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Josephson junction of nodal superconductors with a Rashba and Ising spin-orbit coupling
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We study the effect of a Rashba spin-orbit coupling on the nodal superconducting phase of an Ising super-
conductor. Such nodal phase was predicted to occur when applying an in-plane field beyond the Pauli limit to
a superconducting monolayer transition metal dichalcogenides (TMD). Generically, Rashba spin orbit is known
to lift the chiral symmetry that protects the nodal points, resulting in a fully gapped phase. However, when the
magnetic field is applied along the x direction, a residual vertical mirror symmetry protects a nodal crystalline
phase. We study a single-band tight-binding model that captures the low-energy physics around the � pocket of
monolayer TMD. We calculate the topological properties, the edge state structure, and the current phase relation
in a Josephson junction geometry of the nodal crystalline phase. We show that while the nodal crystalline phase
is characterized by localized edge modes on non-self-reflecting boundaries, the current phase relation exhibits a
trivial 2π periodicity in the presence of Rashba spin-orbit coupling.
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I. INTRODUCTION

Transition metal dichalcogenides (TMDs) such as NbSe2

and MoS2 have been proposed and experimentally confirmed
to be an ideal platform for in-depth explorations for un-
conventional superconductivity—both intrinsic and externally
induced [1–14].

More recently, cutting-edge advances in fabrication tech-
niques have facilitated the engineering of layered systems
from these TMDs where the constituent layers are held to-
gether by weak van der Waals force [15,16]. Here, some
systems are found to retain their superconducting property
even down to the monolayer limit [14,17–25].

Unlike their bulk counterparts, many monolayer and
few-layer TMD’s break inversion symmetry, thereby giv-
ing rise to a very strong Ising spin-orbit coupling (SOC)
[9,14,15,17–21,26], which pins the electron spins perpen-
dicular to the plane. The most remarkable consequence of
this strong SOC is that superconductivity survives at high
in-plane magnetic fields even beyond the Pauli critical limit
[2,14,17,19,20,22,23,27–31].

It was proposed that the presence of an in-plane field can
induce a topological transition into a nodal superconducting
phase [3,7] protected by a combination of an effective time re-
versal and particle-hole symmetry. The nodal superconducting
phase is expected to be accompanied by Majorana flat bands
[32,33], indication of which have been reported [34,35], as
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well as distinct 4π periodic Josephson current for the trans-
verse momenta in-between the nodal points [36].

In this paper we study the effect of Rashba SOC on
the nodal superconducting phase, focusing on the boundary
modes and the Josephson current phase relation. Rashba SOC
is naturally present due to electronic gates and the presence
of a substrate and can be tuned experimentally. The presence
of Rashba SOC breaks the chiral symmetry that protects the
nodal superconducting phase, and as a result, the nodal points
are generally gapped. However, when the in-plane field is
aligned along the x direction, a lower crystalline symmetry
protects the nodal phase [37]. We study the boundary states
in the crystalline phase as well as the current-phase relation
in a Josephson-junction geometry. Our results indicate that
while the vertical mirror symmetry protects exponentially lo-
calized states at the boundary transformed by the symmetry,
the current phase relation exhibits a trivial 2π periodicity in
the presence of Rashba SOC.

The plan of the paper is as follows. We begin in Sec. II with
an analysis of the low-energy momentum-space Hamiltonian
and its related symmetries. In Sec. III we introduce a toy
model on a triangular lattice, which reduces to the continuum
Hamiltonian close to the � point. We discuss the topological
properties of this model with and without Rashba SOC and
study the stability of the boundary modes in a ribbon geome-
try. The physics of a Josephson junction fabricated out of such
a material is discussed in Sec. IV.

