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The optical response of quasi-one-dimensional systems is often dominated by tightly bound excitons that
significantly influence their basic electronic properties. Despite their importance for device performance, accu-
rately predicting their excitonic effects typically requires computationally demanding many-body approaches.
Here, we present a simplified model to describe the static macroscopic dielectric function, which depends only
on the width of the quasi-one-dimensional system and its polarizability per unit length. We show that at certain
interaction distances, the screened Coulomb potential is greater than its bare counterpart, which results from
the enhanced repulsive electron-electron interactions. As a test case, we study 14 different nanoribbons, 12 of
them armchair graphene nanoribbons of different families. Initially, we devised a simplified equation to estimate
the exciton binding energy and extension that provides results comparable to those from the full Bethe-Salpeter
equation, albeit for a specific nanoribbon family. Then, we used our proposed screening potential to solve the
1D Wannier-Mott equation, which turns out to be a broad approach that is able to predict binding energies that
match quite well the ones obtained with the Bethe-Salpeter equation, irrespective of the nanoribbon family.
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I. INTRODUCTION

Atom-thick quasi-one-dimensional (Q1D) semiconducting
systems hold promise as platforms for electronic and opto-
electronic applications, owing to their tunable band gaps and
optical responses that cover a broad range of the electromag-
netic spectrum. According to previous theoretical works, it is
now well established that Coulomb interactions play a key
role in the transport and optical properties of Q1D semicon-
ductors [1-3]. More recently, these predictions have also been
observed experimentally [4,5].

Coulomb screening plays a fundamental role in deter-
mining a wide range of physical properties in solids and
molecular systems [6,7]. In particular, screened Coulomb in-
teractions are critical for the formation of excitonic states.
In conventional three-dimensional bulk semiconductors, ex-
citons are weakly bound (a few to tens of meV) due to the
large environmental screening [8,9]. However, systems of re-
duced dimensionality (2D and 1D) exhibit strongly bound
excitons as a consequence of the reduced dielectric screen-
ing they experience, resulting from significant changes in
the dielectric environment [4,10]. Theoretically, the exci-
ton binding energy can be accurately determined by solving
the Bethe-Salpeter equation (BSE) within a framework of
first-principles methods based on many-body perturbation
theory [11,12]. However, this is very computationally de-
manding and can only be calculated for relatively small
systems. Since the enhanced electron-hole interactions in low-
dimensional semiconductors considerably impact their optical
properties, simplified models for the screened Coulomb po-
tential that are able to predict exciton binding energies and
radii for realistic materials are highly desirable. Additionally,
these models may provide useful insights that might be hidden
by more complex calculations.
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In this regard, the simple soft-Coulomb and modi-
fied Kratzer potentials have been used as an alterna-
tive to include effects of screening in some 2D semi-
conductors [13], yielding reasonable binding energies
for excitons [14,15] and interlayer excitons [16]. More-
over, the Rytova-Keldysh potential [17,18], and its ex-
tended form for truly 2D semiconductors [19], which
depends on the polarizability of the material, has also
been successfully used to account for the electron-hole
interaction.

While considerable theoretical advances have been made
in modeling screened potentials in 2D semiconductors, de-
scribing electron-hole interactions in Q1D semiconducting
systems has typically relied on cusp-type [20], Yukawa-
like [21], and soft-Coulomb potentials [22-24]. Accurate
models for electron-hole interaction in carbon nanotubes
(CNTs) have been proposed, utilizing either fitted param-
eters from first-principles calculations or two-band models
for the dielectric function [25,26]. However, the coun-
terpart for atom-thick 1D semiconducting ribbons is still
lacking. This is particularly critical given modern synthe-
sis techniques that have enabled the realization of atom-
thick Q1D nanostructures [27], where excitonic effects
dominate.

