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Maximum plasmon thermal conductivity of a thin metal film
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Due to their extremely long propagation lengths compared to the wavelengths, surface plasmon polaritons
(SPPs) have been considered as a key in enhancing thermal conductivity in thin metal films. This study explores
the conditions at which the plasmon thermal conductivity is maximized, considering the thickness-dependent
metal permittivity. We derived the analytical solutions for the plasmon thermal conductivity in both the thin-film
and thick-film limits to analyze the effect of the permittivities of metals and substrates. From the analytical
solutions of plasmon thermal conductivity, we deduced that the plasmon thermal conductivity is proportional to
the electron thermal conductivity based on the Wiedemann-Franz law. Additionally, we analyzed the conditions
where the enhancement ratio of the thermal conductivity via SPPs is maximized. Metals with high plasma
frequency and low damping coefficient are desirable for achieving the maximum plasmon thermal conductivity,
as well as the maximum enhancement ratio of thermal conductivity among metals. Significantly, 10-cm-long
and 14-nm-thick Al film demonstrates the most superior in-plane heat transfer via SPPs, showing a 53.5%
enhancement in thermal conductivity compared to its electron thermal counterpart on a lossless glass substrate.
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I. INTRODUCTION

When the characteristic length of thin films or the diameter
of nanowires becomes comparable to the mean free path of
basic energy carriers (e.g., phonons and electrons), boundary
scattering becomes increasingly significant [1,2]. This effect
causes a reduction in the effective mean free path of energy
carriers compared to their bulk counterparts, leading to a
decrease in thermal conductivity [3–5]. This classical size
effect of nanostructures can cause significant issues, such as
performance degradation and reliability reduction in mod-
ern semiconductor devices, intensifying the focus on thermal
management challenges [6,7]. In response to these challenges,
most research has been directed toward replacing conven-
tional materials in modern devices with those having higher
thermal conductivities [8]. Recently, two-dimensional (2D)
materials with pronounced anisotropic thermal conductivity
have drawn attention as heat spreaders [9–11]. They possess
very high in-plane thermal conductivities ranging from hun-
dreds to thousands of W/m K, while their cross-plane thermal
conductivities remain significantly lower. With their tens-of-
nanometer thickness, such 2D materials enable concentrated
in-plane heat conduction, efficiently diffusing heat away from
the hot spots. However, as of now, the commercialization of a
2D material heat spreader is challenging due to the challenges
in fabrication and assembly on the devices [12].

It has been reported that surface waves, such as surface
phonon polaritons (SPhPs) and surface plasmon polaritons
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(SPPs) in nanoscale thin films, can compensate for the clas-
sical size effect via additional heat conduction channels
[13–19]. In fact, surface waves can propagate over distances
longer than a centimeter, significantly enhancing thermal
conductivity [20–22]. Therefore, nanoscale metal films can
maintain the high thermal conductivity comparable to their
bulk values due to additional in-plane heat transfer via SPPs,
suggesting that they can serve as heat spreaders similar to 2D
materials. Furthermore, unlike 2D materials, thin metal films
can be easily deposited on devices through a microelectrome-
chanical systems process. Recently, Ordonez-Miranda et al.
[22] theoretically demonstrated an increase of 25% in the
thermal conductivity of a metal due to long-range SPPs for
a 1-cm-long gold film deposited on a Si substrate. However,
this increased rate is overestimated to some extent because the
plasmon thermal conductivity does not take into account the
thickness-dependent metal permittivity. More recently, Kim
et al. [23] comprehensively accounted for the size effect on
the permittivity of metals, calculating and experimentally ver-
ifying the plasmon thermal conductivity in Au and Ag thin
films. They showed that for 5-cm-long Au and Ag thin films,
the plasmon thermal conductivity reaches about 20% of its
electron thermal conductivity.

However, which optical properties of metals determine the
plasmon thermal conductivity and which optimal conditions
maximize it remain unclear. To analyze the effect of the
permittivities of metal film and dielectrics (i.e., substrate or
superstrate) on plasmon thermal conductivity, it is necessary
to analytically express the plasmon thermal conductivity as a
function of the permittivities. This is because the properties
of SPPs, such as the in-plane wave vector and propagation
length, are determined by the permittivities of media. In other
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words, the material combinations of the metal film and di-
electrics are a primary factor in determining the magnitude of
plasmon thermal conductivity. But, the analytical solution of
the dispersion relation of SPPs exhibits intricate dependence
with the permittivity of media [22], making it difficult to
analyze its effect on plasmon thermal conductivity.

In this study, we present criteria that maximize the plasmon
thermal conductivity of a thin metal film. This is achieved
by analytically deriving expressions for the plasmon ther-
mal conductivity as a function of the film thickness and
the permittivity of a metal film and a substrate, considering
the thickness-dependent metal permittivity using a modi-
fied Drude model. These analytic expressions demonstrate a
monotonic dependence of the plasma frequency and damp-
ing coefficient on the plasmon thermal conductivity, through
approximation with respect to the film thickness. We also
investigated the ratio of the plasmon thermal conductivity to
the electron thermal conductivity in a metal film. Finally, we
proposed which of the existing metals are most desirable for
the SPP-mediated in-plane heat transfer.

