the problem complex. However, the
one-dimensional behavior in the noninteracting limit can lead
to the general form of sliding or crossed sliding Luttinger
liquids [38–43]. Interestingly, a dimensional reduction of a
2D correlated system into a set of correlated one-dimensional
systems has been found in the presence of both perpendicular
and diagonal exchange coupling in spin systems [44,45]. The
dimensional reduction found there is due to the enhancement
of diagonal coupling. This can be seen in the noninteracting
limit in which the diagonal hopping acts as an additive term to
the intrachain hopping terms while the perpendicular hopping
acts as a chemical potential that shifts the bands. Therefore, at
vanishing perpendicular term, one ends up with a set of effec-
tive 1D systems analogous to what we discussed in diagonally
coupled wires. All these findings related to diagonally coupled
1D systems need thorough investigations in the presence of
strong correlation.

VII. CONCLUSION

The hybridization to substrate renormalizes the model pa-
rameters of single and two SSH wires coupled to a simple
cubic semiconducting substrate that respects the symmetries
of the BDI class toward the model parameters of the substrate.
The substrate can mediate effective perpendicular hopping
in the absence of direct perpendicular hopping between
the wires, but it cannot mediate effective diagonal hopping
in the absence of direct diagonal hopping. The hybridiza-
tion to the substrate does not change the basic nature of the
perpendicular or the diagonal hopping. This behavior justi-
fies neglecting the substrate and considering 2D arrays of
perpendicularly or diagonally coupled uniform tight-binding
wires without dimerization. We established the possibility
to realize properties of strictly 1D atomic wires emerging
from 2D arrays of diagonally coupled wires, despite strong
two-dimensional dispersions. These findings can facilitate the
investigations of Au/Ge(001) and Bi/InSb(001) reconstruc-
tions, where properties of 1D Luttinger liquid are observed
despite strong energy dispersion perpendicular to the direction
of the wires or large surface coverage.
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