In this paper, we propose a simple model to describe the
static dielectric response and screened Coulomb potential en-
ergy of any atom-thick Q1D semiconducting system. These
physical quantities are used to solve the 1D-Wannier-Mott
equation and study the excitonic effects of 14 semiconducting
nanoribbons, including 12 armchair graphene nanoribbons
(AGNRs) of different families, whose exciton extension and
binding energies, for the lowest-excitonic state, compares well
with calculations based on the solution of the Bethe-Salpeter
equation.
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II. MODELING AND DISCUSSION

The screening is modeled starting from the proposal by
Cudazzo et al. for 2D dielectrics [19]. Our model initially
considers an infinitely long narrow dielectric rod that extends
along the x direction with width L (along the y direction) and
thickness b (along the z direction), fully surrounded by vac-
uum. Then, a point charge with charge density p**'(r) = ed(r)
is placed at the origin of the dielectric, causing a redistri-
bution of charges in its surroundings, which is characterized
by the induced charge density p™(r) = —V - Pip(r,). The
induced charge is restricted to the dielectric rod, and it is
evaluated at a point r, = (x, [y| < %, Iz| < g). The polariza-
tion is assumed to be proportional to the induced electric
field P;p = a1pEiocal, Which enables us to rewrite the induced
density in terms of the total electrostatic potential, p™(r,) =
—alD(S(% - |y|)8(l§’ — |z])V2¢(r,), where ap represents the
1D internal polarizability per unit length of the system. Here,
the delta functions centered at the edges of the rod are math-
ematical artifacts chosen to avoid indeterminacy in certain
definite integrals that arise during the Fourier transform pro-
cedure. Hence, in the limit of small L and b going to zero, the
induced charge density is effectively localized on the surface
of the Q1D system. The screened potential is thus obtained
by solving the Poisson equation, V2(r) = —4n[p™(r) +
pi“d(r)], which, after some algebra, allows us to write the
screened electrostatic potential in reciprocal space:

2eKo(51qx)
1+ 8a1pg2Ko(51g:l)

Here, Kj represents the zeroth-order modified Bessel function
of the second kind. From the latter expression, one can imme-
diately define the 1D microscopic dielectric response function

¢~)ID(CIX) = (1

2 qux|

eip(gx) =1+ SWID%Ko(T), (2)
which is clearly ¢, dependent, reflecting its nonlocal nature
in real space. This expression bears similarity to the dielectric
function of single-wall CNTs obtained within the random
phase approximation (RPA), with the exception of a factor that
inherently describes the cylindrical geometry of CNTs [28].
The reader is referred to the Appendix, which contains the
full derivation of Egs. (1) and (2).

To assess the validity of our dielectric screening model,
we compare it with many-body quasiparticle calculations ob-
tained from first principles for a variety of semiconducting
AGNRs with different lateral confinement sizes (widths). De-
pending on the number of atoms N that define the lateral width
[see Fig. 1(a)], AGNRs can be classified into three different
families named N = 3p, 3p+ 1, and 3p + 2, where p is an
integer. Now it is well established, both theoretically and
experimentally, that the three AGNR families are semicon-
ductors and that the band gap is reduced as the lateral width
increases, following an inverse relationship [30]. Hereafter,
we used the nomenclature N-AGNR to refer to the systems
used in this paper.

Figure 1(b) presents the ab initio calculated g-dependent
dielectric function of a 4-AGNR obtained within the RPA
including local field effects. As expected, in the limit ¢ —
0, the dielectric function is unity, which indicates the absence
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FIG. 1. (a) Schematic representation of an armchair ribbon in-
dicating the number of dimmer lines across the ribbon width.
The ribbon is periodic along the x direction. (b) RPA ab initio
static dielectric response function for a 4-AGNR (solid blue line).
The green line represents the fit to the function &p(g,) ~ 1 —
80(1[)1]? In(g,L/4). The ribbon width and polarizability per unit length
are L = 5.54 A and a;p = 2.59 A2, respectively. The inset shows the
dependence of o with the quasiparticle band gap of 14 different
armchair ribbons. The dot, triangle, and diamond symbols differen-
tiate the different nanoribbon families, while the indices next to the
symbols indicate the nanoribbon index. The orange symbols corre-
spond to selected armchair boron nitride nanoribbons (ABNRs) [29].
The gray dashed line represents a fitted reciprocal function used as
guide to the eyes.