II. CONTINUUM MODEL

An Ising superconductor such as monolayer NbSe2 sub-
jected to an in-plane magnetic field of magnitude h, with
a superconducting pairing � is governed by the following
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Bogoliubov-de-Gennes (BdG) Hamiltonian:

H(k) = ξ (k)τ z + λ(k)σ z − αR(kxτ
zσ y − kyσ

x )

+ h cos θτ zσ x + h sin θτ 0σ y

+ �(�)τ yσ y + �(�)τ xσ y, (1)

where ξ (k) = (k2
x + k2

y )/2m − μ is the kinetic energy term
with μ being the chemical potential. The Ising SOC λ(k) =
λI (k3

x − 3kxk2
y ) is unique to this class of materials, and pins

the electron spins perpendicular to the x–y plane. The form of
λ(k) is constrained by the crystalline symmetry point group
D3h, which includes a mirror reflection plane Mz (with normal
along the z direction), a threefold rotational symmetry C3 and
a vertical mirror Mx (with normal along the x direction). The
strong Ising SOC protects superconductivity in the presence
of an in-plane magnetic field h, which can exceed the Pauli
limit. The parameter θ denotes the angle the in-plane magnetic
field makes with the x axis. αR determines the strength of
Rashba SOC, typically present in experimental setups, and
can be tuned by gating or by appropriate choice of substrate.

In the absence of Rashba SOC, i.e., when αR = 0, the
in-plane direction of h is immaterial. When |h| > � the BdG
spectrum has twelve nodal points on the high symmetry �–M
lines kx = 0,±√

3 along which the Ising SOC vanishes. This
nodal superconducting phase is accompanied by the presence
of Majorana flat bands [3,7,32,33], as well as an energy phase
relation that depends on the momentum transverse to the cur-
rent direction, with a 4π periodicity for the momenta lying
between each pair of nodal points [36].

In this paper we analyze the effect of Rashba SOC on the
nodal superconducting phase, the fate of its boundary modes,
and the Josephson current phase relation. To this end, we work
in a parameter regime where h > |�| and there are twelve
nodal points in the absence of Rashba SOC.

Family of 1D Hamiltonians and symmetries

The origin of the nodal points can be understood by ana-
lyzing the family of 1D Hamiltonian obtained by setting ky

as a parameter, H(1D)
ky

(kx ). In the absence of Rashba SOC,
i.e., when αR = 0, this model has a particle-hole symmetry
given by

CH(1D)
ky

(kx )C−1 = −H(1D)
ky

(−kx ) (2)

with C = τ xK, where K denotes the complex conjugation
operator.

While the magnetic field explicitly breaks time-reversal
symmetry, the model has an emergent modified time-reversal
(TR) symmetry,

TH(1D)
ky

(kx )T −1 = H(1D)
ky

(−kx ) (3)

with T = σ xτ zK = �Mzτz, which is a combination of
time-reversal symmetry � = iσyK and basal plane mirror
symmetry Mz. The family of 1D Hamiltonians therefore lies in
class BDI of the Altland-Zirnbauer classification [38,39]. The
presence of the nodal points can therefore be understood as a
series of topological phase transitions tuned by the parameter
ky as explained in Ref. [36]. Next, we introduce a Rashba
SOC as given in Eq. (1), which consists of two parts. The first

FIG. 1. Schematic diagram of the triangular lattice used for the
tight-binding model showing the lattice vectors a1,2 and the hopping
amplitudes corresponding to the Ising and Rashba SOC. This hop-
ping profile results in the Hamiltonian HI and HR in Eqs. (6) and (9)
respectively.

term kxσ
yτ z breaks the modified time-reversal symmetry T

while the second term kyσ
x breaks particle-hole symmetry C

of the effective 1D model, leaving H1D
ky

in class A. However,
when the field is oriented along the x axis, i.e., when θ = 0,
the system has a residual vertical mirror symmetry plane,
defined by,

MxH(1D)
ky

(kx )M−1
x = H(1D)

ky
(−kx ) (4)

with Mx = σxτz. We will show below that this 1D Hamiltonian
realizes a crystalline insulating phase associated with gapless
edge states, which are localized along the x direction and
propagate along y direction.

