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Andreev reflections in black phosphorus based normal-superconducting junctions
modulated by linearly polarized light
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We perform investigations about the Andreev reflections (ARs) in normal-superconducting (NS) junctions
based on the few-layer black phosphorus, by considering the irradiation of the linearly polarized off-resonant
light. Following the analysis on the band structures, we propose the types of ARs in such NS junctions.
Specifically, it has been found that when the incident energy E is less than the Fermi energy EF , the intraband
retro AR occurs, and otherwise the interband specular AR is achieved. A forbidden region of ARs is formed
between the retro AR and the specular AR since the band gap leads to a momentum-filtering feature. By using
the linearly polarized off-resonant light along y direction, we are allowed to modify the size of this forbidden
region. On the other hand, when the normal direction of the NS-junction interface is changed from parallel to
perpendicular, by using the linearly polarized off-resonant light along x direction, the retro and specular ARs can
be transformed into each other, resulting in an anisotropic differential conductance, which is a unique observable
signature for AR in the experiment.
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I. INTRODUCTION

Following the discovery of graphene, two-dimensional
(2D) materials have become a research hotspot in solid-state
physics both theoretically and experimentally due to abun-
dant physics connotations and potential application values.
In 2D materials, more quantum degrees of freedom, such as
spin, pseudospin, energy valley, and layer, further attract the
research interest of scientist, which also expands their appli-
cation possibility in the fields of condensed-matter physics
and nanoelectronics [1–4]. Accordingly, various 2D materials
have been predicted and achieved in experiments [5–8], in-
cluding compounds and simple substances. Regarding simple
substances, it has been shown that black phosphorus (BP) is
one typical 2D material, which is formed by the overlapping
splicing of multilayer phosphorus atoms [9,10]. Its crystal
structure exhibits a layered structure similar to graphene, with
each layer composed of hexagonal phosphorus atoms and
adjacent layers stacked by weak van der Waals forces [11].
This structure allows BP to display many unique physics
properties, e.g., tunable band gap [12], highly anisotropic
optical [13,14] and thermal properties [15,16], and very high
mobility [17].

Due to the unique properties of BP, novel quantum
transport phenomena have also received extensive attention.
Recently, Long et al. have investigated the quantum transport
properties of high-mobility electrons and holes in atomically
thin BP ambipolar devices [18]. In addition, Choi et al.
proved that the pseudospin structure plays an important role
in the tunneling properties of BP junctions and found the
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Klein tunneling phenomenon [19]. Some researches have
also observed the anomalous Klein tunneling in BP junctions
[20,21]. Meanwhile, interesting transport phenomena have
been observed in monolayer phosphorene-based p-n junc-
tions, including the negative reflection and anti-super-Klein
tunneling [22].

It should be noticed that AR is one kind of important
transport phenomena [23]. Unlike single-electron transport,
the ARs of BP heterojunctions will be more interesting. More-
over, according to the study of Beenakker [24], AR has its
new physical picture in graphene-like 2D materials, and they
first predicted the specular AR in graphene-based normal-
superconducting (NS) junctions, with the electron and hole
from the conduction and valence bands, respectively, in which
only the velocity component perpendicular to the interface
is inverted [25–28]. This indeed enriches the pictures of the
AR in the 2D materials, such as graphene and borophene
[29–32]. Following the investigation of the transport proper-
ties of monolayer phosphorene heterojunctions in experiments
[33–35] and theories [36,37], attention has been drawn to the
AR and Josephson effects [38,39]. One can thus notice that it
is necessary to study the ARs in the BP-based NS (BP-NS)
junctions, since BP is a typical phosphorene. According to
existing studies, both the experimental and theoretical aspects
have made sufficient preparations for the description of the
ARs by designing the BP-NS junctions [40–44].

In the present paper, we would like to pay attention to the
AR behaviors in the BP-NS junctions, to clarify the retro and
specular ARs determined by the electronic band structure of
BP. Meanwhile, it is known that during the past years, the
light field has been applied to the study of 2D materials,
such as graphene [45–48], silicene [49,50], borophene [51],
and phosphorus [52], to modulate their properties determined
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FIG. 1. Schematic diagram for the BP-NS junctions irradiated by the linearly polarized off-resonant light for (a) the armchair direction
and (b) the zigzag direction. Dispersion relations for electrons and holes in the BP and superconductor for (c) the armchair direction and
(d) the zigzag direction. In (c) and (d), black and gray lines indicate the presence of the light field with the linearly polarized light along
the y and x directions, respectively, while colored lines denote the absence of the light field. Colored arrows (σ ) represent pseudospin
directions.

by the band structures. In BP, the pseudospin-selective light-
induced band renormalization has also been demonstrated
[53]. This means that the light field is able to modify the
AR in the BP-NS junctions. Therefore, we aim to discuss the
ARs modulated by the linearly polarized off-resonant light in
the BP-NS junctions [see Figs. 1(a) and 1(b)]. By using the
Floquet theory of periodically driven quantum systems
[47,48], we obtain the effective Hamiltonians of the linearly
polarized off-resonant light modulation along the y and x
directions, respectively. After calculation, we confirm that
the types of ARs on the surface of the BP-NS junctions are
the retro AR (E < EF ) or the specular AR (E > EF ) in the
armchair direction, and the existence of the band gap will
cause the forbidden region of ARs between the retro and
specular ARs. Due to the influence of pseudospin, the AR
in the zigzag direction is suppressed. Interestingly, when the
interface orientation angle is equal to zero in the BP-NS
junctions, the band gap is reduced by the linearly polarized
off-resonant light along the x direction. This effect can be
utilized to adjust the size of the forbidden region of ARs. If the
interface orientation angle θ of the BP-NS junctions is varied
from 0◦ to 90◦, the tilting degree of the energy band is changed
due to the linearly polarized off-resonant light along the x
direction. The retro AR will gradually evolve into the spec-
ular AR in the case of E < EF , and the maximal differential
conductance appears at θ �= 0◦. Alternatively if E > EF , the
retro AR will gradually evolve into the specular AR, and then
specular AR gradually evolves into the retro AR again, with
the maximal differential conductance at θ = 0◦. These results
indicate that in the armchair direction of the BP-NS junctions,
the AR-related transport properties are strongly anisotropic

due to the adjustment of the band structures by the linearly
polarized off-resonant light.

II. THEORY

According to the previous studies, the low-energy ef-
fective Hamiltonian of few-layer BP can be written
as [54,55]

Hη(k) = η

[(
Eg

2
+ h̄2k2

x

2m∗

)
σx + h̄vykyσy

]
, (1)

where η = +(−) represents electron (hole) index, k =
(kx, ky) is the wavevector along zigzag and armchair di-
rections, respectively, and m∗ = 1.42me is the effective
mass along the zigzag direction (me is the free electron
mass). Eg is the band gap, whose magnitude varies from
0.35 eV in bulk to 1.73 eV in the monolayer BP struc-
ture. In addition, vy = 5.6×105 m/s is the velocity along
the armchair direction. σx(y) is the x(y) component of the
Pauli matrix.

