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Emergent quasiperiodicity from polariton-phonon hybrid excitations in waveguide
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We investigate polariton-phonon hybrid excitations, which describe the collective excitations of emitter-
photon polaritons and vibrational phonons, in a periodic array of vibrating two-level emitters interacting with
waveguide photons. These excitations present unexpected features in the subradiant regime, including the
appearance of topological edge states and transitions between ergodic and multifractal excitations. We reveal
that these features are attributed to the emergence of a phonon-induced quasiperiodic structure, where phonons
can effectively create a periodic potential that is incommensurate with the emitter lattice. A possible realization
consisting of an array of laser-cooled atoms trapped near an optical nanofiber is also proposed. Our results
demonstrate the possibility of utilizing vibrations as a unique degree of freedom in the exploration of many-body
physics with waveguide quantum electrodynamics systems.
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I. INTRODUCTION

Waveguide quantum electrodynamics (QED), an emerging
field focusing on the interaction of propagating waveguide
photons with quantum emitters, has attracted intense inter-
est in recent years motivated by the significant progresses
in quantum technologies [1–5]. In addition to applications
in quantum networks and quantum computation, waveguide
QED also provides a promising platform for quantum sim-
ulation of many-body physics. A remarkable advantage of
waveguide QED systems is that they can exhibit strong light-
matter interactions and long-range couplings between emitters
mediated by waveguide photons [6–9]. These features al-
low the exploration of a variety of many-body phenomena
that were previously difficult to generate in other plat-
forms, including unconventional topological phases [10–12],
superradiant and subradiant states [13–18], and peculiar cor-
relations between photons [19–22].

While emitters are assumed to be static in most waveguide
QED studies, their mechanical motions can act as unique
degrees of freedom due to the position-dependent nature
of light-matter interactions [23,24]. In particular, the vibra-
tional degrees of freedom, which arise naturally in cold-atom
experiments [25], can contribute to interesting phenomena
even in small systems with few emitters [26–28]. In the
many-body regime (many emitters), the collective excitations
of emitters and photons (polaritons) follow unconventional
dispersion relations and exhibit peculiar effects ranging from
fermionization to quantum chaos [29–36]. These polaritons
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can propagate along the waveguide and interact with lat-
tice vibrations, thus the resulting hybrid excitations may
behave quite differently compared to the bare polaritons. We
can expect the emergence of highly interesting many-body
phenomena as a result of the interplay between waveguide
polaritons and vibrational phonons. Nevertheless, the physics
arising from the polariton-phonon interactions remains largely
unexplored in waveguide QEDs due to the complexity from
the hybridization of photons, emitters, and phonons, as well
as the long-range nature of the photon-mediated interactions.

In this paper, we develop a description of polariton-phonon
hybrid excitations in an array of vibrating emitters coupled
to a waveguide. We find that these excitations exhibit a dis-
tinctly different behavior compared to bare polaritons in a
subwavelength finite array. We then identify the emergence of
an effective quasiperiodic potential, induced by the combina-
tion of phonon scattering and waveguide-mediated long-range
couplings, as the key element behind the intriguing behavior
of hybrid excitations. This quasiperiodicity splits the origi-
nally continuous spectrum into a set of bands and gives rise to
topological edge states inside the band gaps. In addition, due
to the quasiperiodicity, the subradiant excitations experience
an ergodic-multifractal transition with an edge separating the
spectrum into two regions. We also propose a cold-atom based
scheme for the realization and detection of hybrid excitations
in experiments.

II. COUPLING WAVEGUIDE POLARITONS
WITH PHONONS

We consider a periodic array of N traps along a one-
dimensional waveguide, each loaded with a two-level emitter,
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FIG. 1. Schematic of the waveguide QED setup with vibrating emitters. (a) A periodic array of emitters is trapped near a waveguide. The
internal degrees of freedom of each emitter can be described by a two-level system with ground state |g〉, excited state |e〉, and resonance
frequency ω0. (b) Each lattice site can be viewed as a parabolic potential and allows the emitter to vibrate parallel to the waveguide with
phonon energy �. The emitters interact with waveguide photons via an electric dipole interaction whose strength geikz is position dependent
and is proportional to the amplitude of the electric field at the emitter position z. (c) This interaction leads to the transitions between |g〉 and
|e〉 of emitters with different vibrational quantum numbers, thus mixing phonons with emitters and photons.

as depicted in Fig. 1. The emitters strongly radiate into the
waveguide and are allowed to vibrate parallel to the waveg-
uide. The absorption or emission of waveguide photons by
emitters can lead to the deformation of the array structure,
and thus excite the vibrational modes (phonons). The system
is characterized by [26]

H =
∑

k

ωkb†
kbk +

∑
m

ω0σ
†
mσm +

∑
m

�a†
mam

+ g√
L

∑
k,m

(σ †
mbkeikẑm + σmb†

ke−ikẑm ), (1)

where bk, σm, and am are the annihilation operators of the
waveguide photon, emitter excitation, and phonon of the mth
site, respectively. Here, ωk = c|k| is the frequency of the
photon with wave vector k, where c is the light speed in
the waveguide. The resonance frequencies of the emitters
and vibrational modes are given by ω0 and �, respectively.
Parameter g is the atom-light interaction strength, L is the
normalization length, and ẑm = zm + u0x̂m is the position op-
erator where zm is the equilibrium position of the mth atom,
u0 is the quantum of the vibrational mode, and x̂m = a†

m + am.
Instead of a few-emitter cases, we focus on the many-body
regime (N � 1) where emitters and photons form polaritons
with strong collective superradiant and subradiant behavior.