III. LATTICE MODEL

To gain further insight into the topological phase and
the nature of its boundary modes, we study a tight-binding
model presented in [8,40] that captures the key features of the
topological superconducting phase and exhibits the same low-
energy physics in the continuum limit ka → 0. The lattice
model consists of a nearest-neighbor hopping,

H0 = −t
∑
〈i, j〉,s

c†
i,sc j,s − μ̃

∑
i,s

c†
i,sci,s, , (5)

where s =↑,↓ denotes the spin, 〈i, j〉 spans all the nearest
neighbors, and μ̃ is the on-site chemical potential. In the
continuum limit, ka → 0, this reduces to the kinetic energy
term ξ (k) of Eq. (1) when we set μ̃ = μ − 6t and t = 1/12m.
Similarly, Ising SOC is modeled as a nearest-neighbor hop-
ping with alternating signs (shown in Fig. 1), that reflect the
C3 symmetry. Note that the sign is opposite for the two spins,

HI = iλI

2

∑
〈i, j〉,s,s′

νi jσ
z
ss′c†

i,sc j,s′ (6)
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where νi j = +1(−1) for ri j = ri − r j = a1,−a2, a2 −
a1(−a1, a2,−a2 + a1), respectively, and the lattice vectors
are: a1 = (2a, 0) and a2 = a(1,

√
3).

The term arising due to the in-plane magnetic field (h =
hx, hy) is

HB =
∑
i,s,s′

(h · σ )ss′c†
i,sci,s′ , (7)

while the term corresponding to superconductivity is given by

HSC =
∑

i

�c†
i,↓c†

i,↑ + �∗ci,↑ci,↓. (8)

Lastly, the Rashba term can be written as follows:

HR = − iαR

6

∑
〈i, j〉,s,s′

z · (ri j × σ )ss′c†
i,sc j,s′ . (9)

In momentum space the lattice Hamiltonian, Eqs. (5)–(9) take
the following form:

H =
∑
k,s

ξ̃ (k)c†
kck −

∑
k,ss′

λ̃I (k) · σss′c†
kscks′

+
∑
k,ss′

α̃R(k) · σss′c†
kscks′ +

∑
k,ss′

h · σss′c†
k,sck,s′

+
∑
k,s,s′

i�σ
y
s,s′c

†
k,sc

†
−k,s′ + H.c. (10)

Here the kinetic energy term is

ξ̃ (k) = −4t cos(kx ) cos(
√

3ky) − 2t cos(2kx ) − μ̃. (11)

Here λ̃I (k) and α̃R(k) correspond to the Ising and Rasbha
SOCs respectively and have the following form in the lattice
model:

λ̃I (k) = λI ẑ[sin(k · a1) + sin (k · (a2 − a1)) − sin(k · a2)],

(12)

and

α̃R(k) = −
√

3αR

2
x̂[sin (k · (a2 − a1)) + sin(k · a2)]

− αR

2
ŷ[sin (k · (a2 − a1)) − sin(k · a2)

− 2 sin(k · a1)] (13)

and we have taken the pairing term � to be real. The strength
of each term is suitably chosen to give the same low-energy
Hamiltonian as Eq. (1).

Figure 2 shows the dispersion of the two lower energy
bands of the lattice model given by Eq. (10), in the vicinity
of the � point. The Rashba SOC breaks the chiral symmetry
thus generically lifting the nodal points resulting in a fully
gapped phase. However, when the magnetic field is aligned
along the x direction, the system has a residual vertical mir-
ror symmetry Mx, which protects the nodal points along the
kx = 0 symmetry line. The system therefore realizes a nodal
crystalline phase, as we show below. Due to the breaking of
chiral symmetry, the nodes are shifted away from zero energy.

FIG. 2. Energy dispersion of the two low-energy bands of
Eq. (10) in the vicinity of the � point. The parameters used are
m = 1, μ̃ = −0.3, λSO = 0.15, h = 0.1, � = 0.06, and αR = 0.02.
The white line marks the zero-energy contour. The four gap-closing
points are shifted away from the E = 0 plane and lie on the kx = 0
line.

A. Symmetries and topological classification

To gain further insight into the topological aspects of the
lattice model and the origin of the nodal points in the spectrum
we consider the family of lattice 1D Hamiltonians obtained by
treating ky in Eq. (10) as a parameter.