of long-range screening. For finite momentum transfer, the
dielectric function smoothly varies above the unity value,
reaching a maximum of approximately 1.2. This indicates
that microscopic effects such as scattering processes are in-
deed relevant. Since our semiclassical approach is expected
to be valid for small momentum transfer, we can approximate
Eq. 2) as eip(gy) = 1 — 8011]351)2C In(g,L/4) and easily extract
aip by performing a fitting procedure using the ab initio
calculations. The result of this procedure is also shown in
Fig. 1(b) by the green line. In practice, the 1D polarizability
of any Q1D system can be roughly estimated by the finite
difference relation

1 —e(q1)

= fdy 3
847 In(qiL/4) ®

aIp
where ¢; is a finite but small wave vector that in this work is
obtained from a fine uniform k-grid sample of 200 x 1 x 1.
This procedure has already been employed for estimating the
polarizability per unit area of 2D systems, yielding reliable
results [31]. It is also important to analyze the dependence
of the 1D polarizability per unit length with the electronic

quasiparticle band gap. The inset of Fig. 1(b) shows «;p for
14 nanoribbons of different widths. The 1D polarizability is
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FIG. 2. Comparison between the screened and bare energy po-
tential energy for a 4-AGNR. The bare energy potential is obtained
by setting a;p = 0 in Eq. (4). The insets shows the induced charge
density distribution around a point charge at x = 0. The polarizabili-
ties per unit length for the 5- and 14-AGNRs are op = 32.4 A2 and
a1p = 183.6 A2, respectively.

roughly inversely proportional to the QP band gap except for
some deviations occurring for wide band-gap systems. This
result suggests that Q1D systems may host a universal linear
scaling law between the band gap and the exciton binding
energy as already observed in 2D systems [32].

Now, by inverse Fourier transforming Eq. (1) we obtain the
real-space screened potential energy, Wip(x) = e¢ip(x),

e? o0 i 2Ky é|‘]x|
Wip(x) = —/ dge'™ (i )L :
2 J 1+ 8a1pg?Ko(51gx)

This is the main result of this paper, as it provides a sin-
gle particle potential for Q1D dielectrics that can be solved
numerically with relative care. In Fig. 2, we compare the
screened Coulomb potential energy of a 4-AGNR with its
bare counterpart (o;p = 0). As expected, at short distances
the effective Coulomb potential is considerably reduced by
screening effects, which results from attractive interactions
between the induced and injected point charge. At large dis-
tances, the system is unscreened and follows the characteristic
1/x law. This asymptotic trend can be easily demonstrated by
analyzing the case of a weakly screened system (c¢;p — 0).
Indeed, in this limit, the Q1D screened potential presents an
analytical solution of the form Wip(r) = €[x2 + (L/2)*]"2,
which shows that for long-range interactions it follows the
characteristic Coulomb potential. Note that this analytical
form for the potential energy resembles the widely used po-
tential to describe electron-hole interactions in polymers [23].
This particular behavior of our screening model suggests
that it can potentially be used to describe polymeric systems
more accurately. Interestingly, at intermediate distances, the
screened potential slightly rises above the bare one, giving
rise to an antiscreening region, which has also been previously
seen in molecular systems [33] and CNTs [25,26]. The origin
of this phenomenon is related to the enhancement of repul-
sive interactions in the system. In the Supplemental Material,
we show a comparison of the effective electron-electron force
for AGNRs of different widths [34]. Given its Q1D nature,
we argue that, in principle, super-Coulombic electron-electron

“

interaction may also play a crucial role in graphene-based
electronic waveguides [35-38].

To understand this phenomenon, in the upper panel of the
inset, we plot the induced charge density around the injected
point charge pM(x) = é qux[zs(qx)’1 — 1], which ex-
hibits a change of sign and approaches zero at large distances.
Hence, when the interaction between the induced charge and
the injected charge is sufficiently attractive, this antiscreening
effect occurs.