In the Markovian approximation, photons can be in-
tegrated out [37,38] and the system is described by
the effective Hamiltonian H = H0 + Hp + HI , where H0 =
−i�0

∑
m,n eiϕ|m−n|σ †

mσn/2 and Hp = ∑
m �a†

mam are the
Hamiltonians of emitters and phonons, respectively, and

HI = −i
�0

2

∑
m,n

eiϕ|m−n|+iη sign(m−n)(̂xm−x̂n )σ †
mσn − H0, (2)

where �0 = 2g2/c is the decay rate for a single emitter
into the waveguide, the phase ϕ ≡ k0d (mod 2π ) is de-
termined by the wave number k0 = ω0/c and the spacing
d between adjacent emitters, and η = k0u0 is the relative
optomechanical coupling. The emitter excitation number
N = ∑

m σ †
mσm is conserved in H , thus the Hamiltonian

can be projected to subspaces with fixed N , where the
free Hamiltonian of atoms

∑
m ω0σ

†
mσm produces constant

energy and can be discarded. We restrict ourselves to the
Lamb-Dicke regime η〈̂x 2

m〉1/2 � 1, where the mechanical
fluctuations are small enough compared to the atomic spacing,
i.e., u0〈̂x 2

m〉1/2 � d . In this regime, the single-phonon process
is dominant, thus we can neglect processes where multiple
phonons are simultaneously absorbed or emitted [39–42].

We first consider an infinite array (N → ∞) which is in-
variant under lattice translations. Without phonons, the single-
excitation eigenstates are light-matter excitations (polaritons)
|k〉 = σ

†
k |0〉 = N−1/2 ∑

m eikzmσ †
m|0〉 with quasimomentum k

[6,29]. The states | ± k0〉 emit photons superradiantly to the
waveguide and are marked by a large imaginary eigenvalue
−iN�0/4, while the remaining N − 2 states are dark with zero
decay rate. The energy dispersion of dark states is given by
εk = (�0/4)

∑
ε=± cot[(k0 + εk)d/2]. Its curve is split into

upper and lower branches separated by a gap.

III. THE EMERGENCE OF POLARITON-PHONON
HYBRID EXCITATIONS

In the presence of atom-phonon interactions, polaritons
and phonons are coupled to each other and form polariton-
phonon hybrid excitations. The dressing effects of phonons
can lead to nontrivial phenomena in finite arrays. In Fig. 2(a),
we plot the energy spectrum of the lower excitation branch
obtained by exact diagonalization. We find that the spectrum
of hybrid excitations deviates significantly from the bare po-
laritons. Its subradiant part shows irregular characters, and a
group of near-degenerate states separated from the spectrum
branch can be identified.

To investigate phonon effects in longer arrays, we de-
couple polaritons from phonons via the Schrieffer-Wolff
transformation (SWT) [43,44]. An effective Hamiltonian
H ′ = P0eSHe−SP0 can be obtained by choosing a proper op-
erator S to eliminate the polariton-phonon coupling to the
first order, where P0 is the projector onto the single-polariton
subspace without phonons (Appendix A). In finite arrays, dark
states become subradiant and possess complex eigenvalues.
The discrepancy in their decay rates creates an imaginary
energy gap separating the single-polariton subspace without
phonons from the rest of the spectrum. This feature allows the
decoupling of emitters from phonons as long as the coupling
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FIG. 2. (a) Subradiant part of the complex single-excitation spectrum obtained from the Schrieffer-Wolff transformation (orange triangle) in
comparison with the exact diagonalization results (green diamond) and the single-polariton spectrum (blue circle). The inset shows the detailed
structure of the near-degenerate group in spectrum. The calculation has been performed for an array of N = 12 emitters with �0 = � = 1
and η = ϕ = π/50. (b) Lower branch of the single-polariton dispersion. Phonons can mediate effective interactions between polaritons with
quasi-momentum change ±2k�. (c) Color map of the phonon correction � in k space. The calculation has been performed for 10�0 = � = 1,
ϕ = 0.06, η/ϕ = 1, and N = 240.

is much smaller than the energy gap. In the limit of large
N , this is equivalent to η2ϕ−1(�0/�)3 � N−1. This condition
can always be satisfied in the weak coupling regime η � 1
by adjusting the decay rate �0 and the atomic spacing d ,
which are highly tunable in experiments. More details about
the validity of SWT can be found in Appendix A. In Fig. 2(a),
we demonstrate the accuracy of SWT by comparing the en-
ergy spectra obtained from H ′ with the exact diagonalization
results. Here a satisfactory agreement is obtained between the
two methods.

In Figs. 3(a) and 3(e), we present the excitation spectrum
in a longer array, where its most subradiant part splits into
narrow bands with the increase of η, as opposed to the orig-
inal polariton spectrum which is continuous and composed
of delocalized Bloch states. For each normalized eigenstate
|ψ〉 = ∑

n ψn|n〉, we calculate its inverse participation ratio
(IPR) as a measure of localization, which is defined as IPR
= ∑

n |ψn|4 and crosses from N−1 in the completely delo-
calized regime to 1 in the localized situation. The spectrum
consists of different types of excitations with diverse spatial
distribution, as shown in Figs. 3(b)–3(d). Compared to the
delocalized states in the continuous band [Fig. 3(d)], states
in the narrow bands become spatially modulated [Fig. 3(b)].
Moreover, we identify degenerate pairs of edge states which
are highly localized at the boundaries [Fig. 3(c)]. These fea-
tures indicate that the subradiant excitations are significantly
modified by phonons in the finite arrays.