As discussed in Sec. II, Rashba SOC lifts the chiral sym-
metry thus leaving the family of 1D lattice Hamiltonians in
class A. However, when the magnetic field is aligned along the
x direction the resulting 1D Hamiltonian is symmetric under
vertical mirror Mx, and is gapped except for four discrete
values of ky. For values of ky between these nodal points
the system realizes a one-dimensional topological crystalline
phase [41,42].

At k(inv)
x = 0, π , the 1D Hamiltonian is mapped onto it-

self under reflection. In these reflection symmetric momenta,
the energy levels have a well-defined reflection eigenvalue.
The reflection eigenvalues of the two occupied levels, labeled
as 1, 2 are ζ1,2(kx = 0) and ζ1,2(kx = π ) corresponding to
�kx=0Mx�kx=0 and �kx=πMx�kx=π , respectively, where �k is
the projector onto the two lowest energy levels at a given mo-
mentum k. These are continuously connected to the negative
energy states in the absence of Rashba SOC. The reflection
eigenvalues define a Z2 index given by

νM =
∏

i∈occ,kinv
x

ζi
(
kinv

x

)
. (14)

Figure 3 shows the value of the reflection eigenvalues of
the two occupied bands 1, 2 at the two reflection symmetric
momenta, k(inv)

x = 0, π , as a function of parameter ky. Solid
and dashed gray lines indicate the spectra along the kx = 0
and kx = π lines, respectively. The closing and reopening of
the band gap is accompanied by a topological phase transition;
i.e., a change in sign of ζ1(π ) (for the gap closing at kx = 0)
and ζ2(0) (for the gap closing at kx = π ).

B. Bulk-boundary correspondence

To examine the bulk-boundary correspondence for the
nodal crystalline phase, we study the tight-binding lattice
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FIG. 3. The evolution of the mirror eigenvalues at the reflection
symmetric momenta kx = 0, π of the two lowest energy levels for the
lattice toy model. (The lines are shifted vertically for clarity.) The dis-
persion of the two low-energy bands at kx = 0 (kx = π ) is shown in
solid (dashed) gray lines, indicating the location of the nodal points.
The parameters used are m = 1, μ̃ = −0.3, λSO = 0.15, h = 0.1,
� = 0.06, and αR = 0.02.

Hamiltonian on a ribbon-like geometry with open boundary
conditions in the (non-self-reflecting) x direction, and periodic
boundary conditions in the y direction. This makes ky a good
quantum number and allows us to write the Hamiltonian in the
ribbon geometry as an effective 1D chain for a given ky,

HRib(ky) = H0(ky) + HI (ky) + HR(ky) + HB + HSC . (15)

These terms correspond to kinetic energy, Ising SOC, Rashba
SOC, in-plane field, and superconductivity respectively, a de-
tailed expression is given in Appendix A.

Diagonalizing the Hamiltonian in Eq. (15), we obtain the
eigenvalues and the corresponding wavefunctions for the bulk
and edge states. Figure 4(a) shows the BdG spectrum in the
Ribbon geometry for αR = 0. Eigenvalues corresponding to
states localized on the open x direction boundary are shown in
red. The two pairs of nodal points at ky ≈ 0.25, 0.4 and ky ≈
0.5, 0.8 are accompanied by the appearance of zero-energy
states, which are localized on the open x direction boundary
(marked in red).

Figure 4(b) shows the BdG spectra for αR = 0.01. When
the Rashba term is switched on, only one pair of nodal points
survive, which are shifted away from zero energy. In Fig. 4(b)
these are located at ky ≈ 0.5 and 0.8. The two degenerate
midgap states connecting this pair of nodes (shown in red) live
on the (non-self-reflecting) x boundary and have a nonzero
dispersion as a function of ky (the conjugate momenta for the
direction parallel to the boundary). The degeneracy between
the boundary mode is protected by the mirror symmetry Mx.
In Appendix C we show that any perturbation breaking this
reflection symmetry splits these edge states, see Fig. 3.