II. THEORETICAL MODEL

Consider the in-plane heat transfer via SPPs along an
infinitely long metal film surrounded by dielectrics (i.e., sub-
strate and superstrate). The plasmon thermal conductivity can
be calculated from kinetic theory with the Boltzmann trans-
port equation (BTE) under relaxation time approximation and
diffusion approximation [13,14],

kSPP = 1

4πdm

∫ ∞

0
h̄ωβR�SPP

∂ f0

∂T
dω, (1)

where dm is the thickness of the metal film, h̄ is the Planck
constant divided by 2π , ω is the angular frequency, βR is
the real part of the in-plane wave vector of SPP (i.e., β =
βR + iβI ), �SPP is the propagation length of SPP, f0 is the
Bose-Einstein distribution function, and T is the temperature.
For a metal film with finite length of Lm smaller than the
propagation length of SPPs, the boundary scattering is con-
sidered to limit the propagation length of the SPPs to the
film length. The effective propagation length derived from the
BTE can be used to consider the boundary scattering, i.e.,
�eff = [1 − 4ψ (0)/(πμ)]�SPP [24]. Here, μ = Lm/�SPP and
ψ (ξ ) = E5(ξ ) − E5(μ − ξ ), where ξ = z/�SPP and En(x) =∫ π/2

0 (cos θ )n−2 exp(−x/ cos θ )dθ , with θ being the polar an-
gle between the SPP propagation direction and global heat
transfer direction. To calculate the plasmon thermal conduc-
tivity, the in-plane wave vector and propagation length of
the SPPs should first be obtained by solving the dispersion
relation. On the other hand, the plasmon thermal conductivity
has been previously derived using fluctuational electrodynam-
ics in our earlier works, representing a rigorous method that
accounts for the full-wave nature of SPPs [17,23]. Given
the excellent agreement observed in the calculated propaga-
tion length and penetration depth of SPPs between the two
methods, the validity of the kinetic theory in this study is
established.

In this study, the three-layer configuration consisting of a
substrate, metal film, and superstrate is considered. For sim-
plicity, the superstrate is set to be air, and the corresponding

three-layer dispersion relation for SPPs is given by [25]

tanh(pmdm) = − pmεm(psεa + paεs)

p2
mεsεa + ps paε2

m

, (2)

where the subscripts m, s, and a represents metal, substrate,
and air, respectively. Additionally, pn =

√
β2 − εnk2

0 denotes
the cross-plane wave vector of SPPs for medium n = m, s, or
a, where εn is the relative permittivity of the corresponding
medium, and k0 = ω/c0 is the wave vector in a vacuum, with
c0 being the speed of light in a vacuum. In this study, we
consider only the metal as a lossy material (i.e., εm = εR +
iεI ), while treating the substrate as a lossless dielectric for
simplicity.

It is well known that SPPs at both interfaces of a metal
film become decoupled (i.e., SPPs at two interfaces behave
independently of each other) as the film thickness increases
to the optically thick limit (i.e., thick-film limit) [26]. In
the thick-film limit, the plasmon thermal conductivity in-
creases as the film thickness decreases, as seen in Eq. (1). The
plasmon thermal conductivity reaches its peak at the thickness
where the decoupling of SPPs begins [i.e., Re(pm)dm ≈ 1]
[23]. When the film thickness is sufficiently thin, the SPPs
at both interfaces start to couple, resulting in the thickness-
dependent SPP dispersion relation. Such intensification of
the SPPs’ coupling leads to increased energy losses within
the metal film, causing the plasmon thermal conductivity to
decrease accordingly [22]. Therefore, to analyze the peak of
plasmon thermal conductivity, understanding the behavior of
the SPPs just before decoupling occurs is crucial.

In the thin-film limit when |pm|dm � 1, the left side of
Eq. (2) can be approximated to tanh(pmdm) ≈ pmdm. There-
fore, the dispersion relation becomes

dm
(
p2

mεsεa + ps paε
2
m

) = −εm(psεa + paεs), (3)

which is an implicit equation for β, making it difficult to
obtain an analytic solution. If the cross-plane wave vector for
air is expressed as pa = √

α =
√

β2 − εak2
0 , then the cross-

plane wave vector for the substrate can be expressed as ps =√
α − (εs − εa)k2

0 . Additionally, if the magnitude of permit-
tivity of the metal is much greater than that of the substrate
and air (i.e., |εm| � |εs|, |εa|), the cross-plane wave vector for
metal becomes pm ≈ k0

√−εm [22]. Consequently, with those
approximations in the thin-film limit, the implicit dispersion
relation in Eq. (3) can be written to the explicit form for α as

ε4
md4

mα4 − 2(εs − εa)ε4
mk2

0d4
mα3 + (εs − εa)2ε4

mk4
0d4

mα2

− (εs − εa)2ε2
mε2

ak4
0d2

mα + (εs − εa)2ε4
ak4

0 = 0. (4)