IV. PHONON-INDUCED QUASIPERIODICITY

Our central objective is to identify the mechanism respon-
sible for these intriguing behaviors. Therefore, we consider
a finite array in the ϕ � 1 limit and focus on the subra-
diant states on the lower excitation branch. The subradiant
states in infinite arrays with energy Ek can be approximated
by |
k〉 = |k, 0〉 + ∑

p Ak (p)|k − p, p〉, where |k, 0〉 = σ
†
k |0〉

and |k, p〉 = σ
†
k a†

p|0〉 are Bloch states without and with
phonons, respectively. Here the wave function is truncated at
the single-phonon level since single-phonon processes play
a primary role within the Lamb-Dicke regime. Ak (p) has
two peaks at p = k ± k�, which correspond to the resonant

phonon processes connecting |k, 0〉 to | ∓ k�, k ± k�〉, re-
spectively, where k� > 0 is determined by εk = � + εk�

. By
acting H on this state, we obtain the eigenvalue relation
H |
k〉 = Ek|
k〉 − i�0δk/2, where δk is the boundary term:

δk = δk,0 +
∑
±

Ak (k ± k�)δ∓k�,k±k�
. (3)

Here δk,0 = gk|k0, 0〉 − hk| − k0, 0〉 and δ±k�,k∓k�
=

g±k�
|k0, k ∓ k�〉 − h±k�

| − k0, k ∓ k�〉 describe the boundary
effects on |k, 0〉 and | ± k�, k ∓ k�〉, respectively, and
the coefficients are gk = ei(k−k0 )z1/[1 − ei(k−k0 )d ] and
hk = ei(k+k0 )zN /[e−i(k+k0 )d − 1]. In this eigenvalue relation,
we account for the boundary effects of H0 only since the
emitter-phonon couplings create much smaller boundary
effects. Similarly, the contributions from the single-phonon
states are also neglected except for | ± k�, k ∓ k�〉. The
boundary term δk can be canceled by the linear combination
of |k, 0〉 and | − k, 0〉, and this procedure provides the
correct eigenstate g−k|k, 0〉 − gk| − k, 0〉 in the absence of
atom-phonon coupling, where the wave number is given
by the equation gkh−k = g−khk [29]. To cancel δ±k�,k∓k�

,
we notice that k� behaves almost as a constant and can be
approximated by k�d ≈ (ϕ�0/�)1/2, as long as |k〉 remains in
the quasiflat regime on the lower excitation branch, as shown
in Fig. 2(b). This effectively induces a coupling between |
k〉
and |
k±2k�

〉.
Physically, this effective coupling can be understood as

follows: Polaritons can be reflected from the boundaries in
finite arrays. A polariton |k, 0〉 can be scattered into its reso-
nant state | ± k�, k ∓ k�〉 and emits a phonon, while this state
can be reflected into | ∓ k�, k ∓ k�〉, and finally scattered
back into |k ∓ 2k�, 0〉 after absorbing the phonon previously
emitted, as shown in Fig. 2(b). This process effectively creates
an interaction with momentum change ∓2k�.

This momentum-change process plays a crucial role in the
intriguing behavior of subradiant excitations. In the ϕ � 1
regime, we obtain an expression of H ′ = H0 + �, where the
phonon-induced interactions � can be approximated as � ≈∑

k[Vk (e−iθk |k〉〈k + 2k�| + eiθk |k + 2k�〉〈k|)/2 + δεk|k〉〈k|].
Here Vk is a complex effective coupling strength, θk is a phase
factor, and δεk accounts for the energy shift (Appendix B).
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FIG. 3. (a) The most subradiant part of the complex single-excitation spectrum obtained from the effective Hamiltonian Eq. (4) (orange
diamond) in comparison with the Schrieffer-Wolff transformation results (green triangle) and the single-polariton spectrum (blue circle).
Topological invariants (μ, ν ) for clearly observable spectral gaps are indicated. (b), (c), (d) The wave functions of three characteristic
eigenstates corresponded to the states (b), (c), and (d) in spectrum (a), respectively. (e) Real spectrum of the most subradiant excitations as a
function of the optomechanical coupling η. (f) Real spectrum of the most subradiant excitations in Heff [Eq. (4)] with the same parameters in (a),
as a function of the modulation phase θ . In real arrays, θ is fixed at discrete values θn = nπ − πβ(N + 1) mod 2π due to the mirror symmetry
inherited from the original Hamiltonian H. (a)–(f) were generated for an array of N = 240 emitters with 10�0 = � = 1, ϕ = 0.03 and η/ϕ = 1
[except in (e)]. (g), (h) Level spacing Se−o

n (red) and So−e
n (blue) for the system with η/ϕ = 0.1 (g) and η/ϕ = 1.5 (h), respectively. (i), Mean

fractal dimensions D̄2 for three subbands with the highest energy. Three highest subbands arranged in energy-descending order are labeled by
blue diamond, red triangle, and green circle, respectively. (g)–(i) were generated for an array of N = 600 emitters with 10�0 = � = 1 and
ϕ = 0.03.

This can be verified in Fig. 2(c), where the main contribu-
tions to � come from |k〉〈k| and |k〉〈k ± 2k�|, which manifest
themselves as the oblique lines parallel to the diagonal in the
figure. All three coefficients change slowly in the quasiflat
regime, thus H ′ can be further approximated by replacing
three coefficients by their values at k = π/d . In real space,
the resulting effective Hamiltonian can be written as

H ′ ≈ Heff = H0 + V
∑

m

cos (2k�dm + θ )|m〉〈m|, (4)

which describes the original polaritons with an additional
complex on-site potential being cosine modulated. Here V and
θ serve as the amplitude and phase of the modulation, and
take the values of Vk and θk at k = π/d , respectively (Ap-
pendix B). Meanwhile, we omit the near-constant energy shift
εk . This effective Hamiltonian provides a qualitatively correct
description of subradiant excitations, as shown in Fig. 3(a).