We firstly consider the polarization of the linearly polarized
off-resonant light along y direction with the vector potential
A = (0, Ay) with Ay = Ee

ω
sin ωt in which Ee is the electric

field intensity and ω is the frequency of light. In such a case,
the wavevector ky in Eq. (1) will be rewritten as ky → ky − eAy

h̄
by the canonical substitution. And then, the Hamiltonian of
the light-irradiated BP is modified as

HL
η (k) = Hη(k) + Hn, (2)

in which Hn = −ηvyeAyσy. According to the time-dependent
Floquet Hamiltonian in the limit of the high frequency, the
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effective Hamiltonian can be obtained [47,48,56], i.e.,

H eff
η � H0 + 1

h̄ω

∞∑
n=1

1

n
[H−n, H+n]

+ 1

2(h̄ω)2

∞∑
j=1

1

j2
{[[H− j, H0], H j] + H.c.}

+ 1

3(h̄ω)2

∞∑
j,l=1

1

jl
{[H− j, [H−l , H j+l ]]

− [H− j, [Hl , H−l+ j]] + H.c.} + O
(

1

(h̄ω)3

)
, (3)

where H0 = Hη(k), H±n = 1
T

∫ T
0 Hne±inωt dt (n > 0) are the

Fourier components of the time-dependent Floquet Hamilto-
nian with T = 2π

ω
being the time period. Thus, the effective

Hamiltonian above is

H eff
η = η

[(
Eg

2
+ h̄2k2

x

2m∗

)
λxσx + h̄vykyσy

]
, (4)

in which λx = 1 − γx with γx = ( vyeEe

h̄ω2 )2. On the other hand,
if the polarization of the linearly polarized off-resonant light
is considered to be along x direction with the vector poten-
tial A = (Ax, 0) with Ax = Ee

ω
cos ωt , then Hn = η(− h̄kxeAx

m∗ +
(eAx )2

2m∗ )σx. By Eq. (3), the effective Hamiltonian is

H eff
η = η

[(
Eg

2
+ h̄2k2

x

2m∗

)
σx + h̄veff

y kyσy

]
, (5)

with veff
y = (1 − γy)vy and γy = ( e2E2

e
8h̄m∗ω2 )2. Equations (4) and

(5) are similar in form, hence we would like to give an unified
expression of these two effective Hamiltonians, i.e.,

H eff
η = η

[(
Eg

2
+ h̄2k2

x

2m∗

)
λ̃xσx + h̄ṽykyσy, (6)

for simplifying the following derivations. Note that when lin-
early polarized light is applied in the y direction, λ̃x = λx and
ṽy = vy take their effects. Alternatively when linearly polar-
ized light is applied in the x direction, ṽy = veff

y and λx = 1
display the influence.

In our BP-NS junctions, the superconducting region is
achieved by the proximity effect caused by the BP structure on
the surface of the s-wave superconductor. It can be understood
that the Bogoliubov-de Gennes (BdG) Hamiltonian of the
BP-NS junctions reads [32,57]

HBdG =
(

H eff
+ − EF − U (r) 	(r)

	(r)∗ −H eff
−

∗ + EF + U (r)

)
, (7)

where U (r) = U
(r),	(r) = 	
(r) with the step function

, and EF is the Fermi energy. In the normal region, the po-

tential and the superconductor gap are both equal to zero. On
the other side, it is the superconducting region with nonzero
superconductor gap 	 and large electrostatic potential U . Due
to the time-reversal symmetry, we prove that H eff

−
∗ = H eff

+ .
By solving Eq. (7), we obtain the energy dispersions for

electron and hole excitations in the normal region, i.e.,

Ee± = ±
√[(

Eg

2
+ h̄2k2

x

2m∗

)
λ̃x

]2

+ (h̄ṽyky)2 − EF ,

Eh± = ±
√[(

Eg

2
+ h̄2k2

x

2m∗

)
λ̃x

]2

+ (h̄ṽyky)2 + EF . (8)

+(−) denotes the electron in the conduction (valence) band
and the hole in the valence (conduction) band. In the super-
conducting region, the energy dispersion is expressed as

(
√

E2
s − 	2 + U + EF )2

=
[(

Eg

2
+ h̄2k2

x

2m∗

)
λ̃x )

]2

+ (h̄ṽyky)2. (9)

For the quantitative analysis, we are allowed to study in
detail the amplitudes of each transport process, including the
retro and specular ARs, by means of the scattering matrix
method with the detailed forms of wavefunctions given in
Appendix A. To begin with, we consider �e+ to be the in-
cident mode. It can be found that the normal reflection (NR)
mode �e− for electron always exists regardless of the value
of energy E , but the retro AR mode �h− for hole keeps only
when E < EF . If E > EF , the specular AR mode �h+ arises,
replacing the retro AR mode �h−. Therefore the wavefunc-
tions in the normal region can be written as follows:

�I(r) =
{
�e+ + rN�e− + rA�h−, if E < EF ,

�e+ + rN�e− + rA�h+, if E > EF .
(10)

where r = (y, x) in the armchair direction, r = (x, y) in the
zigzag direction, rN and rA are the reflection amplitudes of
NR and ARs, respectively. The wavefunctions in the super-
conducting region can be described as

�II(r) = a�sh+ + b�se+, (11)

where a and b are the amplitudes of electronlike and holelike
quasiparticles in the superconducting region. These coeffi-
cients, i.e., rN , rA, a, and b, are determined by the matching
condition of the wavefunctions at the interface of the BP-NS
junctions, i.e.,

�I(r)|y=0− = �II(r)|y=0+ , armchair;

�I(r)|x=0− = �II(r)|x=0+ , zigzag. (12)

By calculating Eq. (12), we obtain

rN = (eiθhr − eiθ ′
sk+ )(eiθk+ − eiθsk+ )e2iβ − (eiθk+ − eiθ ′

sk+ )(eiθhr − eiθsk+ )

(eiθhr − eiθsk+ )(eiθk− − eiθ ′
sk+ ) − (eiθhr − eiθ ′

sk+ )(eiθk− − eiθsk+ )e2iβ
,

rA = (eiθk− − eiθk+ )(eiθhr − eiθsk+ )eiβ − (eiθk− − eiθk+ )(eiθhr − eiθ ′
sk+ )eiβ

(eiθhr − eiθsk+ )(eiθk− − eiθ ′
sk+ ) − (eiθk− − eiθsk+ )(eiθhr − eiθsk+ )e2iβ

(13)
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with

eiθhr =
{

eiθ ′
k− if E < EF ,

eiθ ′
k+ if E > EF .

(14)

Following the above results, we can calculate the NR and
AR coefficients. According to the definition of the particle
current density operator, we have

J ≡ 1

h̄
[(y, x), HBdG]

= τz ⊗
[
ṽyσyey + h̄kx

m∗ λ̃xσxex

]
, (15)

where τz = (1 0
0 −1

)
denotes electron-hole index, and ex, ey

are unit vectors in x, y directions. Accordingly, the current
density operator Jy = τz ⊗ ṽyσy decides the reflection coef-
ficients at the armchair direction. Thus, the NR and AR
coefficients RN and RA in the armchair direction are evaluated
by

RN =
∣∣∣∣ 〈�e−|Jy|�e−〉
〈�e+|Jy|�e+〉

∣∣∣∣|rN |2 =
∣∣∣∣ sin θk−
sin θk+

∣∣∣∣|rN |2,

RA =
∣∣∣∣ 〈�hr |Jy|�hr〉
〈�e+|Jy|�e+〉

∣∣∣∣|rA|2 =
∣∣∣∣ sin θhr

sin θk+

∣∣∣∣|rA|2. (16)