Figure 5 shows the spatial profile of the degenerate midgap
states for a fixed ky = 0.75 between the pairs of nodes, for
different values of Rashba SOC (indicated by the markers).
Here nx indicates the position along the chain. Solid lines
indicate a best fit to an exponential law ψ (x) ≈ exp(−x/ξ ),
showing that the states remain exponentially localized even
for finite αR. Importantly, unlike the αR = 0 case, for finite
αR �= 0 the edge states do not satisfy the Majorana condition
ψb �= (u↑, u↓, u∗

↑, u∗
↓)T . This observation is also consistent

with the analytic derivation of the boundary mode in the

FIG. 4. Energy spectrum for a nanoribbon with open boundary
conditions for (a) αR = 0 and (b) αR = 0.01 obtained by diagonal-
izing Eq. (15). The Rashba SOC breaks chiral symmetry and moves
the nodal points away from zero energy. Midgap states localized at
the open boundaries of the ribbon are marked in red. These states
decay exponentially into the bulk for momenta ky between pairs of
nodal points.

continuum limit, see Appendix B. The inset in Fig. 5 shows
the best fit of the decay length with increasing Rashba SOC.

IV. JOSEPHSON JUNCTION

The presence of the zero-energy boundary modes is known
to affect the energy and current across a tunnel junction be-
tween two superconductors. A Josephson junction consists of
two superconductors separated by a weak link such as an insu-
lator or a weaker/nonsuperconducting material. The energy of
the tunnel junction depends on the phase difference between

FIG. 5. Semi-log plot of the decay length of the “particle up”
component |u↑|2 of the edge-state spinor as a function of position at
momentum ky ≈ 0.75 for different values of Rashba SOC strength
αR, while keeping all the other parameters unchanged. Here the
parameters are m = 1, μ̃ = −0.3, λI = 0.15, h = 0.1, and � = 0.06.
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FIG. 6. Schematic showing the torus geometry used to study the
Josephson junction. The y direction has periodic boundary condi-
tions, making ky a good quantum number. The change in the phase
of the superconducting pairing corresponds to a flux � through this
torus. The 1D chain along the x direction has twisted boundary
conditions, i.e., all hopping parameters across the insulating weak
link shown in white, acquire a phase φ = �/�0, �0 being the flux
quantum, and are attenuated by a factor proportional to the strength
of the insulating barrier.

the two superconductors, with a periodicity of 2π . This pe-
riodicity reflects the fact that only Cooper pairs of charge 2e
can tunnel across the junction. The situation changes when the
junction consists of topological superconductors. The pres-
ence of gapless Majorana zero modes at their ends facilitates
the tunneling of single electrons, leading to a doubling of the
periodicity to 4π [43–45]. When the junction is made up of
nodal superconductors, the current phase relation depends on
the orientation of the junction and the momentum transverse
to the current direction [36].

To study the Josephson energy-phase relation we close the
finite ribbon into a torus-like geometry by adding a weak
link between the first and last sites of the effective 1D chain,
see Fig. 6. All hopping terms across the weak link acquire a
phase φ and are also attenuated by a factor proportional to the
strength of the insulating barrier. Varying the phase difference
φ across the junction for a given ky allows to obtain the energy
phase relation.

Figure 7 shows E (φ) for the midgap states at a fixed
ky = 0.76 that lie between pair of nodal points. For αR = 0
this value of ky = 0.76 corresponds to a topological nontrivial
phase of class BDI with winding W = 1. Conversely, with
αR �= 0 this ky value corresponds to a crystalline topological
phase with νM = −1, see Fig. 3. In the absence of Rashba
SOC, shown in Fig. 7(a), the Josephson energy exhibits a 4π

periodicity similar to the continuous model studied in Ref.
[36], with the energy levels crossing zero at φ = π and 3π .
This indicates the presence of Majorana edge states localized
in the vicinity of the weak link, which decay exponentially
into the bulk. Note that Fig. 7 shows the current-phase relation
for the low-energy state only. All higher energy states follow
a 2π periodicity.