The in-plane wave vector of the SPPs can be easily deter-
mined from the explicit form of a fourth-order polynomial of
α. For long-range SPPs with propagation lengths exceeding
centimeters, the imaginary part of the in-plane wave vector
should be considerably small [�SPP = 1/(2βI )] and the real
part of the in-plane wave vector is nearly identical to the
light line (i.e., βR ≈ k0

√
εa). This implies that the real part

of the in-plane wave vector is significantly larger than its
imaginary part (|βR| � |βI |), allowing the magnitude of the
in-plane wave vector to be assumed equal to its real part. With
this assumption, the magnitude of

√
α becomes very small
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compared to the light lines (i.e.,
√

α =
√

β2 − εak2
0 �

k0
√

εa). Therefore, α � (εs − εa)k2
0 is satisfied, except in

cases when the substrate is identical to the superstrate. As a
result, Eq. (4) can be further approximated to a second-order
polynomial of α. The solution of the second-order polyno-
mial, i.e., the cross-plane wave vector for air (i.e., superstrate),
becomes

√
α = pa = εa

εmdm
. (5)

Equation (5) indicates that the penetration depth of the SPPs
into the air (i.e., δa = 1/[2Re(pa)]) increases as the film thick-
ness increases. On the other hand, the penetration depth into
the metal is independent of film thickness and is extremely
thin, of the order of a few nanometers [22]. The thin pen-
etration depth into metal makes the confinement of SPPs to
both film interfaces stronger, resulting in the SPPs propagat-
ing along the interfaces of the film. Therefore, the e f fective
thermal conductivity of the SPPs is simply an indication of
how much heat flux can be carried by the SPPs along the
metal film interfaces. The frequency-dependent permittivity
of metal can be described using the Drude model,

εm(ω, dm) = 1 − ω2
p

ω2 + i(dm)ω
, (6)

where ωp is the plasma frequency and  is the thickness-
dependent damping coefficient, which signifies the collision
of electrons with phonon, grain boundaries, and film bound-
aries [2]. In other words, the damping coefficient, as the
inverse of the free electron’s relaxation time, enables the con-
sideration of boundary scattering. By applying Matthiessen’s
rule to account for boundary scattering, the damping coef-
ficient can be related to its bulk value (∞), as  = ∞ +
v f /dm, where v f is the Fermi velocity [27,28]. As the film
thickness decreases, the damping coefficient increases, lead-
ing to more losses in the metal. If the angular frequency of the
SPPs is much lower than the plasma frequency and is much
higher than the damping coefficient (i.e.,  � ω � ωp), the
real and imaginary parts of the permittivity can be approx-
imated to εR = −ω2

p/ω
2 and εI = ω2

p/ω3, respectively. By
substituting the metal permittivity derived from Drude model
into Eq. (5), the analytical solution of the dispersion relation
in the thin-film limit can be expressed by

βR = k0
√

εa + ε3/2
a

2k0d2
m

(
ω

ωp

)4

, (7a)

βI = c0ε
3/2
a

d2
m



ω2
p

(
ω

ωp

)2

. (7b)

Equation (7a) indicates that in the thin-film limit, the SPP
dispersion curve moves further away from the light line as
the film becomes thinner. Note that if the angular frequency
is much lower than the plasma frequency, the dispersion
curve becomes simply the light line (i.e., βR ≈ k0

√
εa). Con-

currently, the imaginary part of the in-plane wave vector
increases as the film thickness decreases, which reduces the
propagation length of the SPPs. In the thinner film, the SPPs at
both interfaces become coupled, resulting in increased energy
dissipation within the metal film. This implies that the energy

losses from coupled SPPs lead to a reduction in their prop-
agation lengths. Such a decrease in SPP propagation lengths
is responsible for the pronounced reduction in the plasmon
thermal conductivity.

Equations (4), (5), and (7) represent the solutions about the
dispersion relation of SPPs propagating along the air-metal
interface. Due to the symmetry of the dispersion relation for
air and substrate [see Eq. (2)], the in-plane wave vector for the
substrate can be obtained simply by replacing the subscript a
with s. By substituting Eqs. (7a) and (7b) into Eq. (1), the
plasmon thermal conductivity in the thin-film limit can be
written as

kSPP,thin =
∑
n=s,a

h̄dm

8πεnc2
0

ω4
p



∫ ∞

0

∂ f0

∂T
dω. (8)

The above equation suggests that in the thin-film limit, the
plasmon thermal conductivity increases as the film thickness
increases (i.e., kSPP,thin ∝ dm). Note, also, that the damping
coefficient decreases as the film thickness increases, leading to
an increase in the plasmon thermal conductivity. Equation (8)
also suggests that kSPP,thin increases for metals with a higher
plasma frequency and a lower damping coefficient, and it
also increases with lower permittivity of the substrate. For
a given substrate and superstrate, the gradient of plasmon
thermal conductivity with respect to film thickness is solely
determined by the permittivity of metal. That is, metals with
a high plasma frequency and a low damping coefficient repre-
sent a steeper increase in the plasmon thermal conductivity
as dm increases. For instance, for Au (ωp = 64660 cm−1,
∞ = 252 cm−1, and v f = 13.82 × 105 m/s) and Ag (ωp =
72071 cm−1, ∞ = 145 cm−1, and v f = 14.48 × 105 m/s)
films, Ag has a steeper increase in the plasmon thermal con-
ductivity in the thin-film limit than that of Au [23].