The current density operator in the zigzag direction is
Jx = τz ⊗ h̄kx

m∗ λ̃xσy, so RN and RA are given as

RN =
∣∣∣∣ 〈�e−|Jx|�e−〉
〈�e+|Jx|�e+〉

∣∣∣∣|rN |2 =
∣∣∣∣cos θk−
cos θk+

∣∣∣∣|rN |2,

RA =
∣∣∣∣ 〈�hr |Jx|�hr〉
〈�e+|Jx|�e+〉

∣∣∣∣|rA|2 =
∣∣∣∣ cos θhr

cos θk+

∣∣∣∣|rA|2. (17)

Before numerical calculations, we would like to qualita-
tively understand the interband and intraband AR properties
by observing the alignment of band and pseudospin structures.
Figures 1(c) and 1(d) show the interband and intraband AR
mechanisms for the BP-NS junctions along the armchair and
zigzag junctions. According to the previous researches, we
know that in the BP-NS junctions, the group velocity of an
electron and a hole can be defined as u = 1

h̄∇kE . Thus, the
velocity components of electron are expressed as

uxe = ∂E

h̄∂kxe
=

h̄kxe
m∗ λ̃2

x

(Eg

2 + h̄2k2
xe

2m∗
)

√[(Eg

2 + h̄2k2
xe

2m∗
)
λ̃x
]2 + (h̄ṽykye)2

,

uye = ∂E

h̄∂kye
= h̄ṽ2

y kye√[(Eg

2 + h̄2k2
xe

2m∗
)
λ̃x
]2 + (h̄ṽykye)2

. (18)

For the hole if E < EF , there will be

uxh = ∂E

h̄∂kxh
= −

h̄kxh
m∗ λ̃2

x

(Eg

2 + h̄2k2
xh

2m∗
)

√[(Eg

2 + h̄2k2
xh

2m∗
)
λ̃x
]2 + (h̄ṽykyh)2

,

uyh = ∂E

h̄∂kyh
= − h̄ṽ2

y kyh√[(Eg

2 + h̄2k2
xh

2m∗
)
λ̃x
]2 + (h̄ṽykyh)2

. (19)

Instead if E > EF ,

uxh = ∂E

h̄∂kxh
=

h̄kxh
m∗ λ̃2

x

(Eg

2 + h̄2k2
xh

2m∗
)

√[(Eg

2 + h̄2k2
xh

2m∗
)
λ̃x
]2 + (h̄ṽykyh)2

,

uyh = ∂E

h̄∂kyh
= h̄ṽ2

y kyh√[(Eg

2 + h̄2k2
xh

2m∗
)
λ̃x
]2 + (h̄ṽykyh)2

. (20)

And then, the armchair junction incident (reflection) angle of
electron (hole) is

ϕa
ei(hr) = arctan

uxe(h)

uye(h)
, (21)

with the counterpart in the zigzag junction being

ϕz
ei(hr) = arctan

uye(h)

uxe(h)
. (22)

Here we consider the electron incident from the conduction
band (Ee+). When E < EF , the hole is reflected into the con-
duction band (Eh−), and when E > EF , the hole is reflected
into the valence band (Eh+) [see Figs. 1(c) and 1(d)]. As we
know, the opposite (same) directions of transverse velocities
of incident electron and reflected holes correspond to the retro
AR (specular AR). Due to the same sign of uxe and uxh (uye

and uyh) in the armchair (zigzag) direction, the retro AR is
presented as the intraband AR when E < EF . However, the
signs of uxe and uxh (uye and uyh) in the armchair (zigzag)
direction are opposite, hence the specular AR is manifested
as interband when E > EF . From an experimental perspec-
tive, if φ

a(z)
ei and φ

a(z)
hr have the same sign, the retro AR will

come into being. On the contrary, if φ
a(z)
ei and φ

a(z)
hr have

the opposite signs, the specular AR will be observed. The
intraband electron-hole conversion results in the retro AR and
the interband conversion is for the specular AR.

The pseudospin angle in the BP-NS junctions can be solved
through Eqs. (A6) and (A14). And then,

θk± = arg

[(
Eg

2
+ h̄2k2

x

2m∗

)
λ̃x + ih̄ṽyky±

]
,

θ ′
k± = arg

[(
Eg

2
+ h̄2k2

x

2m∗

)
λ̃x + ih̄ṽyk′

y∓

]
, (23)

in the armchair direction. And in the zigzag direction, they can
be expressed as

θk± = arg

[(
Eg

2
+ h̄2k2

x±
2m∗

)
λ̃x + ih̄ṽyky

]
,

θ ′
k± = arg

[(
Eg

2
+ h̄2(k′

x∓)2

2m∗

)
λ̃x + ih̄ṽyky

]
. (24)

Based on the above results, we are allowed to study the
regulation of ARs by pseudospin in different directions. The
colored arrows in Figs. 1(c) and 1(d) represent the pseudospin
directions. Figure 1(c) shows that whether it is the intra-
band electron-hole conversion or the interband conversion, the
pseudospins of incident electrons are nearly parallel to those
of the reflected holes. In contrast, reflected electrons have
nearly antiparallel pseudospins. As a result, we can expect the
occurrence of ARs in the armchair direction. However, in the
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FIG. 2. [(a)–(d)] Equal-energy surfaces under different conditions. The black-dashed-lined and solid-lined circles indicate the Fermi energy
of BP without and with the band gap. The upper limit of the incident energy with nonzero retro AR (ECR) and the lower limit of incident energy
with nonzero specular AR (ECS ) are represented by the solid-green line and the solid-blue line, respectively. The green-dashed line applies
to cases where the incident energy is less than the Fermi energy (E < EF ), while the blue-dashed line applies to cases where the incident
energy is greater than the Fermi energy (E > EF ). The yellow-ring area represents the forbidden region of ARs. The green-shaded area and
blue-shaded area in (a) and (b) [(c) and (d)] indicate the ranges of incident energy [the range of incident angles of the wavevectors] where the
retro and specular ARs occur, respectively. The parameters are taken as EF = 0.5, (b) ECR = 0.335, ECS = 0.665, (d) γx = 0.6.

zigzag direction [see Fig. 1(d)], the pseudospin of the incident
electron is parallel to that of the reflected electron, leading
to the result that the incident electron is completely reflected.
From the formula for pseudospin angle, i.e., θk± = arg[( Eg

2 +
h̄2k2

x±
2m∗ )λ̃x + ih̄ṽyky], one can observe that k2

x is always a positive
number, so θk+ = θk−. Substitute this result into Eq. (13), we
can readily find rA = 0. This is the fundamental reason why
the AR coefficient is equal to zero in the zigzag direction. So,
the pseudospin index takes its leading effect on the AR in the
armchair direction, and meanwhile, it completely suppresses
the AR in the zigzag direction. Due to the eliminated ARs in
the zigzag direction, we will only discuss ARs in the armchair
direction in the following section.