The on-site potential in Heff [Eq. (4)] is, in general, in-
commensurate with the lattice since k� is determined by
the transcendental equation εk = � + εk�

. Therefore, Heff can
be regarded as a one-dimensional quasiperiodic model with
long-range waveguide-mediated hoppings and a complex
potential. This quasiperiodicity fundamentally changes the
behavior of subradiant excitations. We notice that k� can be
approximated by k�d/π ≈ q−1, where q � 1 is an integer

since k�d/π � 1. Thus, the quasiperiodicity naturally splits
the spectrum into q bands in the first-order rational approxi-
mation, and the bands near the edge of the spectrum become
much narrower. This explains the splitting of the spectrum in
Figs. 3(a) and 3(e).

V. EDGE STATES AND ERGODIC-MULTIFRACTAL
TRANSITIONS

Interestingly, the spectrum includes degenerate pairs
of edge states localized over boundaries [Fig. 3(c)].
These states are topological edge states as a result of
the quasiperiodicity. This is revealed through Heff, which
inherits the topological properties of its two-dimensional
ancestor Hamiltonian H2D = ∫ 2π

0 (dθ/2π )Heff(θ ). Here, θ

is regarded as a momentum in a perpendicular synthetic
dimension, and σm is replaced by σm,θ in Heff(θ ). By
performing the Fourier transform σm,θ = ∑

l e−iθ lσm,l ,
we have H2D = −i(�0/2)

∑
mnl eiϕ|m−n|σ †

m,lσn,l +
(V/2)

∑
ml (e

i2k�dmσ
†
m,lσm,l+1 + H.c.). Similar to conventional

quasicrystals [45], the ancestor Hamiltonian H2D commutes
with the magnetic translation group generated by Tm and Tl ,
where Tlσm,l T

−1
l = σm,l+1 and Tmσm,l T −1

m = e−i2k�dmσm+1,l .
Thus, each gap in the spectrum of H2D can be characterized by
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a quantized and nontrivial Chern number, and this feature is
inherited by Heff. As a result, the band topology of Heff can be
described by Chern numbers, which satisfies the Diophantine
equation ρ = μ + ν(k�d/π ), where μ is an integer, ν is the
Chern number, and ρ is the filling factor within a gap [46–49].
For an irrational k�d/π , the Diophantine equation has only
one solution when ρ is fixed, thus each gap can be labeled by
a set of integers (μ, ν).

Taking Fig. 3(a) as an example, we find that the difference
between Chern numbers of neighboring gaps is 1, thus each
gap produces a pair of edge states localized on two edges,
respectively, according to the bulk-boundary correspondence
[50]. This agrees with the number of edge states in Fig. 3(f),
and confirms the topological nature of edge states. Further-
more, the modulation phase θ in real arrays can only take
discrete values θn = nπ − πβ(N + 1) due to the mirror sym-
metry inherited from the original Hamiltonian H. As a result,
edge states on opposite edges always form degenerate pairs,
which is consistent with Fig. 3(a).

Besides edge states, the quasiperiodicity also changes
the ergodic nature of subradiant excitations, which is re-
vealed through the analysis of the even-odd (odd-even) energy
spacing Se−o

n = E2n − E2n−1 (So−e
n = E2n+1 − E2n), where En

are the real eigenenergy parts sorted in ascending order
[51,52]. For multifractal states, the spacings exhibit a strongly
scattering pattern, while ergodic states possess regular and
continuous spacings with open boundary conditions. When
η is small, all excitations are ergodic [Fig. 3(g)]. For large
η [Fig. 3(h)], bands in the most subradiant regime become
multifractal, and the spectrum presents an edge separating
the ergodic and multifractal excitations. Such a transition
is the result of the interplay between long-ranged hoppings
and the effective quasiperiodic potentials. This is confirmed
via multifractal analysis on Heff that shows it exhibits a similar
multifractal behavior to our system (Appendix C).

The ergodic-multifractal transition is further confirmed
by the analysis of fractal dimensions [53–59]. A normal-
ized wave function |ψ〉 = ∑

n ψn|n〉 can be characterized
by the moments Iq = ∑

n |ψn|2q ∝ N−Dq (q−1), where Dq are
fractal dimensions. For ergodic (localized) excitations, Dq =
1 (Dq = 0), while Dq ∈ (0, 1) for multifractal excitations. In
Fig. 3(i), we show the mean fractal dimensions D̄2 over ex-
citations within the same bands. For each band, there exists
a critical coupling η at which excitations within this band
exhibit multifractal behavior. Thus, subradiant bands become
multifractal in sequence when η is increased.