On the other hand, when a metal film thickness becomes
optically thick, the SPPs at both interfaces of the metal film
become completely decoupled and the corresponding SPP
dispersion curve is independent of film thickness. The plas-
mon thermal conductivity using the analytical solution for the
dispersion relation of SPPs in the thick-film limit is given
by [22]

kSPP,thick =
∑
n=s,a

h̄

4πdmεn

ω2
p

∞

∫ ∞

0

∂ f0

∂T
dω. (9)

In the thick-film limit, kSPP,thick is inversely proportional to the
film thickness, which is the opposite of what is observed in
the thin-film limit. However, similarly to the thin-film limit,
kSPP,thick also increases for metals with a higher plasma fre-
quency and a lower damping coefficient, and for substrates
with lower permittivity. Note that in both limits, the plasmon
thermal conductivity has a factor of ω2

p/(εn). Based on the
Drude model and Wiedemann-Franz law, the electron thermal
conductivity (ke) can be expressed by ke = ε0LT ω2

p/, where
ε0 is the vacuum permittivity and L is the Lorenz number
for each metal [29,30]. This clearly implies that the plasmon
thermal conductivity is proportional to the electron thermal
conductivity in both limits. Metals with a high plasma fre-
quency have a larger number density of free electrons [26].
This larger number density of free electrons facilitates greater
energy transfer, resulting in enhanced electrical and thermal
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TABLE I. This table includes Drude parameters, Fermi velocities, and thermal conductivity for various metals. kintrin denotes the total
intrinsic thermal conductivity of metal, ke is the electron thermal conductivity predicted by the Wiedemann-Franz law, kph is the phonon
thermal conductivity, and ktotal = ke + kph is the total thermal conductivity. L0 = 2.44 × 10−8 W �/K2 is the Sommerfeld value of the Lorenz
number (L).

Metal ωp (cm−1) [31–33] ∞ (cm−1) [31–33] v f (105 m/s) [34] L/L0 [37] ke (W/m K) kintrin (W/m K) [35] kph/ktotal (%) [37]

Ag 72071 145 14.48 0.98 428.6 429 1.25
Cu 59022 76.1 11.09 0.94 525.3 401 4.60
Au 64660 252 13.82 1.03 208.6 317 1.01
Al 96627 437 15.99 0.94 245.2 237 3.71
Pt 41775 614 5.2 [38] 1.0 34.70 71.6 6.74

conductivities. Likewise, this principle is also applicable to
SPPs, which are energy carriers formed by the coupling of
free electrons and photons. In other words, an increase in the
number density of free electrons leads to the enhancement
of energy transfer via SPPs, thereby improving the plasmon
thermal conductivity.

III. RESULTS AND DISCUSSION

We intentionally selected five metals whose phonon contri-
bution to the total intrinsic thermal conductivity (i.e., thermal
conductivity via electron and phonon) is less than 10% to fur-
ther investigate the relationship between the plasmon thermal
conductivity and the electron thermal conductivity, as listed
in Table I. For each metal, its Drude parameters (i.e., plasma
frequency and damping coefficient) for low frequencies were
obtained by the least-square fitting of the experimental data
in Refs. [31,32], and for high frequencies, from tabulated
data [33]. In addition, their Fermi velocities were taken from
values predicted by the density functional theory [34]. The
electron thermal conductivity of Ag and Al, predicted using
the fitted Drude parameters and the Wiedemann-Franz law,
showed good agreement with the literature values [35]. How-
ever, for the remaining metals (Cu, Au, and Pt), the calculated
values deviate from the measurements by about 30 to 50%.
Such discrepancy can be attributed to the limitations of the
Drude model, which simplifies the behavior of electrons in
metals to that of free particles and fails to account for complex
interactions such as electron-electron interactions [36]. Note
that the main focus of this study lies in analyzing the effect
of Drude parameters on the plasmon thermal conductivity.
Therefore, in this study, the thermal conductivity of metals is
simply considered based on the electron thermal conductivity
predicted from the Drude model and the Wiedemann-Franz
law.

Initially, to observe the effect of metal’s permittivity on
the plasmon thermal conductivity, the superstrate and sub-
strate were fixed as air and glass (amorphous SiO2 neglecting
losses), respectively. The permittivity of lossless glass was set
to be 3.6955 for below 200 Trad/s, which dominantly con-
tributes to the plasmon thermal conductivity [17]. This value
is the average obtained from tabulated data for frequency
below 200 Trad/s [33]. In the calculation, we fixed the lateral
size of the metal film as Lm = 10 cm. As previously explained
in Eq. (1), the plasmon thermal conductivity is calculated
using the effective propagation length in finite-length metal
films. Since the effective propagation length is proportional

to the intrinsic propagation length of SPPs, Eqs. (8) and (9)
for infinite-length film can adequately explain the plasmon
thermal conductivity for finite-length films with respect to the
permittivity of the metal. We will address this matter later in
the discussion.