From the dispersion relations in Fig. 1(c), it can also be
observed that light with polarization γx narrows the band
gap, which in turn promotes the occurrence of ARs. Natu-
rally, there are two questions: one is why the band gap Eg

widens the forbidden region of ARs; the other is why light
with polarization γx can promote the occurrence of ARs. In
order to understand these two questions, one can focus on
the example shown in Figs. 2(a)–2(d), which are the cases
without and with light field, respectively. The black-dashed-
lined and solid-lined circles represent the Fermi energy of
BP in the absence and presence of the band gap, respectively.
Here the result of zero band gap, i.e., E0

g = 0, are introduced
as a reference. In Fig. 2(a), we observe that in the case of
E0

g = 0, the retro AR (the green-shaded area) occurs when
the incident energy is less than the Fermi energy (E < EF ),
otherwise, the specular AR (the blue-shaded area) occurs. The
band gap Eg leads to the anomalous shift of the Fermi energy
EF (the black-dashed-lined circle moves upward and varies
to be the black-solid-lined circle), causing the momentum
imbalance of the reflected holes, and then the forbidden region
of ARs (the yellow-ring area) appears [see Fig. 2(b)]. Simply,

one may predict the range of wavevectors that allow ARs by
considering the overlap of the Fermi energy of the absence
and presence of the band gap. It is interesting to notice that
ARs are forbidden for a certain incident energy E and inci-
dent angle of wavevector ϕ, namely, the wavevector filtering
behavior is found. In the case of ECR � E � ECS , wavevectors
k′

y± become imaginary and the total NR occurs. It can be
analytically found that, the upper (lower) limit of the incident
energy with nonzero retro (specular) AR is

ECR(CS) = EF ∓
(

Eg

2
+ h̄2(k sin ϕ)2

2m∗

)
(1 − γx ). (25)

While for a fixed incident energy, ARs change obviously and
vanish when the incident angle of wavevector ϕ exceeds a
critical value, i.e.,

ϕC =
⎧⎨
⎩arcsin

√
2m∗(E+EF )
h̄2k2(1−γx )

if γx �= 1,

90◦ if γx = 1.
(26)

If E < EF , there will be ϕCR = ϕC (the green-shaded area),
otherwise ϕCS = ϕC (the blue-shaded area) [see Figs. 2(c) and
2(d)]. By comparing Figs. 2(c) and 2(d), we find that the ex-
istence of the light field narrows the forbidden region of ARs
and enlarges the range of the incident angle of wavevector
with nonzero retro (specular) AR. Using Eqs. (25) and (26),
we can also see that an increase in γx leads to a decrease in
ECR(CS), an increase in ϕC , and a reduction in the forbidden
region of ARs. On the other hand, the light with polariza-
tion γy will change the tilting degree of the energy band
[see Fig. 1(c)] and induce some intricate transport phenomena,
which will be discussed in detail in Sec. III B.
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FIG. 3. (a) The retro and specular ARs coefficients vs the in-
cident energy E with ϕ = 0◦. (b) The retro and specular ARs
coefficients as functions of the incident angle of wavevector ϕ.

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we proceed to investigate the ARs and
conductance spectra of the BP-NS junctions. Before calcu-
lation, we would like to define an angle θ , which describes
the intersection angle of the normal of the BP-NS junction
interface with the y bias [see Fig. 5(a) below], and then
perform calculations by considering the cases of θ = 0◦ and
θ �= 0◦, respectively. In addition, we set h̄ = 1.0, m∗ = 1.42,
vy = 5.6, Eg = 0.33, EF = 0.5, U = 0.5, and 	 = 1.0 unless
other statements, and suppose the energy unit to be eV in the
context, which is ignored in the following for convenience.
In the following discussion, we also use the result of zero
band gap (i.e., E0

g = 0) as a reference, to better demonstrate
the effect of linearly polarized light on BP with its fixed band
gap Eg = 0.33.

A. ARs for θ = 0◦

As shown in Sec. II, the light with polarization along the
y direction can narrow the band gap of BP [see Fig. 1(c)],
so it can be believed that an interesting quantum transport
phenomenon could occur when interface orientation angle is
equal to zero (θ = 0◦) and linearly polarized light is applied in
the y direction. In such a case, there will be λ̃x = λx = 1 − γx

and ṽy = vy [see Fig. 1(a)]. In Fig. 3, we show the retro and
specular ARs coefficients vs the incident energy E . Based
on the qualitative analysis presented in Sec. II, it is evident
that the retro AR occurs in case I (0 < E < 0.5), and the
specular AR comes up in case II where E > 0.5. Firstly, in
the absence of light field with E0

g = 0, the retro AR changes
smoothly in the low-energy region and then goes up as energy
E increases. When E > 0.5, the specular AR increases with
the increment of E . However, due to the tunneling of electrons
in the superconducting interface, the specular AR experiences
a sharp decline E > 	. When the band gap Eg = 0.33, ARs

FIG. 4. Three-dimensional spectra of the retro and specular ARs
as functions of E and ϕ. The black-dashed line (E = EF ) represents
the boundary between the two ARs.

are forbidden for incident energy EF − Eg

2 (1 − γx ) < E <

EF + Eg

2 (1 − γx ), which means there is a forbidden region of
incident energy. Then, the retro and specular AR coefficients
as functions of the incident angle of wavevector ϕ are shown
in Fig. 3(b). We find that the forbidden region of the incident
angle of the wavevector of the retro AR (E = 0.3) is larger
than that of the specular AR (E = 0.9), and the coefficient of
the retro AR is smaller than that of the specular AR. Next, in
the presence of a light field, γx �= 0, it is interesting to notice
that the forbidden region of incident energy and forbidden
region of incident angle of the wavevector of ARs become
smaller as the increase of the light with polarization γx. In
short, γx is beneficial for the occurrence of ARs.

Combining with Figs. 3(a) and 3(b), we observe that the
light with polarization γx will narrow the forbidden region of
ARs and enlarges the range of incident angles of wavevector
ϕ of ARs. To more clearly observe the impact of γx and U
on ARs, in Figs. 4(a)–4(d) we display the three-dimensional
spectra of the retro and specular ARs as functions of E and
ϕ. Figures 4(a) and 4(b) illustrate the existence of both retro
and specular ARs, with a forbidden region between them. The
boundary of this forbidden region can be approximately given
by the relationship ECR(CS). The ARs change significantly
and disappear when the incident energy E exceeds a critical
value, for a fixed incident angle. Similarly, for a fixed inci-
dent energy, the ARs change significantly and vanish when
the incident angle of wave vector ϕ exceeds a critical value
ϕC . Figure 4(c) shows that the blue forbidden region of ARs
shrinks with increasing γx and then disappears at γx = 1.0.
Additionally, we can also observe that the retro AR is greatly
improved as the increase of γx, while the specular AR is less
impacted by changes in γx. Upon comparing Figs. 4(c) and
4(d), we observe perfect retro AR when E < EF and perfect
specular AR when EF < E < 	 for all incidence angles of
the wavevector by increasing the electrostatic potential U .

B. ARs for θ �= 0◦

The theory in Sec. II also shows that linearly polarized light
in the x direction is capable of altering the tilting degree of the
energy band [see Fig. 1(c)]. Thus, it is necessary to consider
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FIG. 5. (a) Schematic diagrams of ARs when changing the BP-
NS interface orientation angle θ . The coefficients of ARs and NR vs
θ for (b) Ẽ = 0.3/E0, γy = 0.92, and (c) Ẽ = 0.9/E0, γy = 0.92.

the possibility of the anisotropic transport phenomenon result-
ing from the nonzero orientation angle (θ �= 0◦) of the BP-NS
interface and the light with polarization along x direction.
And then, the relevant parameters are taken as ṽy = veff

y =
(1 − γy)vy and λx = 1 [see Fig. 5(a)]. For convenience, we
use dimensionless units: the momentum scale P0 = 2m∗veff

y ,

the energy scale E0 = P2
0

2m∗ , and the length scale l0 = h̄/P0. In
doing so, one can define the dimensionless quantities as ẼF =
EF /E0, 	̃ = 	/E0, Ũ = U/E0, Ẽ = E/E0, Ẽg = Eg/E0, k̃y =
h̄ky/P0, k̃x = h̄kx/P0, and x̃(ỹ) = x(y)/l0. The relationship be-
tween the wavevector components in the ỹ − x̃ and ỹ′ − x̃′
coordinate systems through the transformation between the
vector components are [58,59]

k̃y = k̃y′ cos θ − k̃x′ sin θ,

k̃x = k̃y′ sin θ + k̃x′ cos θ. (27)