VI. EXPERIMENTAL REALIZATION

For experimental realization, we consider an array of laser-
cooled atoms trapped near an optical nanofiber. The atoms
are cooled down to their vibrational ground states. Here two-
level emitters can be formed by choosing a pair of hyperfine
levels, while the harmonic potential can be realized by a
state-insensitive optical lattice created by two pairs of counter-
propagating beams at the magic wavelengths of the atoms. In
this setup, the phonon frequency � is around several MHz,
while the decay rate �0 is highly tunable and can be adjusted
to the same order of magnitude as � [60–65]. A typical
value of the optomechanical coupling is η ∼ 0.05 for cesium

atoms with transition energy h̄ω0 ∼ 1.4eV at � ∼ 1MHz.
Therefore, the parameter ranges that we consider are acces-
sible in experiments. In the subwavelength limit (k0d � 1),
the restriction η � k0d = ϕ should be imposed since the vi-
brations around the equilibrium positions are assumed to be
much smaller than the atomic spacing. Nevertheless, the en-
ergy spectrum is already significantly modified in this regime
and exhibits visible gaps manifesting the quasiperiodicity. To
explore the η ∼ ϕ regime, a near-Bragg-spaced atomic array
with k0d = 2π + ϕ may be applied.

The nature of the hybrid excitations leads to peculiar dy-
namical properties that can be exploited as signatures for
experimental detection. We consider the emitter array initially
prepared in the subradiant state |k〉 with k = π/d . In the
polariton case, the excitation wave packet is localized in the
momentum space with little diffusion. In contrast, hybrid exci-
tations will be scattered into |k ± 2nk�〉 (n ∈ Z) by phonons,
hence the wave packet presents multiple peaks in k ± 2nk�

after a short of time. For long times, if some of the excitations
undergo an ergodic-multifractal transition, the wave packet
becomes extended in momentum space but nonergodic. Thus,
measuring the momentum distribution 〈σ+

k σk〉 can effectively
reveal the characters of the hybrid excitations.

Considering that subradiant excitations are difficult to pre-
pare and detect directly via optical methods, here we propose a
scheme for studying hybrid excitations that circumvents these
difficulties. Instead of exciting the subradiant state |π/d〉
directly, we can first generate a superradiant excitation |k0〉
via a right-propagating coherent-state waveguide probe pulse
with frequency resonant to the emitter transition frequency
ω0. The excitation |k0〉 can be transferred to |π/d〉 by ap-
plying a subsequent momentum shift Uφ = ∏N

m=1(|em〉〈em| +
e−iφzm |gm〉〈gm|) when φ = π/d − k0, which is achieved by
geometric phase control [66]. The system is now under free
evolution governed by the master equation ρ̇ = −i(H ′ρ −
ρH ′+) + ∑N

m=1 γmCmρC+
m , where Cm = √

γm|0〉〈φm|, γm and
|φm〉 are eigenvalues and eigenstates of the imaginary part of
−2H ′, respectively.

To obtain the momentum distribution, we finally perform
an inversion shift U−φ−δ after time T to bring the excitation
back to the superradiant regime, allowing it to be detected. δ

is a phase offset. The light intensity in the waveguide I (z, t ) =
〈E−

R (z, t )E+
R (z, t )〉 is then measured at the right side of the

array. Here E+
R is the right propagating component of the elec-

tric field determined by the emission from emitters into the
waveguide, and is given by E+

R (z, t ) = i
√

N�0eik0zσk0 (t )/2
[6]. Thus, the light intensity after performing U−φ−δ satisfies

I (z, T + 0+) ∝ 〈σ+
π/d+δ (t − 0+)σπ/d+δ (t − 0+)〉. (5)

By adjusting the offset δ, 〈σ+
k σk〉 can be measured via light

intensity I , thus unveils dynamics of excitations. In Fig. 4(a),
we simulate the detection scheme and plot the renormal-
ized momentum distribution Pk = 〈σ+

k σk〉/CP for polaritons
and hybrid excitations, respectively, where CP = ∑

k〈σ+
k σk〉.

Clearly, these two types of excitations show completely
different dynamical properties, which is in agreement with
our previous analysis. In Fig. 4(b), we plot Pk0 (T + 0+) as a
function of offset δ, which is proportional to the light intensity
in the waveguide after performing U−φ−δ . The light intensity
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(b)(a)

FIG. 4. (a) Renormalized momentum distributions Pk (t ) for polaritons (upper panel) and hybrid excitations (lower panel) as a function
of time t and momentum k. (b) Renormalized momentum distributions Pk0 for polaritons (blue dashed line) and hybrid excitations (green
solid line) after the second momentum shift, which is proportional to the light intensity in the waveguide, as a function of δ. The excitation
dynamics is obtained by averaging over 5000 quantum trajectories, and has been performed for 10�0 = � = 1, ϕ = 0.03, N = 240, and η = 0
(η = 0.06) in the polariton (hybrid excitations) case.

profile Pk0 of hybrid excitations is different from that of polari-
tons by additional peaks at δ = ±2nk�, and thus successfully
captures the dynamical signature of the hybrid excitations.

VII. CONCLUSION

In conclusion, we have shown the emergence of polariton-
phonon hybrid excitations with unique properties in a
waveguide QED system due to the interplay between
waveguide-mediated long-range couplings and phonon scat-
terings. In a subwavelength finite array, these interactions
introduce an effective quasiperiodic structure which leads to
the appearance of topological edge states and a transition
between ergodic and multifractal excitations. The emergent
quasiperiodicity provides an interesting playground for study-
ing one-dimensional quasicrystals due to the infinite-ranged
nature of waveguide-mediated couplings, which are vastly
different from the tight-binding or long-ranged couplings in
typical quasicrystals. Our paper sheds light on the mechanism
of interaction between waveguide polaritons and vibrational
phonons, and motivates future investigations into exploring
many-body physics with waveguide QED systems utilizing
emitter vibrations.
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APPENDIX A: SCHRIEFFER-WOLFF TRANSFORMATION
IN FINITE ARRAYS

In this Appendix, we present a detailed derivation for the
SWT performed in finite arrays to decoupled the polaritons
from phonons. This is done by finding a proper operator S
to cancel the couplings in eSHe−S to first order, then pro-
jecting the transformed Hamiltonian to the single-excitation
subspace without phonons [43,44]. The effective Hamiltonian
describing polaritons and phonons are given by H = H0 +
Hp + HI1 + HI2, where

H0 = −i
�0

2

∑
m,n

eiϕ|m−n|σ †
mσn, Hp =

∑
m

�a†
mam,

HI1 = 1

2
η�0

∑
m,n

sign(m − n)eik0|zm−zn|

× σ †
mσn(am + a†

m − an − a†
n),

HI2 = −i
1

4
η2�

N∑
m,n

eik0|zm−zn|σ †
mσn(am + a†

m − an − a†
n)2.