Figures 1(a) and 1(b), respectively, show the calculated
real part of the in-plane wave vector βR and the propagation
length of SPP �SPP, considering the size effect of permit-
tivity of 10-nm-thick metal films on a glass substrate. For
both interfaces of the metal film, βR aligns linearly with the

FIG. 1. (a) In-plane wave vector and (b) propagation length of
SPP along the interface of 10-nm-thick metal film supported by
lossless glass substrate. The solid lines represent the metal-glass
interface, while the dashed lines indicate the air-metal interface.
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FIG. 2. Plasmon thermal conductivity of 10-cm-long metal films
deposited on lossless glass substrate (εs = 3.6955).

light line except Pt, showing photonlike characteristics. Due
to Pt’s lower plasma frequency compared to other metals, it
diverges from the light line in the high-frequency region, as
explained by Eq. (7a). This less photonlike behavior of SPPs
in the Pt film is due to the strong coupling between SPPs
at both interfaces. Metals with a higher plasma frequency
have a thinner penetration depth into the metal, leading to the
decoupling of SPPs at thinner film thickness [22]. Therefore,
for the same 10-nm thickness, SPPs propagating along the Pt
films experience increased energy losses due to their stronger
coupled nature, resulting in the shortest propagation length
among selected metals, as shown in Fig. 1(b). In the thin-
film limit, the propagation length increases for metals with a
higher plasma frequency and a lower damping coefficient, i.e.,
�SPP ∝ ω4

p/, as shown in Eq. (7b). Therefore, the sequence
of metals by longer propagation length is as follows: Al, Ag,
Cu, Au, and Pt. Here, Cu and Au exhibit a small difference in
their propagation lengths. Specifically, while the fourth power
of the plasma frequency for Au is 1.44 times greater than
that for Cu [(ωp,Au/ωp,Cu)4 = 1.44], its damping coefficient
is proportionally 1.48 times larger (Au/Cu = 1.48). This
ultimately results in the propagation length in Au being ap-
proximately 0.97 times shorter than that in Cu.

The dispersion relation for thin metal films with Lm =
10 cm deposited on a glass substrate, as described in Eq. (2),
was numerically solved. Using Eq. (1), the plasmon thermal
conductivity as a function of film thickness was also calcu-
lated. To circumvent the nonlocal effect observed in extremely
thin metallic layers, we focused on thicknesses exceeding
10 nm [23]. Figure 2 shows the calculated plasmon thermal
conductivity for each metal as a function of their thickness.
When dm < 20 nm, the plasmon thermal conductivity in-
creases as the film thickness increases, and the sequence of
metals with high plasmon thermal conductivity is Al, Ag, Cu,
Au, and Pt. This ordering mirrors the sequence observed for
the longest propagation lengths shown in Fig. 1(b). When the
film thickness increases, the plasmon thermal conductivity
first increases and reaches a peak, and then decreases. The
sequence of metals with higher plasmon thermal conductivity
changes if the film thickness increases to the optically thick

TABLE II. Optimal film thickness and peak of the plasmon ther-
mal conductivity for various infinite-length metal films deposited
on a lossless glass substrate. The damping coefficient of the Drude
model is estimated at the optimal thickness.

Metal dSPP,opt (nm)  (cm−1) kSPP,peak (W/m K)

Ag 58.6 276.2 607.2
Cu 72.6 157.2 577.5
Au 58.3 377.8 335.9
Al 39.6 651.4 649.4
Pt 74.4 651.1 53.8

limit. In the thick-film limit, the sequence of metals with high
plasmon thermal conductivity changes to Cu, Ag, Al, Au,
and Pt. This sequence is the same as the sequence of bulk
metals with high electron thermal conductivity predicted from
Wiedemann-Franz law, as shown in Table I.

In both the thin-film and thick-film limits, the plasmon
thermal conductivity shares common variables: the Drude pa-
rameters and film thickness. In the thin-film limit, plasmon
thermal conductivity is given by kSPP,thin ∝ ω4

pdm−1, while
in the thick-film limit, kSPP,thick ∝ ω2

pd−1
m −1

∞ . In the interme-
diate regime (i.e., thin-film limit < dm < thick-film limit), we
hypothesized that the plasmon thermal conductivity can be as-
sumed to vary with the exponents of ωp and dm. Consequently,
the peak of the plasmon thermal conductivity for each metal
is assumed to follow

kSPP,peak ∝ (ωp)a(dSPP,opt )
b()−1, (10)

where dSPP,opt denotes the optimal film thickness at which
the plasmon thermal conductivity reaches its peak. Since the
peak of the plasmon thermal conductivity exists at dm be-
tween the thin-film and thick-film limits, the exponents for
ωp and dm in the above equation should also satisfy values
between those of the thin-film and thick-film limits; that is,
the exponents a and b satisfy the ranges 2 � a � 4 and −1 �
b � 1, respectively. Note again that for finite-length metal
films, the plasmon thermal conductivity is calculated using
the effective propagation length. Consequently, the integral
term with respect to angular frequency in Eqs. (8) and (9)
becomes a function of Drude parameters, permittivity of sub-
strates, and the thickness and length of the metal film [i.e.,∫ ∞