We also investigate the effect of reducing the electronic
band gap (or, equivalently, increasing «jp) on the induced
charge density. The bottom panels of the inset in Fig. 2 present
p"(x) for 5-AGNR and 14-AGNRs, whose quasiparticle
band gaps are 1.57 eV and 0.71 eV, respectively. These values
are significantly smaller than the 4-AGNR quasiparticle band
gap (5.3 eV). As in the previous case, the total induced charge
density integrates to zero; however, the small band-gap semi-
conductors exhibit Friedel-like oscillations, which become
more pronounced with decreasing band gap and are expected
to dominate in the semimetallic limit [39]. In contrast to
metallic systems, where Friedel oscillations arise from the
singularities of the integrand that determines p™™(x) and its
derivatives [40], the physical origin of the charge density os-
cillation in our semiconducting systems is rather different and
can be ascribed to the enhancement of bound charges in the
dielectric system (increased polarizability) as the band gap is
reduced [see inset of Fig. 1(b)]. This, in turn, originates from
a strong repulsion between bound charges and the impurity
charge that eventually produces rapidly damped oscillations.

We now proceed to study the excitonic properties in Q1D
systems. Since, in practice, one would desire a simple ex-
pression that roughly predicts the exciton binding energy with
only a few electronic structure parameters, we first tackle the
problem considering the Wannier-Mott model for a 1D system
subject to a bare Coulomb potential that is screened by a
constant dielectric function that is dependent on the exciton
quantum number n. This yields the Rydberg equation (ex-
pressed in Hartree units)

n [k
By = 2e2n?’ )
where n is the exciton quantum number. Following the model
proposed by Olsen et al. [31] for 2D semiconductors, we as-
sume the n-dependent dielectric to be an average in reciprocal
space,

2a,
En =

1/ay

[ s ®)
T Jo
where a, is the average n-dependent effective exciton ex-
tension. For simplicity, we employ the model dielectric
function in the long wavelength limit (g, — 0), &p(gyx) =
1 — 8aypg? In(g,L/4). This corresponds to the situation from
Eqg. (2) in which the electron wavelength is much larger than
the characteristic lateral confinement of the QID system.
Within this approximation, the dielectric function neglects the
microscopic effects occurring at short distances. Neverthe-
less, we should mention that the long wave limit is usually
a good starting point to describe many electron-electron in-
teractions in solids and quantum systems, and is widely used
as it enables one to deal with rather more simple analytical
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FIG. 3. (a) n-dependent static dielectric function versus the ex-
citon state number n for the 3-, 4-, and 5-AGNRs. The dielectric
function is computed by solving Eq. (8). The inset shows the average
exciton extension varying with the exciton state number for the
4-AGNR, which is obtained with Eq. (7). (b) Binding energy for the
lowest-energy bright excitons in 12 different AGNRs as a function of
the expectation value of their exciton extension. The labels represent
the index of each AGNR. The symbols represent the different AGNR
families. The horizontal (vertical) axis is normalized to results ob-
tained by solving the full Bethe-Salpeter equation binding energy
(width of the N-AGNR). The inset shows the dependence of the
logarithmic factor in Eq. (8) with the reduced mass.

expressions [41,42]. Moreover, the average dielectric function
can be related to the 1D exciton extension via the expression

3n’e,
2u

ap = (|x) = (N
This relation is obtained by calculating the expectation value
of the absolute value of the position operator, taking into
account the wave functions of a 1D hydrogen atom (see
Appendix for details). This definition enables us to account
for the enhanced exciton extension of higher excitonic levels.
After integrating Eq. (6), and using Eq. (7), we obtain a simple
transcendental equation

2 64apu’ 6n’e
3 2 1D N
- —& — ————|[1+31 =0 (8
T T Tglan? [ n( uL >i| ®

that, combined with Eq. (5), provides the exciton binding
energy of any Q1D atom-thick semiconducting system.