Then, the details of related calculation of AR and NR co-
efficients are given in Appendix B. We obtain the velocity
components of the electron and hole at a nonzero orientation
angle using Eqs. (18)–(20), i.e,

uxe = ∂Ẽ

h̄∂ k̃xe
= 2
( Ẽg

2 + k̃2
xe

)
k̃xe cos θ − k̃ye sin θ√( Ẽg

2 + k̃2
xe

)2 + k̃2
ye

,

uye = ∂Ẽ

h̄∂ k̃ye
= 2
( Ẽg

2 + k̃2
xe

)
k̃xe sin θ + k̃ye cos θ√( Ẽg

2 + k̃2
xe

)2 + k̃2
ye

. (28)

If Ẽ < ẼF ,

uxh = ∂Ẽ

h̄∂ k̃xh
= −2

( Ẽg

2 + k̃2
xh

)
k̃xh cos θ − k̃yh sin θ√( Ẽg

2 + k̃2
xh

)2 + k̃2
yh

,

uyh = ∂Ẽ

h̄∂ k̃yh
= −2

( Ẽg

2 + k̃2
xh

)
k̃xh sin θ + k̃yh cos θ√( Ẽg

2 + k̃2
xh

)2 + k̃2
yh

. (29)

If Ẽ > ẼF ,

uxh = ∂Ẽ

h̄∂ k̃xh
= 2
( Ẽg

2 + k̃2
xh

)
k̃xh cos θ − k̃yh sin θ√( Ẽg

2 + k̃2
xh

)2 + k̃2
yh

,

uyh = ∂Ẽ

h̄∂ k̃yh
= 2
( Ẽg

2 + k̃2
xh

)
k̃xh sin θ + k̃yh cos θ√( Ẽg

2 + k̃2
xh

)2 + k̃2
yh

. (30)

Figure 5(a) corresponds to the schematic diagram of the
evolutions of the retro and specular ARs when the BP-
NS interface orientation angle θ is varied. The incident
(reflection) angle of electron (hole) is defined as ϕei(hr) =
arctan uxe(h)

uye(h)
. More interestingly, when the orientation angle

increases to the critical angle θc1 = arcsin
√

1
2 − Ẽg

2 /k̃y+′ , the
retro AR is converted into the specular AR. When the orien-
tation angle continues to increase to the critical angle θc2 =
arcsin

√
1
2 − Ẽg

2 /k̃′
y−′ , the specular AR is converted into the

retro AR again. The reason is that when the interface orien-
tation angle θ changes, the direction of the incident angle of
the electron and the reflection angle of the hole will change
to be the same or opposite, which will lead to the conversion
between retro and specular ARs. The coefficients of AR and
NR vs θ are shown in Figs. 5(b) and 5(c). First, when Ẽ < ẼF ,
with the increase of the orientation angle θ , the retro AR
coefficient goes up. Then, the retro AR is converted to the
specular AR at the critical angle θc1 = 19.29◦. With further
increase of the orientation angle θ from θ = θc1, the specular
AR coefficient is first increased and then decreased gradually.
Next, when Ẽ > ẼF , due to the increase of the electron reflec-
tion coefficient, the AR coefficient gradually decreases. When
the orientation angle θ increases to θc1 = 10.81◦, the specular
AR replaces the retro AR. As the orientation angle θ continues
to increase to θc2 = 42.98◦, the retro AR in turn replaces the
specular AR.

Considering Ẽ < ẼF , we present the θ -dependent uxei, uxhr ,
ϕei, and ϕhr in the different γy in Fig. 6. As a matter of fact, the
signs of uyei and uyhr will be opposite naturally and the signs
of uxei and uxhr will decide the types of ARs. In Fig. 6(a), with
γy = 0.82, only the retro AR occurs since the signs of uxei

and uxhr are always opposite, while the signs of ϕei and ϕhr

are the same. Figures 6(b) and 6(c) demonstrate that with the
change of the light γy, uxhr remains positive and unchanged,
while uxei changes from negative to positive. This results in
a transformation from the retro AR (where the signs of ϕei

and ϕhr are the same) to the specular AR (where the signs
of ϕei and ϕhr are opposite). In Fig. 6(d), when γy reaches
0.97, only the retro AR can be seen. However, unlike Fig. 6(a),
uxei is positive while uxhr is negative. As a result, the incident
angle of the electron ϕei and the reflection angle of the hole
ϕhr become positive and move to the other side of the normal
line [see Fig. 5(a)].

On the other hand, we present the θ -dependent uxei, uxhr ,
ϕei, and ϕhr in the different γy when Ẽ > ẼF . The numerical
results are shown in Fig. 7. Firstly, it can be found that in
the case of γy = 0.82 and γy = 0.87, Figs. 7(a) and 7(b) show
the same results as Figs. 6(a) and 6(b). In comparison with
Figs. 7(b) and 6(b), one can see that Fig. 7(b) has a retro-
specular AR conversion when the orientation angle is small.
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FIG. 6. Transverse velocities of incident electron (reflected
hole), the incident angle of electron, and the reflection angle of
hole as functions of orientation angle θ in Ẽ = 0.3/E0 and the
different γy.

In Fig. 7(c) where γy = 0.92, the retro AR is transformed into
the specular AR, and then the specular AR is transformed into
the retro AR again. Interestingly, we can clearly understand
that the first AR transition occurs when uxei changes from
negative to positive and ϕei changes from negative to positive.
The second AR shift happens when uxhr goes from positive to
negative and ϕhr goes from negative to positive. When γy is
equal to 0.97 [see Fig. 7(d)], the behavior is the same as that
of Fig. 6(d), and only the retro AR occurs. All the analysis
above clearly shows the spatial anisotropy of ARs.

FIG. 7. Transverse velocities of incident electron (reflected
hole), the incident angle of electron, and the reflection angle of hole
as functions of orientation angle θ in Ẽ = 0.9/E0 and the different
γy.

FIG. 8. [(a),(b)] Conductance G(eV ) vs the bias eV with the
interface orientation angle θ = 0◦ and the different γx . [(c),(d)] The
differential conductance G(θ ) as a function of θ with different γy.
The parameters are (a) E 0

g = 0, (b) Eg = 0.33, (c) ẽV = 0.3/Ẽ0, (d)
ẽV = 0.9/Ẽ0.