0 g(ωp, ∞, εs, dm, Lm, ω)∂ f0/∂T dω]. Since it is challeng-
ing to calculate the exponents for a finite-length film, to obtain
the exponents, an infinite-length metal film where the inte-
gral term becomes constant should be considered first. For
infinite-length metal film, we have g(ωp, ∞, εs, dm, Lm, ω) =
1 and

∫ ∞
0 ∂ f0/∂T dω = const. Table II lists the optimal

thickness and peak of the plasmon thermal conductivity
for each infinite-length metal film. The process of calcu-
lating the exponents of the infinite-length metal film is as
follows: First, determine the reference metal. We selected
Ag as reference metal because its thermal conductivity pre-
dicted by Drude parameters and Wiedemann-Franz law is the
closest to the value reported in the literature, as shown in
Table. I. Second, divide kSPP,peak and dSPP,opt for each metal by
the values of the reference metal, i.e., kSPP,peak/kSPP,peak,Ag =
(ωp/ωp,Ag)a(dSPP,opt/dSPP,opt,Ag)b(/Ag)−1. In this way, the
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integral terms in both the selected metal and the refer-
ence metal cancel out. Third, fit the exponents a and b of
kSPP,peak/kSPP,peak,Ag for all metals except Ag using the least-
square method, which leads to a = 2.64 and b = −0.39.
Therefore, metals with a higher plasma frequency, thinner
optimal film thickness, and lower damping coefficient exhibit
a higher peak value in the plasmon thermal conductivity (i.e.,
maximum plasmon thermal conductivity).

Note that the plasma frequency and damping coefficient
simultaneously affect both the peak of the plasmon ther-
mal conductivity and the optimal film thickness. For a given
superstrate and substrate, dSPP,opt at which the plasmon ther-
mal conductivity exhibits its peak should be determined by
the thickness-dependent permittivity of metal, i.e., dSPP,opt =
f (ωp, ∞, v f ). As listed in Table II, dSPP,opt is generally thin-
ner for metals with higher plasma frequencies and damping
coefficients. However, the variation of dSPP,opt across various
metals is smaller compared to the damping coefficient. Con-
sequently, metals with a lower damping coefficient cause an
increase in kSPP,peak. For instance, Cu and Au, which have
similar plasma frequencies, exhibit an optimal thickness ra-
tio of 0.92, but their damping coefficient ratio is 2.40, i.e.,
(dSPP,opt,Cu/dSPP,opt,Au)b = 0.92 and (Cu/Au)−1 = 2.40. This
indicates that the effect on kSPP,peak is more dominated by the
lower damping coefficient than by the thinner optimal thick-
ness. Ultimately, metals with a higher plasma frequency and
a lower damping coefficient possess a larger kSPP,peak, thereby
achieving the maximum plasmon thermal conductivity among
metals. This effect of the Drude parameters on the maximum
plasmon thermal conductivity is similarly observed in finite-
length films. As seen in Fig. 2, the sequence of metals with
the larger kSPP,peak is Al, Ag, Cu, Au, and Pt. This sequence
is consistent with the sequence of metals for larger kSPP,peak

in infinite-length films, as listed in Table. II. Among the
five metals, Al film exhibits the maximum plasmon thermal
conductivity. Further investigation into the Drude parameters
of metals reveals that among existing metals, Al possesses
the highest plasma frequency and a relatively small damping
coefficient, which results in the maximum plasmon thermal
conductivity.

The calculated kSPP/ke is shown in Fig. 3, considering the
thickness-dependent electron thermal conductivity at 300 K.
Interestingly, it is observed that the optimal film thickness
where this enhancement ratio peaks (dr,opt) is 5% to 35%
thinner than the optimal thickness for the peak of the plasmon
thermal conductivity (dSPP,opt). This is because while plasmon
thermal conductivity attains its peak and has a gradual slope
near the peak, the electron thermal conductivity rapidly de-
creases due to boundary scattering as film thickness decreases.
Considering that the mean free path of electrons in bulk metals
is tens of nanometers [34], metal films with thickness in the
tens-of-nanometers range cause a sharp reduction in electron
thermal conductivity, as shown in the inset of Fig. 3. To be
specific, the electron thermal conductivity of Ag is 26% of its
bulk value at d = 20 nm, but it dramatically decreases to 15%
at d = 10 nm.

The peak of kSPP/ke for each metal film can also be rep-
resented by a simple expression of kSPP/ke ∝ (ωp)c(dr,opt )d

because the electron thermal conductivity is given by ke ∝
ω2

p/. Note that unlike Eq. (10), the damping coefficient is

FIG. 3. The ratio of enhanced thermal conductivity due to SPPs
compared to electron-mediated thermal conductivity in 10-cm-length
thin metal films. Inset: The normalized electron thermal conductivity
for various metals calculated using the Wiedemann-Franz law, con-
sidering the classical size effect.