Figure 3(a) presents the n-dependent average dielectric
constant for three AGNRs that monotonically decay with the
exciton quantum number. For all cases, €, yields a value close
to unity, which is expected as we are dealing with atom-
thick systems surrounded mostly by vacuum. Additionally,
one can notice that the factor n?s2 should rapidly enhance
with n, ensuring the decrease of the binding energy for high
level excitonic states [see Eq. (5)]. This result translates to
enhanced values for the expectation value of the exciton radius
for higher n, as seen in the inset of Fig. 3(a).

The validity of Eq. (8) is clearly limited by the behavior
of the logarithmic function, which strongly depends on the
width and reduced effective mass of the Q1D system. Our
simulations show that Eq. (8) yields real values for ¢, as
long as In(6n?/uL) > 0. In Fig. 3(b), we present the exciton

binding energy for n = 1, obtained with the simplified model
and normalized to results obtained by solving the full Bethe-
Salpeter equation as a function of the normalized exciton
extension. The binding energies computed within the BSE
approach are listed in the Supplemental Material [34] (see
also Refs. [29,43-51] therein). For a;/L < 1, the simplified
screened hydrogen model reproduces the BSE results fairly
well. Interestingly, the best agreement occurs for GNRs of
the family 3p 4 1. This is due to equilibrium between the nu-
merator and denominator of the logarithmic function, which
prevent its rapid growth in Eq. (8). This behavior is shown
in the inset of Fig. 3(b) for the three GNR families. For
larger values of a; /L, however, the model underestimates the
exciton binding energies by up to a factor of 2 for GNRs
in the 3p 4 2 family. Based on these trends, we expect the
analytical screened hydrogen model to reproduce the BSE
results for n = 1 in semiconducting systems where the term
In(6n%e, /L) in Eq. (8) smoothly varies around unity. It is
worth mentioning that the ability of the analytical model to ac-
curately estimate binding energies for different systems may
be, in principle, improved by considering explicitly the odd
and even parity solutions for the eigenfunctions of the 1D Hy-
drogen atom Hamiltonian, considering a cutoff potential of the
formV(x) = m Indeed, in this case, the binding energy is

proportional to 1/(n + §)2, where delta depends on the cutoff
yzo and the eigenfunctions [20,52]. However, this procedure
precludes one from attaining an analytical expression for the
binding energy and will not be addressed in this work.

Although we have shown that using the binding energies
obtained from Eq. (8), we are able to predict reasonably well
the BSE results under some constraints, we now turn to a still
simple yet more accurate description to predict the exciton
binding energy of Q1D semiconductors.

Now we consider the Wannier model for excitons [52,53],
which relies on the effective mass approximation for an
electron-hole pair. The exciton binding energy of a Q1D
system can be obtained by solving the one-dimensional
Schrodinger equation,

—i* 92 .
[ﬂ% + WID(X):| W(x) = EjW(x), 9
where u = m,my,/(m, + my,) is the reduced effective mass of
the electron-hole pair, and W p(x) represents the real-space
screened electron-hole potential defined in Eq. (4).

In Fig. 4(a), we compare the lowest-energy excitonic state
obtained by fully ab initio solving the Bethe-Salpeter equa-
tion with the results obtained via the numerical solution of
Eq. (9) for 14 different nanoribbons [34]. Overall, very good
agreement is observed for the entire range of energies for
the 12 AGNRS. We also tested our model in two armchair
hexagonal boron nitride nanoribbons (ABNRs), namely, 6-
ABNR and 8-ABNR, identified in Fig. 4(a) by the orange
symbols and available in literature [29]. This result suggests
that our model may be potentially used in different planar
Q1D semiconducting systems. To explore the predictability
of our model for excited states, in the inset of Fig. 4(a) we
compare the ten lowest excitonic states obtained with our
model with those obtained from BSE calculations for the
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FIG. 4. (a) Comparison of the lowest-energy bright exciton bind-
ing energy calculated with the Bethe-Salpeter equation (x axis) and
the 1D-Schrodinger equation model given by Eq. (9) (y axis), for 14
nanoribbons. The symbols highlight the family of each AGNR while
the labels N=3,4,..12 indicate the width of the ribbon. The inset
shows a comparison of the variation of the binding energy with the
exciton state number for the BSE (black dots) and Schrodinger (red
dots) approaches for the 4-AGNR. The right-handed figure presents a
comparison of the normalized electron distribution along the ribbon
axis for (b) the first, (c) second, and (d) third bright exciton states of
a 4-AGNR.