When the Rashba SOC is finite, shown in Fig. 7(b), we find
that E (φ) is no longer symmetric about the E = 0 line, i.e.,
it is shifted away from zero. Moreover, an energy gap opens
at φ = π, 3π in the presence of a Rashba SOC as is clear

FIG. 7. Energy-phase relation of a Josephson junction obtained
by solving the lattice model on a torus geometry of Fig. 6. The
Rashba SOC is (a) αR = 0 and (b) αR = 0.01. We have chosen
the momentum ky = 0.75, which lies between two nodal points. In
(a) we find that there are zero crossings at φ = π, 3π as is clear
from the inset. This means EJ (φ) has a 4π periodicity. However in
(b) the Josephson energy-phase relation is no longer symmetric about
E = 0. Additionally, there is no crossing at φ = π, 3π and therefore
only a 2π periodicity in E (φ), the parameters are m = 1, μ̃ = −0.3,
λI = 0.15, h = 0.1, and � = 0.06

from the inset in Fig. 7(b). Hence, in the presence of Rashba
SOC the Josephson energy-phase relation has a 2π periodicity
for all ky values. This is consistent with the observation that
the exponentially localized boundary states are not Majorana
modes.

V. CONCLUSIONS

We have studied the effect of Rashba spin-orbit coupling on
the nodal superconducting phase of an Ising superconductor.
This nodal phase was predicted in monolayer TMD’s such as
NbSe2 in the presence of an in-plane field, which exceeds the
Pauli limit |h| > � [3,7]. The presence of Rashba SOC breaks
the chiral symmetry and generally lifts the nodal points, re-
sulting in a fully gapped state. However, when the magnetic
field is aligned along the x direction line the system has a
residual mirror symmetry Mx, which protects the nodal points
at kx = 0. The system therefore realizes a nodal crystalline
phase, characterized by states exponentially localized at the
(non-self-reflecting) x boundary, which disperse parallel to the
boundary, provided that the x boundary preserves the crys-
talline symmetry. However, we find that even in the presence
of exponentially localized boundary states, the current phase
relation in a Josephson junction becomes trivial and follows a
2π periodicity.
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We note that Rashba spin-orbit coupling is typically
present in experimental setups and can be controlled using
gates and by changing substrates. This gives an experimental
knob to tune in and out of the topological phase, thus changing
the 4π periodic current phase relation to the trivial 2π .
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APPENDIX A: EFFECTIVE HAMILTONIAN
FOR A 1D CHAIN

We study the tight-binding lattice Hamiltonian in a ribbon-
like geometry with open boundary conditions in the x
direction and periodic boundary conditions in the y direction.
Treating ky as a parameter, the resulting model describes a
family of 1D chains along the x direction. Below we setting
the lattice parameter a = 1. The resulting family of 1D chains
is described by (15) with the terms corresponding to kinetic
energy H0, Ising SOC HI and Rashba SOC HR are all depen-
dent on ky, and involve terms, which couple nearest as well as
next-nearest neighbors,

H0(ky) = 2t cos(
√

3ky)
∑
i,σ

c†
i+1,σ ci,σ + H.c.

+ t
∑
i,σ

c†
i+2,σ ci,σ + H.c. − μ̃

∑
i,σ

c†
i,σ ci,σ , (A1)

HI (ky) = −2iλI cos(
√

3ky)
∑
i,α,β

c†
i+1,ασ z

αβci,β + H.c.

+ iλI

∑
i,α,β

c†
i+2,ασ z

αβci,β + H.c., (A2)

HR(ky) = − αR

2
√

3
sin(

√
3ky)

∑
i,α,β

c†
i+1,ασ x

αβci,β + H.c.

+ i
αR

6
cos(

√
3ky)

∑
i,α,β

[
c†

i+1,ασ
y
αβci,β

+ c†
i+2,ασ

y
αβci,β + H.c.

]
. (A3)

The in-plane magnetic field arises from on-site terms,

HB =
∑
i,α,β

(h · σ )α,βc†
i,αci,β . (A4)

Note that in all the terms above, we have suppressed the index
ky for the creation (annihilation) operators. However, since the
superconducting term couples particle and hole components,
it is written as

HSC =
∑

i

�c†
i,ky↑c†

i,−ky,↓ + H.c. (A5)

The Hamiltonian in Eq. (15) is used to obtain the excitation
spectrum in Figs. 5 and 9 (see below), as well as the Josephson
current phase relation Fig. 7.