canceled out in kSPP/ke. Since dr,opt < dSPP,opt, the exponent
c for plasma frequency should satisfy a − 2 = 0.64 � c �
2. For the same reason, the exponent d for film thickness
should meet b = −0.39 � d � 1. These exponents c and d
were fitted by the same method as before in Eq. (10) with
Ag as the reference metal, i.e., (kSPP/ke)/(kSPP,Ag/ke,Ag) =
(ωp/ωp,Ag)c(dr,opt/dr,opt,Ag)d , resulting in c = 1.28 and d =
0.17. The difference in dr,opt for each metal is not significant
and, since the exponent d is small, the effect of dr,opt on the
peak of kSPP/ke is very small. Specifically, for Al and Pt films
deposited on a lossless glass substrate, dr,opt is 29.6 nm for Al
and 70.9 nm for Pt, leading to (dr,opt,Pt/dr,opt,Al )d = 1.16. In
contrast, (ωp,Al/ωp,Pt)c = 2.92. Therefore, metals with higher
plasma frequencies exhibit the largest value of kSPP/ke (i.e.,
maximum enhancement ratio of thermal conductivity). As
shown in Fig. 3, for instance, kSPP/ke is larger in the sequence
of metals with higher plasma frequency (i.e., Al, Ag, Au, Cu,
and Pt). For a 10-cm-long and 14-nm-thick Al film deposited
on a lossless glass substrate, the contribution of long-range
SPPs is about 53.5% of the electron counterpart. Analysis of
kSPP,peak itself as well as kSPP/ke commonly indicates that met-
als with a higher plasma frequency exhibit superior in-plane
heat conduction via SPPs. This suggests that when applying a
thin metallic film as a heat spreader, the priority should be
given to metals with a high plasma frequency. If there are
multiple candidates, then choose the metal with the lowest
damping coefficient among them.

The plasmon thermal conductivity of a 10-cm-long Al thin
film on various lossless substrates, such as KBr (εs = 1.24)
[20], glass (εs = 3.6955), and Si (εs = 11.7) [33], is now
considered, as shown in Fig. 4. A clear trend emerges: as the
permittivity of the substrate decreases, the plasmon thermal
conductivity consistently increases, across both the thin-film
and thick-film limits. This relationship is rooted in the in-
verse proportionality between the substrate permittivity and
the propagation length of SPPs, as detailed in Eq. (7b). Con-
sequently, a lower substrate permittivity leads to the enhanced
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FIG. 4. Plasmon thermal conductivity of 10-cm-length metal
films deposited on various substrates.

plasmon thermal conductivity in the thin-film limit, as formu-
lated in Eq. (8). Additionally, in the thick-film limit, a lower
substrate permittivity also increases the propagation of SPPs
[22], enhancing the plasmon thermal conductivity, as shown
in Eq. (9). That is, in both thin-film and thick-film limits,
the permittivity of the substrate is inversely proportional to
the plasmon thermal conductivity. Interestingly, this inverse
proportionality between substrate permittivity and plasmon
thermal conductivity is not confined to just these limits; it
persists even for film thicknesses in the intermediate regime.
Therefore, for a given metal film, the peak of the plasmon ther-
mal conductivity increases as the permittivity of the substrate
decreases, achieving the maximum plasmon thermal conduc-
tivity. Additionally, the peak of kSPP/ke increases with lower
substrate permittivity. For example, the peak of kSPP/ke in Al
film on a KBr substrate increases to 0.72, which is higher than
that on a glass substrate. Choosing metals with high plasma
frequencies and substrates with low permittivity indicates that
plasmon thermal conductivity can more effectively compen-
sate for the classical size effect of thin-film thermal conduc-
tivity. However, note that a lower substrate permittivity does
not always lead to improved thermal management in devices.
Si, commonly used as a semiconductor substrate, has a high
thermal conductivity of 142.2 W/m K at room temperature,
much higher than glass at 1.4 W/m K [39]. While the high real
part of permittivity of Si reduces the contribution of the SPPs,
its high thermal conductivity can increase overall heat transfer.
To maximize heat dissipation while using a Si substrate and
minimize the SPPs reduction, we suggest the one method
of depositing a thin diamond layer on the Si substrate. The
permittivity of diamond is about 5.66 [33], lower than Si,
which can further improve the contribution of the SPPs and
also take the high thermal conductivity of the substrate.

Finally, we extend our study to realistic situations when
the superstrate is fixed as air while losses are included in
the substrate. In the case of thin metal films deposited on
lossy glass substrates, Al also turns out to be the best material
leading to the maximum kSPP,peak. Specifically, a 10-cm-long
Al thin film deposited on the lossy glass substrate shows
kSPP/ke of 0.38 at the thickness of 12 nm. This enhancement
ratio of thermal conductivity predominantly occurred due to
the heat transfer of symmetric mode of the SPPs (i.e., SPPs
propagating along the air-metal interface). This is because the
lossy substrate absorbs the energy of the antisymmetric mode
(i.e., metal-substrate interface), shortening their propagation
length [17,23]. Correspondingly, the propagation length of
the symmetric mode becomes several orders of magnitude
longer than that of the antisymmetric mode, rendering the
contribution of the antisymmetric mode to heat transfer neg-
ligible. Therefore, the plasmon thermal conductivity of thin
metal films deposited on lossy substrates is determined mainly
by the behavior of the symmetric mode of the SPPs. This
observation leads to an intriguing conclusion: the established
effect of permittivity of media on the plasmon thermal con-
ductivity, which was initially formulated considering lossless
media and based on the permittivity of the metal and substrate,
remarkably holds true even in the cases with lossy substrates.