4-AGNR. From this comparison, we noted that the model can
also describe excited states binding energies.

To quantitatively assess the extending range of excitons,
in Figs. 4(b)—4(d), we present the projected electron den-
sity along the ribbon obtained from the solution of the BSE
and compare it with the envelope wave function obtained
from Eq. (9). For the two lowest excitonic states, the model
of Eq. (9) is in accordance with the BSE results, and for
n = 3, the model is in qualitative agreement but slightly un-
derestimates the exciton extension by approximately 15%.
These results suggest that the proposed screening model is
able to fairly reproduce the BSE results for the lowest ex-
citonic states based solely on the reduced effective mass
and the material-dependent 1D polarizability per unit length.
These two quantities can be accurately calculated at a modest
computational cost using standard density-functional theory
methods.

At this point, we would like to highlight that our results for
the real-space screened potential share some striking similari-
ties with those of semiconducting CNTs. In these systems, for
instance, it has been theoretically predicted that the strength
of the Coulomb interactions is considerably enhanced for
carrier separation distances larger than the nanotube diame-
ter [26,54]. This gives rise to the so-called super-Coulombic
interactions, a term coined to refer to the force between two
carriers at a given distance, which is stronger than the force
associated with Coulomb’s law for two electrons in vacuum.
Interestingly, our results for semiconducting AGNRs point
in a similar direction, suggesting that super-Coulombic in-
teractions may also be observed in graphene nanoribbons.
Although the experimental verification of super-Coulombic
interactions is challenging, as it requires ultraclean samples
and the design of potential traps based on multiple gates,

experimental measurements have confirmed the existence of
enhanced forces between electrons in CNTs. These mea-
surements have shown that in certain regions of space, the
measured force can be up to five times greater than the force
predicted by Coulomb’s law [55]. Indeed, this experimental
verification opens avenues for understanding the role of el-
ementary charged interactions in Q1D systems, which may
have significant implications for future research in this field.

Another important aspect that our model can address
with modest computational cost is the characterization of
the width and reduced mass dependence of binding ener-
gies for nanoribbons. While this characterization has already
been done for AGNRs [56], we argue that our model may
be employed to perform similar characterizations in other
atom-thick nanoribbons, such as boron nitride, silicene, and
others. For instance, previous studies conducted on CNTs
have characterized the chirality and diameter dependence of
exciton binding energies, shedding light on the crucial role of
screening effects in excitonic properties [54,57]. We argue that
characterizing these properties can serve as a valuable guide
for interpreting future experimental measurements.

Finally, we stress that in our paper we have considered
freestanding systems, although real Q1D semiconductors are
typically surrounded by polarized environments such as metal
or semiconducting substrates. While the effect of substrates
has not been addressed in detail in our paper, it is expected that
surrounding dielectric materials will considerably reduce the
binding energies [30,58]. In this regard, we mention that our
model can be extended to consider substrate effects following
the procedure recently proposed by Riis-Jensen et al. [59].

III. CONCLUSIONS

In summary, we proposed a simple dielectric screening
model for Q1D semiconductors that yield an analytical ex-
pression for the macroscopic dielectric function in reciprocal
space which solely depends on the effective reduced mass,
the system width, and the polarizability per unit length.
Based on a screened hydrogen model, we obtained a simple
equation for the level-dependent dielectric function &, and
expectation value of the exciton radius a, which describes
the excitonic effects of nanoribbons of the 3p + 1 family.
Moreover, the real-space screening potential is used to solve
a 1D Schrodinger equation to obtain exciton binding energies
and wave functions, whose values are in good agreement with
those obtained from the solution of an ab initio-based Bethe-
Salpeter equation. We expect that this paper will stimulate
future studies on the characterization of excitonic effects in
emergent Q1D semiconducting systems, and may serve as a
toy model for interpreting future experimental measurements
where Coulomb interactions are crucial.
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APPENDIX

1. Dielectric screening model for quasi-one-dimensional
dielectrics

Let us consider the effect of inserting an impurity point
charge into a QID dielectric system represented in Fig. 5.
In response to the electric field associated with the impurity,
the local electrical charges slightly reorganize, leading to the
polarization of the system. Therefore, one can distinguish
between the impurity charge density po®*'(r) and the induced
charge density p™(r).