FIG. 8. Spectrum of the bare 1D effective Hamiltonian Eq. (B1)
consists of two spin-orbit bands (marked by ±) that cross the Fermi
level μky = 0 at the Fermi momenta kF = 0, ±kso.

APPENDIX B: DERIVATION OF BOUNDARY MODES IN
THE CONTINUUM LIMIT OF THE EFFECTIVE 1D MODEL

In this Appendix, we study the boundary modes present
in the nodal crystalline phase when an in-plane magnetic
field is applied along the x direction. The analysis is done
in the continuum limit of the effective 1D Hamiltonian ob-
tained from (1) by treating ky as a parameter. To analyze the
wave function of the boundary modes, we focus on the ky

values that lie between the remaining nodal points along the
� − M line (along kx = 0). For this regime of parameters,
the Ising spin-orbit coupling εI−SO is the largest energy scale
εI−SO � h,�, εR−SO, μky . Working in this regime allows us
to linearize the spectrum around the Fermi points determined
by the Ising spin-orbit coupling and treat the magnetic field,
superconductivity, and Rashba SOC as weak perturbations.

Following a similar analysis as in Ref. [46], we consider
initially the following bare Hamiltonian:

H1D
0 (k) = k2

2m
− μky + λI k

(
k2 − 3k2

y

)
σ z + αR(kσ y) (B1)

setting aside the gap-opening terms such as magnetic field,
SC, and the transverse Rashba term. Here k ≡ kx is the mo-
mentum of the 1D system and the Pauli matrices σ operate
on the spin basis. For simplicity we consider the ky for which
μky = 0.

The eigenvalues of the bare 1D Hamiltonian (B1) are given
by

E (k) = k2

2m
± k

√
α2

R + λ2
(
k2 − 3k2

y

)2
, (B2)

and the Fermi points that satisfy ka � 1 are located at k = 0

and kso = ±
√

3k2
y −

√
16λ2m2(3k2

y −4α2
Rm2 )+1−1

8λ2m2 . Figure 8 shows
the spectrum of the bare Hamiltonian in the limit ka � 1. In
addition, we have three gap-opening perturbations,

Hz = h
∫

x
�ky (x)†σ x�ky , (B3)

H� = �

∫
x
�ky (x)iσ y�−ky (x), (B4)

Hr = −αRky

∫
x
�

†
ky
σ x�ky , (B5)
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where we have introduced the spinor notation �ky =
(ψky,↑, ψky,↓)T . Next, we linearize the spectrum close to the
Fermi points, see Fig. 8. The fields then take the form

�ky+(x) = e−iksoxLky+(x) + Rky+(x), (B6)

�ky−(x) = eiksoxRky−(x) + Lky−(x), (B7)

where Rkyσ (x) and Lkyσ (x) are slowly varying, and the
spin-orbit eigenvectors of the bare Hamiltonian (B1)
are given by �ky− = (i sin χk/2, cos χk/2)T , �ky+ =
(cos χk/2, i sin χk/2)T , with bk cos χk = λI k(k2 − 3k2

y )
and bk sin χk = αRk. Note that for strong Ising SOC the spins
are aligned along the z direction tan χk → 0.

Ignoring strongly oscillatory terms, the kinetic energy can
be written as

H0 = −ivi

∫
x
R†

ky+(x)∂xRky+ − L†
ky−(x)∂xLky− (B8)

− ive

∫
x
R†

ky−(x)∂xRky− − L†
ky+(x)∂xLky+ (B9)

and the gap-opening terms then become

Hz = h
∫

x
R†

ky+(x)Lky−(x) + H.c., (B10)

H� = �

∫
x
[Rky+(x)L−ky−(x) + Lky+(x)R−ky−(x)], (B11)

Hr = −αRky

∫
x

R†
ky+(x)Lky−(x) + H.c.. (B12)