C. Conductance spectra

After the analysis of ARs and NR above, we would like to
study the properties of differential conductance, since it is a
measurable quantity in the experiment. Thus, in accordance
with the Blonder-Tinkham-Klapwijk (BTK) formula, the dif-
ferential conductance along the y direction can be written
as [60]

G(eV ) = 2e2W

h̄

∫
dkx

2π
[1 − RN (eV, kx, θ ) + RA(eV, kx, θ )],

(31)

where W is the width along x direction of the BP-NS
junctions. It is convenient to normalize the conductance by

G0(eV ) = 2e2W
π h̄

√
2m∗
h̄2 ( eV +EF

1−γx
− Eg

2 ). Then through Eq. (31),
we can rewrite the partial differential conductance of θ �= 0,
i.e.,

G(θ ) = G0(θ )
∫

dk̃x′ [1 − RN (ẽV, k̃x′ , θ ) + RA(ẽV, k̃x′ , θ )],

(32)

with G0(θ ) = 2e2W
π h̄

√
− f +

√
f 2−4gcos4 θ

2 cos4 θ
. Here, f = Ẽg cos2 θ +

sin2 θ and g = ( Ẽg

2 )2 − (ẽV + ẼF )2.
Figures 8(a) and 8(b) show the conductance G(eV ) vs

the bias for the angle θ = 0◦ with different γx in the cases
of E0

g = 0 and Eg= 0.33, respectively. In Fig. 8(a) where
E0

g = 0, it can be observed that the magnitude of differen-
tial conductance G(eV ) increases as γx is improved. Besides,
the conductance vanishes when eV = EF . This is because
the differential conductance is dominated by the retro and
specular ARs. eV = EF can act as the boundary between
the retro and specular ARs. In Fig. 8(b) with Eg = 0.33, the
differential conductance has the same trend as the result in
Fig. 8(a). Comparing the results in Fig. 8(a) with Fig. 8(b),
one can see that the increase of the band gap leads to the
emergence of the conductance forbidden region due to the
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absence of AR in the regimes of EF − (Eg

2 + h̄2k2
x+

2m∗
)
(1 − γx ) <

eV < EF + ( Eg

2 + h̄2k2
x+

2m∗ )(1 − γx ). Figures 8(c) and 8(d) show
the spectra of conductance G(θ ) as a function of θ with differ-
ent γy in the cases of ẽV < ẼF and ẽV > ẼF . In Fig. 8(c) with
ẽV = 0.3/Ẽ0, it is shown that the value of differential con-
ductance G(θ ) is enhanced as γy increases and the maximum
differential conductance occurs at a nonzero orientation angle.
On the other hand, in the case of ẽV = 0.9/Ẽ0, the change
trends of Fig. 8(d) when the orientation angle is small with
γy are consistent with those of Fig. 8(c). When the orientation
angle is large, the conductance value of γy = 0.97 is less than
any conductance value of γy < 0.97. Regarding the results in
Figs. 8(c) and 8(d) for the same value of γy, we find that the
value of differential conductance in Fig. 8(d) is larger than
that in Fig. 8(c) except γy = 0.97 when the orientation angle
is large. Unlike Fig. 8(c), the maximal differential conduc-
tance arises at a zero orientation angle. The reason for this
huge difference is that when ẽV < ẼF , a large number of
electrons are reflected, which weakens the formation of AR
and leads to a decrease in conductance G(θ ). On the contrary,
when ẽV > ẼF , a small amount of electrons are reflected,
which enhances the formation of AR and makes its con-
ductance G(θ ) reach the peak. This result is consistent with
what we discussed in Sec. III A for the interface orientation
angle θ = 0◦ [see Fig. 3(b)]. Obviously, due to the light-
tunable anisotropic band structure of BP, the differential
conductance on the BP-NS junctions is strongly anisotropic.

IV. SUMMARY

In summary, we have investigated the AR behaviors in the
BP-NS junctions, which are irradiated by the linearly polar-
ized off-resonant light, and then determined the types of the
ARs: when the incident energy E < EF (Fermi energy), the
electrons are incident from the conduction band and reflected
to the conduction band, it is the retro AR of intraband con-
version. When E > EF , the electrons are reflected the valence
band, it is the specular AR of interband conversion. Owing
to the suppression of the ARs in the zigzag direction by the
pseudospin, the above ARs can only occur in the armchair di-
rection. Furthermore, we have found that the forbidden region
of ARs between the retro and specular ARs can be adjusted by
the linearly polarized off-resonant light along y direction, and
perfect AR can be tuned by electrostatic potential U . On the
other hand, by varying the BP-NS interface orientation angle
θ and applying linearly polarized off-resonant light along the
x direction, it is possible to undergo two conversions between
the retro and specular ARs. Finally, we have also discussed
the conductance through the BP-NS junctions and found two
interesting conductance behaviors. One is that when the in-
terface orientation angle θ = 0◦, the conductance is strongly
suppressed when E = EF , and the other is the conductance
strong anisotropy when interface orientation angle θ �= 0◦. It
can be believed that our paper gives an alternative and flexible
method to tune the ARs of BP.

ACKNOWLEDGMENTS

This work was financially supported by the Liaoning Re-
vitalization Talents Program (Grant No. XLYC1907033), the

Natural Science Foundation of Liaoning province (Grant No.
2023-MS-072), the National Natural Science Foundation of
China (Grant No. 11905027), and the Fundamental Research
Funds for the Central Universities (Grants No. N2209005 and
No. N2205015).

APPENDIX A: WAVEFUNCTIONS OF THE NORMAL
AND SUPERCONDUCTING REGIONS

In this Appendix, we give wavefunctions of the normal and
superconducting regions in the BP-NS junctions, by consider-
ing the armchair and zigzag directions.

The BdG equation on the normal side is(
H eff

+ − EF 0
0 EF − H eff

+

)(
ue

vh

)
= E

(
ue

uh

)
, (A1)

in which ue and vh are the electron and hole wavefunctions. At
a given incident energy E and the incident angle of wavevector
ϕ in the armchair direction,

kx = k sin ϕ, (A2)

where

k =
⎧⎨
⎩
√

−c
b if ϕ = 0◦,√

−b+√
b2−4ac

2a if ϕ �= 0◦,
(A3)

with

a = h̄4λ̃2
x

4m∗2 sin4 ϕ,

b = h̄2λ̃2
xEg

2m∗ sin2 ϕ + h̄2ṽ2
y cos2 ϕ, (A4)

c = λ̃2
xE2

g

4
− (E + EF )2.

The eigenstates are

�e±(y, x) =

⎛
⎜⎜⎜⎝

1
eiθk±

0
0

⎞
⎟⎟⎟⎠ei(ky±y+kxx),

�h+(y, x) =

⎛
⎜⎜⎜⎝

0
0
1

eiθ ′
k+

⎞
⎟⎟⎟⎠ei(k′

y−y+kxx), if E > EF , (A5)

�h−(y, x) =

⎛
⎜⎜⎜⎝

0
0
1

eiθ ′
k−

⎞
⎟⎟⎟⎠ei(k′

y+y+kxx), if E < EF ,

in which

eiθk± =
(Eg

2 + h̄2k2
x

2m∗
)
λ̃x + ih̄ṽyky±√[(Eg

2 + h̄2k2
x

2m∗
)
λ̃x
]2 + (h̄ṽyky±)2

,

eiθ ′
k± = ∓

(Eg

2 + h̄2k2
x

2m∗
)
λ̃x + ih̄ṽyk′

y∓√[(Eg

2 + h̄2k2
x

2m∗
)
λ̃x
]2 + (h̄ṽyk′

y∓)2
,
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ky± = ± 1

h̄ṽy

√
(E + EF )2 −

[(
Eg

2
+ h̄2k2

x

2m∗

)
λ̃x

]2

,

k′
y± = ± 1

h̄ṽy

√
(E − EF )2 −

[(
Eg

2
+ h̄2k2

x

2m∗

)
λ̃x

]2

. (A6)

The wavefunctions �e± (�h±) are the eigenstates for electrons
(holes) in the conduction band Ee+ (Eh−) and valence band
Ee− (Eh+).