The screening is modeled by considering an effective
charge density of the form [60]

p(r) = p™(r) + p™(r).

Within the linear response regime, the dielectric function is
defined as the ratio of the Fourier transformed displacement
and electric fields, e(g) = ﬁ(q)/E (q), along the q direction.
From this definition and considering the relation between
scalar potentials and the fields, we obtain

_ 9@
e(q) ’

Here, ¢(q) and $**'(q) are the Fourier transforms of the
screened and impurity scalar potentials, respectively. Here-
after, we adopt Gaussian units, unless otherwise stated. Now
we solve Poisson’s equation,

V2(r) = —4n p(r) = —4x[p™(r) + p™(r)],

where the impurity charge density is placed at the origin and
expressed as

(A)

é(q)

(A2)

(A3)

p(r) = ed(r). (A4)

Here, we assume that the induced charge density is
p"(r) = —V . P(r), while the polarization is proportional to
the local electric field Pjp = apEjgca- The system is initially
modeled as a narrow dielectric rod extending in the x direction
with width L along the y direction, and thickness b along the z
direction. The induced charge density is rewritten in terms of
the screened potential as

2

Here, op represents the dielectric’s polarizability per unit
length. It is important to note that the induced charge den-
sity is confined to the dielectric rod and evaluated at a point

. L b
pM(r,) = 0l1D5<— - |y|>8(5 - |z|)VE¢(rx>. (A5)

—7

FIG. 5. Schematic representation of the quasi-one-dimensional
system for modeling the screening. Here, we consider an electron
(—) and hole (+) in a ribbon, extending along the x direction, of
width L and thickness b.

r, =, |yl < % Iz] < IE’). The delta functions centered at the
edges of the rod serve as mathematical tools to avoid inde-
terminacy in certain definite integrals encountered during the
Fourier transform procedure. It is noteworthy that in the limit
of small L and b approaching zero, the induced charge density
effectively localizes at the center of the Q1D system.
By introducing Eqgs. (A4) and (AS5) into Poisson’s equation,
we arrive at the following expression:
5 b L 9%¢
V¢ = —4mwed(r) 471041]38(2 Izl)8<2 |y|> I
(A6)
which after applying the Fourier transform (F), can be written
as

FIVp)) = —4neF[8(r)] — 47ra|D]-'[8(§ — Izl)

L 3%
X 5<5 - |y|>%i|-

The last term on the right-hand side of Eq. (A7) can be worked
out separately

A=)

= —|e e x Fil¢(x, L2, b/2)]

(AT)

+ e 260 Fold(x, —L)2, b/2)]
+ eé]zge*qﬁfx[qb(x, L/2, —b/z)]

+ %3 et Filp(x, —L/2, —b/2)1}. (A8)

This expression can be simplified further by recognizing that
a symmetric charge distribution (as assumed in this model)
corresponds to a symmetric potential. This allows us to em-
ploy the relationships ¢(x, L/2,b/2) = ¢(x, —L/2, —b/2) =
¢(x,—L/2,b/2) = ¢(x,L/2, —b/2). Hence, Eq. (A7) can be
expressed as

| (03)(«3)
FIV-$)] = —4meFd(r)] + l6mwaipcos | gy~ Jcos | g;=

2 2
L b
XF|:¢<X, 5, §)i|

For very narrow and atom-thick systems, we consider the
limit as L and b approach zero. Therefore, we perform a Taylor
expansion of the sinusoidal terms and retain only the lowest-
order term, which yields

(A9)