The Hamiltonian separates into two decoupled subsys-
tems, which we label the “external” (e) and “internal”
(i) branches �e = (Lky+, Rky−, L†

−ky+, R†
−ky−)T and �i =

(Rky+, Lky−, R†
−ky+, L†

−ky−)T with the respective Hamiltonians,

Hi = −ivi∂xσ
z + hτ zσ x − αRkyσ

x + �τ yσ y, (B13)

He = ive∂xσ
z + �τ yσ y. (B14)

In what follows we will drop the subscript ky for brevity.
We solve for a semi-infinite wire with a boundary at x = 0.

We make the following ansatz for the zero mode, Hlφl (x) = 0
with φl (x) = e−x/ξl φl (0) where l = e/i with ξe = ve/� and
two possible values ξi for the inner branch ξi1 = vi

h+
√

�2+α2
Rk2

y

and ξi2 = vi

h−
√

�2+α2
Rk2

y

. Reincorporating the oscillatory phases

and expressing the zero-mode solutions in terms of the origi-
nal basis � = (�ky+, �ky−, �

†
−ky+, �

†
−ky−)T we find

ψi1 = φi1 = e−x/ξi1

⎛
⎜⎜⎜⎝

−i
−1

i
β

− 1
β

⎞
⎟⎟⎟⎠, (B15)

ψi2 = φi2 = e−x/ξi2

⎛
⎜⎜⎜⎝

i
1

+iβ
−β

⎞
⎟⎟⎟⎠, (B16)

FIG. 9. Bulk and edge state spectrum for α = −0.01, μ̃ =
−0.25 μl = −0.175, m = 1, λSO = 0.15, h = 0.1, and � = 0.06.
μl �= 0 on either of the two edges, breaks the reflection symmetry
and lifts the degeneracy of the edge states (shown as solid red lines).

with β = αRky−
√

�2+α2
Rk2

y

�
and

ψe1 = e−x/ξe

⎛
⎜⎜⎜⎝

ie−iksox

eiksox

−ieiksox

e−iksox

⎞
⎟⎟⎟⎠, (B17)

ψe2 = e−x/ξe

⎛
⎜⎜⎜⎝

ie−iksox

−eiksox

ieiksox

e−iksox

⎞
⎟⎟⎟⎠. (B18)

This allows us to construct a zero mode that satisfies
the boundary conditions at x = 0 namely ψM (x = 0) = 0,
which is

ψM (x) = β(β + 1)

β − 1
ψi1 + ψi2 + (β2 + 1)

β − 1
ψe1

= β(β + 1)

β − 1
e−x/ξi1

⎛
⎜⎜⎜⎝

−i
−1

i
β

− 1
β

⎞
⎟⎟⎟⎠ + e−x/ξi2

⎛
⎜⎜⎜⎝

i
1

+iβ
−β

⎞
⎟⎟⎟⎠

+ (β2 + 1)

β − 1
e−x/ξe

⎛
⎜⎜⎜⎝

ie−iksox

eiksox

−ieiksox

e−iksox

⎞
⎟⎟⎟⎠. (B19)

We note that in the absence of Rashba SOC, β = −1, and
the boundary mode indeed satisfies the Majorana condition
namely ψM |αR=0 = (u+(x), u−(x), u∗

+(x), u∗
−(x))T . However,

at finite αR �= 0 this condition is no longer met and the bound-
ary state is no longer a Majorana mode.

APPENDIX C: BREAKING OF REFLECTION SYMMETRY

In the family of 1D chains with open boundary conditions
(15), the degeneracy of the midgap states is protected by
mirror symmetry Mx, i.e., the edge states are reflected onto
each other under this symmetry. Breaking the symmetry by
adding a local potential on one of the two edges μl �= μ̃ will
lift the degeneracy. This situation is shown in Fig. 9.
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Conversely, in the absence of Rashba SOC, i.e., when αR =
0 the degeneracy is protected by the chiral symmetry of the 1D

chain for fixed ky. Consequently, the degeneracy is not lifted
even in the presence of a local chemical potential.
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