On the other hand, the BdG equation in the superconduct-
ing region is represented as

(
H eff

+ − Uσ0 − EF 	0σ0

	0σ0 EF − H eff
+ + Uσ0

)(
ue

vh

)
= E

(
ue

uh

)
.

(A7)

The outgoing wavefunctions in the superconducting region are

�sh+(y, x) =

⎛
⎜⎜⎜⎝

e−iβ

eiθ ′
sk+e−iβ

1

eiθ ′
sk+

⎞
⎟⎟⎟⎠ei(k′

sy+y+kxx),

�se+(y, x) =

⎛
⎜⎜⎜⎝

eiβ

eiθsk+eiβ

1
eiθsk+

⎞
⎟⎟⎟⎠ei(ksy+y+kxx), (A8)

where

β =
{

arccos(E/	) if E < 	,

−i arcosh(E/	) if E > 	,

eiθ ′
sk+ =

(Eg

2 + h̄2k2
x

2m∗
)
λ̃x + ih̄ṽyk′

sy+√[(Eg

2 + h̄2k2
x

2m∗
)
λ̃x
]2 + (h̄ṽyk′

sy+)2
,

eiθsk+ =
(Eg

2 + h̄2k2
x

2m∗
)
λ̃x + ih̄ṽyksy+√[(Eg

2 + h̄2k2
x

2m∗
)
λ̃x
]2 + (h̄ṽyksy+)2

, (A9)

k′
sy+ = −

√
(iτ1 − τ2)2 −

[(
Eg

2
+ h̄2k2

x

2m∗

)
λ̃x

h̄ṽy

]2

,

ksy+ =
√

(iτ1 + τ2)2 −
[(

Eg

2
+ h̄2k2

x

2m∗

)
λ̃x

h̄ṽy

]2

,

with τ1 = 	 sin β

h̄ṽy
and τ2 = U+EF

h̄ṽy
. The eigenstates �sh+, �se+

are the superpositions of electron and hole excitations in the
superconducting region. The above is the wavefunctions in the
armchair direction.

Following the above derivations, we can also give the
wavefunctions of the normal and superconducting regions in
the zigzag direction. Firstly, the BdG equation of the normal

region can be given in Eq. (A1), by a single set of parameters
(ϕ, E ), where

ky = k cos ϕ, (A10)

with

k =
⎧⎨
⎩
√

−c
b if ϕ = 0◦,√

−b+√
b2−4ac

2a if ϕ �= 0◦,
(A11)

and

a = h̄4λ̃2
x

4m∗2 cos4 ϕ,

b = h̄2λ̃2
xEg

2m∗ cos2 ϕ + h̄2ṽ2
y sin2 ϕ, (A12)

c = λ̃2
xE2

g

4
− (E + EF )2.

We can obtain four different wavefunctions,

�e±(x, y) =

⎛
⎜⎜⎜⎝

1
eiθk±

0
0

⎞
⎟⎟⎟⎠ei(kx±x+kyy),

�h+(x, y) =

⎛
⎜⎜⎜⎝

0
0
1

eiθ ′
k+

⎞
⎟⎟⎟⎠ei(k′

x−x+kyy), if E > EF , (A13)

�h−(x, y) =

⎛
⎜⎜⎜⎝

0
0
1

eiθ ′
k−

⎞
⎟⎟⎟⎠ei(k′

x+x+kyy), if E < EF ,

where

eiθk± =
(Eg

2 + h̄2k2
x±

2m∗
)
λ̃x + ih̄ṽyky√[(Eg

2 + h̄2k2
x±

2m∗
)
λ̃x
]2 + (h̄ṽyky)2

,

eiθ ′
k± = ∓

(Eg

2 + h̄2(k′
x∓ )2

2m∗
)
λ̃x + ih̄ṽyky√[(Eg

2 + h̄2(k′
x∓
)2

2m∗ )λ̃x
]2 + (h̄ṽyky)2

,

kx± = ±1

h̄

√
2m∗

λ̃x

(√
(E + EF )2 − (h̄ṽyky)2 − Eg

2
λ̃x

)
,

k′
x± = ±1

h̄

√
2m∗

λ̃x

(√
(E − EF )2 − (h̄ṽyky)2 − Eg

2
λ̃x

)
.

(A14)

Meanwhile, one can also calculate the wavefunctions in the
superconducting region from the BdG equation in Eq. (A7),
i.e., the outgoing wavefunctions of the BP-NS junctions,
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which is taken as

�sh+(x, y) =

⎛
⎜⎜⎜⎝

e−iβ

eiθ ′
sk+e−iβ

1

eiθ ′
sk+

⎞
⎟⎟⎟⎠ei(k′

sx+x+kyy),

�se+(x, y) =

⎛
⎜⎜⎜⎝

eiβ

eiθsk+eiβ

1
eiθsk+

⎞
⎟⎟⎟⎠ei(ksx+x+kyy), (A15)

where

β =
{

arccos(E/	) if E < 	,

−i arcosh(E/	) if E > 	,

eiθ ′
sk+ =

(Eg

2 + h̄2(k′
sx+ )2

2m∗
)
λ̃x + ih̄ṽyky√[(Eg

2 + h̄2(k′
sx+ )2

2m∗
)
λ̃x
]2 + (h̄ṽyky)2

,

eiθsk+ =
(Eg

2 + h̄2k2
sx+

2m∗
)
λ̃x + ih̄ṽyky√[(Eg

2 + h̄2k2
sx+

2m∗
)
λ̃x
]2 + (h̄ṽyky)2

,

k′
sx+ = −

√√√√2m∗

h̄

(√
(iτ1 − τ2)2 −

(
ky

ṽy

λ̃x

)2

− Eg

2h̄

)
,

ksx+ =

√√√√2m∗

h̄

(√
(iτ1 + τ2)2 −

(
ky

ṽy

λ̃x

)2

− Eg

2h̄

)
,

τ1 = 	 sin β

h̄λ̃x
, τ2 = U + EF

h̄λ̃x
. (A16)

APPENDIX B: ARS COEFFICIENTS OF THE BP-NS
INTERFACE ORIENTATION ANGLE θ �= 0◦

In this Appendix, we provide the derivation process of ARs
and NR coefficients under the BP-NS interface orientation
angle θ �= 0◦.

After the coordinate transformation, the BdG Hamiltonian
in Eq. (7) becomes

H̃ ′
BdG =

(
H̃ eff ′

+ − ẼF − μ̃(ỹ′) 	̃(ỹ′)
	̃(ỹ′)∗ −H̃ eff ′

+ + ẼF + μ̃(ỹ′)

)
,

(B1)

where

H̃ eff ′
+ =

(
Ẽg

2
+ k̃2

x

)
+ k̃y,

with k̃x = k̃y′ sin θ + k̃x′ cos θ , k̃y = k̃y′ cos θ − k̃x′ sin θ , and

μ̃(ỹ′) =
{

0 ỹ′ < 0
Ũ ỹ′ > 0

, 	̃(ỹ′) =
{

0 ỹ′ < 0
	̃ ỹ′ > 0

. (B2)

The energy dispersion in the normal region (ỹ′ < 0) is

Ẽe± = ±
√(

Ẽg

2
+ k̃2

x

)2

+ k̃2
y − ẼF ,

Ẽh± = ±
√(

Ẽg

2
+ k̃2

x

)2

+ k̃2
y + ẼF , (B3)

The energy dispersion for quasiparticles in the superconduct-
ing (ỹ′ > 0) region is written as

Ẽs = ±

√√√√(±
√(

Ẽg

2
+ k̃2

x

)2

+ k̃2
y − Ũ − ẼF

)2

+ 	̃2.