2 2 L b
FIV9)l = —4meF[6(r)] + 16maipg, Fx| ¢\ x, 55|
(A10)
By now performing the Fourier transform of Eq. (A10),
(47 + a5 +¢2)$(@) ~ 4 [e — daripg; dip(q)].

where the one-dimensional Fourier transform of the screened
potential, appearing on the left-hand side of Eq. (A11), adopts
the form

(A11)

. 1 [ L, b
d1p(gx) = / dg.dgye’ e g(q).  (A12)

e )
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Following a similar procedure as in the 2D case [19], one can
isolate ¢(q) from Eq. (A11) to get

- A(gy) +4me
d(q) ~ = 2 3 (A13)
qx + qy + qz
where A(g,) = —16na1qucj;]D(qx) is defined as a function

that depends exclusively on the momentum transferred along
the wire. By introducing Eq. (A13) into Eq. (A12) and keeping
only the integrals that provide finite values, i.e., those contain-
ing odd functions, we obtain an expression for the 1D Fourier
transform potential:

A(gy) /°° L /°° cos (54:)
dcos| =g, |d —=
47_[2 0 zq) Qy o q)%_i_q}z_i_qzz qz
e [* L > cos(%q,)
+—/ 4 cos (—q,)dq/ /2 _dg..
7w Jo 2V 4@+

¢~’1D(61x) =

(A14)
Considering the following identity:
00 b
/ cos (;qz) gy = — R
0 qx+qy+qz 2 /q)%—l—qg
i (A15)

2 2,
2./q; + a5

which is valid in the limit of atom-thick systems (b — 0).
Then, Eq. (A14) adopts the form

(%c) * cos (£qy)dgy dq,

\/qx—i_ q\

42 /‘X’ cos 2‘1\ dq‘

N
N L
(" ) o<5|qx|> +2e1<o(5|qx|)

_ —l6maipg;$ip(qy)

0@ g (L1 2eko( Ll
o 026]x 602‘1x'

(A16)

Pin(q:) =

Pip(qy) ~

Now solving for (]31D(qx), we arrive to the expression for the
1D screened potential:

2eKo(519x1)
1+ 8a1pg2Ko(514:1)

Pip(gy) = (A17)

Here L is the effective length scale that characterizes the lat-
eral confinement of a Q1D system and Kj is the zeroth-order
modified Bessel function of the second kind. From Eq. (A17),
we notice that the term in the numerator is the Q1D Fourier
transform of the impurity point charge potential [41,61]. Thus,
a direct comparison of Eq. (A17) with Eq. (A2) allows us to
identify the dielectric function of a Q1D system,

L
ein(g) =1+ 8amqf.1<o<5|qx|>, (A18)

as presented in the main text.

2. Expectation value of the position operator

Consider the Schrodinger equation for an electron in a one-
dimensional singular Coulomb potential expressed in atomic
units [62],

L g - L =
—_—— - —W(x
2 dx? x|

whose general solution can be written as [63]

2 — x| 2|x|
v, (x) = \/n;lxl(sgnx) exp (T)1F1< n,2, T)’

(A20)

EV(x), (A19)

where | F] is the confluent hypergeometric function.

The expectation value of the absolute value of the position
operator (|x|) is the key quantity to characterize the extension
of the wave function. This can be computed as
oo

(Ix]) = (Wa )] |x] W, (x)) =/ W, (0)lx W, (x)dx. (A21)

o0
Note that we do not compute (x) as it is formally zero for any
odd or even function. Considering Eq. (A20) into Eq. (A21),
we obtain the following expression:

3n?

7 )
which is expressed in Bohr radius units. If one is interested in
considering the interaction between an electron and hole with
reduced mass p in a dielectric environment of permittivity €,
then Eq. (A19) should be solved by performing the following
changes: m, — p and & \xl elxl Under this considerations,

the expression for the norm of the expectation value of the
position yields

(Ix[) = (A22)

3n%e
2u

This expression will be used to quantify the expectation value
of the exciton extension in Q1D systems.

(Ix) =

(A23)
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