(A1)

Here we consider the emitter-phonon coupling up to second
order in the emitter displacements. The emitter Hamiltonian
H0 can be diagonalized as

H0 =
∑

k̃

ε′
k̃
|ψk̃〉〈ψk̃|, |ψk̃〉 ∝ g−k̃ |̃k, 0〉 − gk̃| − k̃, 0〉,

(A2)

where ε′
k̃

= εk̃ − iγk̃ is the eigenvalue of the state |ψk̃〉, and

the wave number k̃ satisfies the equation gk̃h−k̃ = g−k̃hk̃ ,

gk̃ = ei(k̃−k0 )z1/[1 − ei(k̃−k0 )d ] and hk = ei(k+k0 )zN /[e−i(k+k0 )d −
1] [29,67]. The operator S should satisfy the condition [H0 +
Hp, S] = HI1 to remove the couplings to first order, and is
chosen as

S = N−1/2
∑

k̃1,k̃2,q

∣∣ψk̃1

〉〈
ψk̃2

∣∣(Ak̃1,k̃2,qaq + Bk̃1,k̃2,qa†
−q

)
. (A3)
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FIG. 5. Complex single-excitation spectrums obtained from the Schrieffer-Wolff transformation results Eq. (A5) (red triangle) in compar-
ison with the single-polariton spectrums (blue circle). The spectrums are zoomed in different scales. Here the system parameters are selected
to be the same as Fig. 2(a) in the main text: 10�0 = � = 1, ϕ = 0.03, η/ϕ = 1, and N = 240.

The couplings HI1 can be written as HI1 =
N−1/2 ∑

k̃1,k̃2,q
g̃k̃1,k̃2,q|ψk̃1

〉〈ψk̃2
|(aq + a†

−q), thus the
coefficients A and B can be obtained as

Ak̃1,k̃2,q = g̃k̃1,k̃2,q

−� + ε′
k̃1

− ε′
k̃2

, Bk̃1,k̃2,q = g̃k̃1,k̃2,q

� + ε′
k̃1

− ε′
k̃2

.

(A4)

Therefore, the effective Hamiltonian to the second order of η

is given by

H ′ = H0 + 1

2
P0([S, HI1] + HI2)P0

= (1 − η2)H0 − i
1

2
η2�0 +

∑
k̃1,k̃2

�k̃1,k̃2

∣∣ψk̃1

〉〈
ψk̃2

∣∣, �k̃1,k̃2

= 1

2N

∑
q,k̃

g̃k̃,k̃2,−q

(
Ak̃1,k̃,q − Bk̃1,k̃,q

)
, (A5)

where P0 is the projector onto the subspace with zero phonons.
The excitation spectrum can be obtained by diagonalizing H ′,
as shown in Figs. 5 and 6. It is clear that the spectrum is mod-
ified significantly in the most subradiant regime compared to
the polariton spectrum.

To complete the derivation, we need to ensure the validity
of the SWT. To perform the SWT correctly, the single-
polariton subspace without phonons should be separated from
the rest of the spectrum by an energy gap, such that the
strength of the interaction Hamiltonian HI1 is much smaller
than the energy gap [43,44]. This condition can be written as

|〈ψk̃′ , q|HI1|ψk̃〉| � |ε′
k̃′,q − ε′

k̃|, (A6)

where ε′
k̃

and ε′
k̃′,q = ε′

k̃′ + � are the eigenvalues of the states

|ψk̃〉 and |ψk̃′ , q〉 = a†
q|ψk̃′ 〉, respectively.

To proceed, we note that the eigenvalue ε′
k̃

can be approxi-
mated by

ε′
k̃ = εk̃ − iγk̃ ≈ εk − iγk̃, (A7)

where

εk = �0

4
f (k) − i

N�0

4
δk,±k0 , (A8)

is the eigenvalue of H0 in an infinite array, f (k) =
cot (k0d/2 − kd/2) + cot (k0d/2 + kd/2), and k = Re k̃.
Meanwhile, the matrix element of HI1 can be estimated by

|〈ψk̃′ , q|HI1|ψk̃〉| ∼ |〈k′, q|HI1|k, 0〉| ≈ N−1/2gk,−qδk′,k−q,

(A9)

8.3-4-2.4-2- -1.5 -1.5-1.55

0 0 0

-2

-4

-2

-1

-4

)c()b()a(

FIG. 6. The most subradiant part of the complex single-excitation spectrum obtained from the Schrieffer-Wolff transformation results
Eq. (A5) (red triangle) in comparison with the single-polariton spectrums (blue circle). The calculation has been performed for � = 1, η/ϕ = 1,
N = 240, and �0 = 0.1, ϕ = 0.06 in (a), �0 = 0.05, ϕ = 0.03 in (b), and �0 = 0.02, ϕ = 0.03 in (c), respectively.
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since HI1 perturbs the single-polariton state |k, 0〉 = σ
†
k |0〉 and

only connects it to |k − q, q〉 = σ
†
k−qa†

q|0〉 in an infinite array.
In infinite arrays, the condition Eq. (A6) fails near q = k ±

k�, where k� > 0 is determined by εk = � + εk�
, since the

single-polariton state |k, 0〉 is degenerated with | ± k�, k ∓
k�〉. However, this degeneracy is lifted in finite arrays due to
the discrepancy in their decay rates. There exists an imagi-
nary energy gap � ≈ i(γk̃�

− γk̃ ) separating states |ψk̃〉 and
|ψ±k̃�

, k ∓ k�〉. Therefore, the condition Eq. (A6) can be sat-
isfied if this energy gap is much larger than the corresponding
matrix element of HI1. This is equivalent to

|γk̃�
− γk̃| � |〈±k�, k ∓ k�|HI1|k, 0〉|. (A10)

For subradiant excitation k ≈ π/d , its decay rate scales as
[29]

γk̃ ∼ N−1�0ϕ
2(k − π/d )2. (A11)

Meanwhile, the decay rate γk̃�
can be calculated as follows.

Supposing k̃� = k� + δ/N , then δ describes the correction
to the wave number. According to the equation gk̃�

h−k̃�
=

g−k̃�
hk̃�

, we can find that δ ≈ −iϕ/(k�d ) when ϕ � k�d �
1. Next, we substitute k̃� into the expression for εk (Eq. (A8)),
then this imaginary correction leads to the decay rate:

γk̃�
∼ N−1�2�−1

0 . (A12)

It is clear that γk̃�
� γk̃ , thus the spectral gap � scales as � ≈

iγk̃�
∼ iN−1�2�−1

0 . Meanwhile, we have

|〈±k�, k ∓ k�|HI1|k, 0〉| = N−1/2gk,±k�−k

≈ N−1/2η�0(ϕ�0/�)−1/2, (A13)

in the same regime ϕ � k�d � 1. Therefore, the condition
Eq. (A6) is equivalent to

η2ϕ−1(�0/�)3 � N−1. (A14)

Hence, the SWT is well-defined and provides correct re-
sults in the weak coupling regime η � 1 if ηϕ−1(�0/�)3

scales as N−s(s � 1). This is achievable in experiments since
both the decay rate �0 and the atomic spacing d are highly
tunable. For example, we can maintain �0/� ∼ N−1/3 while
η and ϕ remain unchanged as the system size N increases. In
all figures of the main text, the parameters are chosen such that
the condition Eq. (A14) is fulfilled. This justifies the validity
of the SWT in our paper.

APPENDIX B: THE EMERGENCE
OF QUASIPERIODIC STRUCTURE

In this Appendix, we focus on the effects of res-
onant phonon processes on the phonon correction � =∑

�k̃1,k̃2
|ψk̃1

〉〈ψk̃2
| and present a derivation for the approx-

imate effective Hamiltonian Heff in the main text. We first
replace the discrete sum

∑
k̃ in Eq. (A5) by the integral

(2π )−1
∫

dk̃. In the expression

1

−� + ε′
k̃1

− ε′
k̃2

= 1

−� + εk̃1
− εk̃2

+ i
(
γk̃2

− γk̃1

) , (B1)

the decay rates γk̃1
and γk̃2

are much smaller than other energy
scales and satisfy γk̃2

> γk̃1
for subradiant states on the lower

branch of the spectrum with −� + εk̃1
− εk̃2

= 0. Therefore,
we can replace i(γk̃2

− γk̃1
) by i0+ and apply the Sokhotski

formula:

1

−� + ε′
k̃1

− ε′
k̃2

≈ P 1

−� + εk̃1
− εk̃2

− iπδ
(−� + εk̃1

−εk̃2

)
.

(B2)

Thus, we can separate the phonon correction as � = �′ + �′′,
where

�′
k̃1,k̃2

= 1

4π

∑
q

P
∫

dk̃g̃k̃,k̃2,−q

(
Ak̃1,k̃,q − Bk̃1,k̃,q

)
(B3)

describes the energy shift to the excitation, and

�′′
k̃1,k̃2

= − i

4

∑
q

∫
dk̃g̃k̃,k̃2,−qg̃k̃1,k̃,q

× (
δ
(−� + εk̃1

− εk̃

) + δ
(−� + εk̃2

− εk̃

))
. (B4)

Similar to the previous discussions, the solution of −� +
εk̃1(2)

− εk̃ = 0 can be approximately given by k̃ = k� if we
consider phonon corrections to the states in the quasiflat
regime. In the k space, the corrections �′′ can be evaluated
as

�′′
k1,k2

=
∑
k̃1,k̄2

�′′
k̃1,k̃2

〈
k1

∣∣ψk̃1

〉〈
ψk̃2

∣∣k2
〉

= − i

2
∣∣ε′

k�

∣∣ ∑
k̃1,k̄2,q

g̃k�,k̄2,−q
g̃k̃1,k�,q

〈
k1

∣∣ψk̃1

〉〈
ψk̃2

∣∣k2
〉

= − i

2
∣∣ε′

k�

∣∣ ∑
q

gk2,−qgk1−q,q
〈
ψk�

∣∣k2 − q
〉〈

k1 − q
∣∣ψk�

〉
.