(B4)

Assuming an electron from the conduction band Ẽe+ enters
the BP-NS interface, one can find that the modes for incident
and reflected electrons (holes) in the normal region (ỹ′ < 0)
can be given as follows:

�̃e±′ (ỹ′, x̃′) =

⎛
⎜⎜⎜⎝

1

eiθ̃k±′

0
0

⎞
⎟⎟⎟⎠ei(k̃y±′ ỹ′+k̃x′ x̃′ ),

�̃h+′ (ỹ′, x̃′) =

⎛
⎜⎜⎜⎝

0

0
1

eiθ̃ ′
k+′

⎞
⎟⎟⎟⎠ei(k̃′

y−′ ỹ′+k̃x′ x̃′ )
, if Ẽ > ẼF , (B5)

�̃h−′ (ỹ′, x̃′) =

⎛
⎜⎜⎜⎝

0
0
1

eiθ̃ ′
k−′

⎞
⎟⎟⎟⎠ei(k̃′

y+′ ỹ′+k̃x′ x̃′ )
, if Ẽ < ẼF ,

where

eiθ̃k±′ =
[ Ẽg

2 + (k̃y±′ sin θ + k̃x′ cos θ )2
]+ i(k̃y±′ cos θ − k̃x′ sin θ )√[ Ẽg

2 + (k̃y±′ sin θ + k̃x′ cos θ )2
]2 + (k̃y±′ cos θ − k̃x′ sin θ )2

,

eiθ̃ ′
k±′ = ∓

[ Ẽg

2 + (k̃′
y∓′ sin θ + k̃x′ cos θ )2

]+ i(k̃′
y∓′ cos θ − k̃x′ sin θ )√[ Ẽg

2 + (k̃′
y∓′ sin θ + k̃x′ cos θ )2

]2 + (k̃′
y∓′ cos θ − k̃x′ sin θ )2

.

The wavevectors for the incident electron and the reflected hole (electron) are (for simplicity, we set k̃x′ = 0)

k̃y±′ = ±
√

−p +
√

p2 + 4 sin4 θq

2 sin4 θ
, k̃′

y±′ = ±
√

−p +
√

p2 + 4 sin4 θq

2 sin4 θ
, (B6)

with p = Ẽg sin2 θ + cos2 θ , q = (Ẽ + ẼF )2 − ( Ẽg

2 )2.
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Following the above derivations, the wavefunctions
�̃ ′

I (ỹ
′, x̃′) in the nomral region (the ỹ′ < 0 region) can be

written as

�̃ ′
I (ỹ

′, x̃′) =
{

�̃e+′ + rN�̃e−′ + rA�̃h−′ if Ẽ < ẼF ,

�̃e+′ + rN�̃e−′ + rA�̃h+′ if Ẽ > ẼF ,
(B7)

where rN and rA are the amplitudes of NR and ARs, respec-
tively. The outgoing modes in the superconducting region

(ỹ′ > 0) are

�̃sh+′ (ỹ′, x̃′) =

⎛
⎜⎜⎜⎜⎝

e−iβ

eiθ̃ ′
sk+′ e−iβ

1

eiθ̃ ′
sk+′

⎞
⎟⎟⎟⎟⎠ei(k̃′

sy+′ ỹ′+k̃x′ x̃′ )
,

�̃se+′ (ỹ′, x̃′) =

⎛
⎜⎜⎜⎝

eiβ

eiθ̃sk+′ eiβ

1

eiθ̃sk+′

⎞
⎟⎟⎟⎠ei(k̃sy+′ ỹ′+k̃x′ x̃′ ), (B8)

where

β =
{

arccos(Ẽ/	̃) if Ẽ < 	̃,

−i arcosh(Ẽ/	̃) if Ẽ > 	̃,
(B9)

and the wavevectors in the superconducting region are

eiθ̃ ′
sk+′ =

[ Ẽg

2 + (k̃′
sy+′ sin θ + k̃x′ cos θ )2

]+ i(k̃′
sy+′ cos θ − k̃x′ sin θ )√[ Ẽg

2 + (k̃′
sy+′ sin θ + k̃x′ cos θ )2

]2 + (k̃′
sy+′ cos θ − k̃x′ sin θ )2

,

eiθ̃sk+′ =
[ Ẽg

2 + (k̃sy+′ sin θ + k̃x′ cos θ )2
]+ i(k̃sy+′ cos θ − k̃x′ sin θ )√[ Ẽg

2 + (k̃sy+′ sin θ + k̃x′ cos θ )2
]2 + (k̃sy+′ cos θ − k̃x′ sin θ )2

,

k̃′
sy+′ = −

√√√√−(Ẽg sin2 θ + cos2 θ ) +
√

(Ẽg sin2 θ + cos2 θ )2 + 4 sin4 θ
[
(
√

Ẽ2 − 	̃2 − Ũ − ẼF )2 − ( Ẽg

2

)2]
2 sin4 θ

,

k̃sy+′ =

√√√√−(Ẽg sin2 θ + cos2 θ ) +
√

(Ẽg sin2 θ + cos2 θ )2 + 4 sin4 θ
[
(
√

Ẽ2 − 	̃2 + Ũ + ẼF )2 − ( Ẽg

2

)2]
2 sin4 θ

. (B10)

When an electron is incident from the normal region, the
wavefunctions �̃ ′

II(ỹ
′, x̃′) in the superconducting region (ỹ′ >

0) can be expressed as

�̃ ′
II(ỹ

′, x̃′) = a�̃sh+′ + b�̃se+′ , (B11)

where a and b are coefficients of the quasiparticle modes.
Meanwhile, the matching condition of the wavefunctions at
ỹ′ = 0 interface of the BP-NS junctions is given as

�̃ ′
I (ỹ

′, x̃′)|ỹ′=0− = �̃ ′
II(ỹ

′, x̃′)|ỹ′=0+ . (B12)

For the case of Ẽ < ẼF , we have

(�̃e+′ + rN�̃e−′ + rA�̃h−′ )|ỹ′=0− = (a�̃sh+′ + b�̃se+′ )|ỹ′=0+ ,

and the NR and the retro AR coefficients are

RN =
∣∣∣∣ 〈�̃e−′ |J̃y′ |�̃e−′〉
〈�̃e+′ |J̃y′ |�̃e+′〉

∣∣∣∣|rN |2,

RA =
∣∣∣∣ 〈�̃h−′ |J̃y′ |�̃h−′〉
〈�̃e+′ |J̃y′ |�̃e+′〉

∣∣∣∣|rA|2. (B13)

On the other hand, for the case of Ẽ > ẼF , we have

(�̃e+′ + rN�̃e−′ + rA�̃h+′ )|ỹ′=0− = (a�̃sh+′ + b�̃se+′ )|ỹ′=0+ ,

and the NR and the specular AR coefficients are

RN =
∣∣∣∣ 〈�̃e−′ |J̃y′ |�̃e−′〉
〈�̃e+′ |J̃y′ |�̃e+′〉

∣∣∣∣|rN |2,

RA =
∣∣∣∣ 〈�̃h+′ |J̃y′ |�̃h+′〉
〈�̃e+′ |J̃y′ |�̃e+′〉

∣∣∣∣|rA|2, (B14)

with the expression of probability current being J̃y′ = τz ⊗ σy.
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