(B5)

The eigenstate |ψk�
〉 can be approximated by |ψk�

〉 ≈ (|k�〉 +
| − k�〉)/

√
2 since gk̃ ≈ −g−k̃ when ϕ � k� � 1. Thus,

�′′
k1,k2

= − i

8
η2�0

(
�0

�ϕ

) 1
2

(2δk1,k2 + δk1,k2+2k�
+ δk1,k2−2k�

),

(B6)

where we use the facts that gk�−q,q ≈ −gk�,q = iη�0 f (k�)/4.
Thus, we have

�′′ = − i

8
η2�0

(
�0

�ϕ

) 1
2 ∑

k

(2|k〉〈k|

+ |k〉〈k + 2k�| + |k + 2k�〉〈k|). (B7)

For a finite array, the Sokhotski formula cannot exactly
describe the behavior of (−� + ε′

k̃1
− ε′

k̃2
)−1 due to the dis-

creteness of energy spectrum. This leads to the deviations
from Eq. (B7) and requires the introductions of k-dependent
coefficients. As a result, the phonon correction � has the form

� ≈
∑

k

[Vk (e−iθk |k〉〈k + 2k�| + eiθk |k + 2k�〉〈k|)/2

+ δεk|k〉〈k|], (B8)

where Vk and θk are the k-dependent coupling strength and
phase factor respectively, and δεk is the energy shift.
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FIG. 7. (a), (b) Real spectrum of Heff [Eq. (B9)] zoomed in different scales as a function of β with θ = 0. (c) Real spectrum of the most
subradiant excitations in Heff as a function of θ with β = 1/(10 + β ) = √

26 − 5. All these were generated for an array of N = 200 emitters
with �0 = 1, ϕ = 0.059, and V = 0.02.

Coefficients Vk , θk , and δεk change slowly in the subradiant
regime, thus we can replace them by their values at k = π/d if
we are only concerned about subradiant excitations. Omitting
the energy shift δε = δεk=π/d , the resulting effective Hamil-
tonian in real space can be written as

H ′ ≈ Heff = H0 + V
∑

m

cos(2πβm + θ )|m〉〈m|, (B9)

where V = Vk=π/d , θ = θk=π/d , and β = k�d/π serves as the
frequency.

Heff can be regarded as a one-dimensional quasiperiodic
model since β is determined by the transcendental equa-
tion εk = � + εk�

and is, in general, irrational. Due to the
quasiperiodicity, the spectrum of Heff becomes very rich and
exhibits a characteristic Hofstadter butterfly pattern, as shown
in Fig. 7(b). Furthermore, the spectrum also includes highly
localized edge states which cross the spectral gaps by chang-
ing the modulation phase θ [Fig. 7(c)]. These properties
clearly hint at the topological nature of the spectral gaps and
edge states.

APPENDIX C: MULTIFRACTALITY IN THE EFFECTIVE
HAMILTONIAN Heff

In this Appendix, we perform a multifractal analysis on the
effective Hamiltonian Heff and reveal that it presents a similar
ergodic-multifractal transition to the system we considered.
The effective Hamiltonian Heff reads

Heff = − i
�0

2

∑
m,n

eiϕ|m−n||m〉〈n|

+ V
∑

m

cos(2πβm + θ )|m〉〈m|, (C1)

where β is the modulation frequency.
Similar to the main text, we employ the fractal dimensions

and the level spacings to distinguish ergodic and multifractal
regions of the spectrum. We first compute the even-odd (odd-
even) energy spacing Se−o

n = E2n − E2n−1 (So−e
n = E2n+1 −

E2n) in Figs. 8(a) and 8(b), where En are the real parts of
eigenenergies sorted in ascending order. It is clear that all
states are ergodic when the potential strength V is small. For
larger V , we can find that several bands become multifractal
and exhibit strongly scattered distributions. An ergodic-to-
multifractal edge separating two regions can also be identified.

1 1000 2000 3000

1

0.9

0.8

0.7

0.6

0.5

(b)

(c)(a)

FIG. 8. (a), (b) Level spacing Se−o
n (red) and So−e

n (blue) for the effective Hamiltonian Heff [Eq. (C1)] with V = 0.001 (a) and V = 0.03
(b), respectively. (c). Mean fractal dimensions D̄2 for three subbands with highest energy. Three subbands (blue diamond, red triangle, green
circle) are arranged in energy-descending order. All these were generated for an array of N = 5760 emitters with �0 = � = 1, ϕ = π/50, β =
1/(10 + β ) = √

26 − 5, and θ = 0.
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To determine the fractal dimension, we follow the stan-
dard box-counting procedure by dividing the system into N/l
boxes of size l [53,55,56]. For a normalized wave function
|ψ〉 = ∑

n ψn|n〉, the probability in the ith box is given by
μi = ∑

n |ψn|2, where the summation is performed inside the
ith box. The spectrum of fractal dimensions is given by

f
(
αq

) = lim
δ→0

∑N/l
i=1 μi(q) ln μi(q)

ln δ
,

αq = lim
δ→0

∑N/l
i=1 μi(q) ln μi(1)

ln δ
, (C2)

where δ = l/N, μi(q) = μ
q
i /

∑N/l
i=1 μ

q
i is the normalized qth

moment. Meanwhile, |ψ〉 can be characterized by the moment
Iq = ∑

n |ψn|2q ∝ N−τ (q), where τ (q) is related to f (αq) via
the Legendre transform τ (q) = qαq − f (αq). The fractal
dimension Dq is given by Dq = τ (q)/(q − 1). In Fig. 8(c),
we show the mean fractal dimensions D̄2 for three bands with
highest energy. It can be found that the ergodic-multifractal
transitions happened at different potential strengths V for
each band, and bands with lower energies require larger V to
become multifractal. These analyses confirm the presence of
ergodic-multifractal transitions in the effective Hamiltonian
Heff.
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