IV. CONCLUSIONS

In this study, we derived an analytical expression for the
plasmon thermal conductivity in both thin-film and thick-
film limits as a function of metal film thickness, thickness-
dependent metal permittivity, and substrate permittivity.
Based on the Wiedemann-Franz law and the Drude model, it
was shown that the plasmon thermal conductivity is propor-
tional to the electron thermal conductivity. We also showed
that metals with a high plasma frequency and a low damp-
ing coefficient can exhibit the maximum plasmon thermal
conductivity as well as the maximum enhancement ratio of
thermal conductivity. For instance, a 14-nm-thick and 10-cm-
long Al film on a lossless glass substrate can achieve a 53.5%
enhancement in thermal conductivity compared to the electron
thermal conductivity. These findings are crucial for optimiz-
ing the plasmon thermal conductivity of a thin metallic heat
spreader that can be useful for advanced thermal management
in electronic devices.

ACKNOWLEDGMENTS

This research is supported by the Basic Science Research
Program (Grant No. NRF-20191A2C2003605) through the
National Research Foundation of Korea (NRF) funded by the
Ministry of Science and Information and Communications
Technologies (ICT).

[1] G. Chen, Nanoscale Energy Transport and Conversion:
A Parallel Treatment of Electrons, Molecules, Phonons,
and Photons (Oxford University Press, New York,
2005).

[2] Z. M. Zhang, Nano/microscale Heat Transfer, Vol. 410
(Springer, New York, 2007).

[3] B. Feng, Z. Li, and X. Zhang, Thin Solid Films 517, 2803
(2009).

165415-7

https://doi.org/10.1016/j.tsf.2008.10.116


YUN, KIM, AND LEE PHYSICAL REVIEW B 109, 165415 (2024)

[4] C. Jeong, S. Datta, and M. Lundstrom, J. Appl. Phys. 111,
093708 (2012).

[5] X. Wang and B. Huang, Sci. Rep. 4, 6399 (2014).
[6] A. L. Moore and L. Shi, Mater. Today 17, 163 (2014).
[7] Q. Zheng, M. Hao, R. Miao, J. Schaadt, and C. Dames, Prog.

Energy 3, 012002 (2021).
[8] Y. Zhou, R. Ramaneti, J. Anaya, S. Korneychuk, J. Derluyn, H.

Sun, J. Pomeroy, J. Verbeeck, K. Haenen, and M. Kuball, Appl.
Phys. Lett. 111, 041901 (2017).

[9] Z. Yan, G. Liu, J. M. Khan, and A. A. Balandin, Nat. Commun.
3, 827 (2012).

[10] S.-H. Bae, R. Shabani, J.-B. Lee, S.-J. Baeck, H. J. Cho, and
J.-H. Ahn, IEEE Trans. Electron Devices 61, 4171 (2014).

[11] D. Jeon, J. Lim, J. Bae, A. Kadirov, Y. Choi, and S. Lee, Appl.
Surf. Sci. 543, 148801 (2021).

[12] H. Song, J. Liu, B. Liu, J. Wu, H.-M. Cheng, and F. Kang, Joule
2, 442 (2018).

[13] D.-Zone A. Chen, A. Narayanaswamy, and G. Chen, Phys. Rev.
B 72, 155435 (2005).

[14] L. Tranchant, S. Hamamura, J. Ordonez-Miranda, T. Yabuki, A.
Vega-Flick, F. Cervantes-Alvarez, J. J. Alvarado-Gil, S. Volz,
and K. Miyazaki, Nano Lett. 19, 6924 (2019).

[15] Y. Wu, J. Ordonez-Miranda, S. Gluchko, R. Anufriev, D. D. S.
Meneses, L. Del Campo, S. Volz, and M. Nomura, Sci. Adv. 6,
eabb4461 (2020).

[16] Y. Wu, J. Ordonez-Miranda, L. Jalabert, S. Tachikawa, R.
Anufriev, H. Fujita, S. Volz, and M. Nomura, Appl. Phys. Lett.
121, 112203 (2022).

[17] D.-m. Kim, S. Choi, J. Cho, M. Lim, and B. J. Lee, Phys. Rev.
Lett. 130, 176302 (2023).

[18] Z. Pan, G. Lu, X. Li, J. R. McBride, R. Juneja, M. Long, L.
Lindsay, J. D. Caldwell, and D. Li, Nature (London) 623, 307
(2023).

[19] Y. Pei, L. Chen, W. Jeon, Z. Liu, and R. Chen, Nat. Commun.
14, 8242 (2023).

[20] J. Ordonez-Miranda, L. Tranchant, T. Tokunaga, B. Kim, B.
Palpant, Y. Chalopin, T. Antoni, and S. Volz, J. Appl. Phys. 113,
084311 (2013).

[21] J. Ordonez-Miranda, L. Tranchant, Y. Chalopin, T. Antoni, and
S. Volz, J. Appl. Phys. 115, 054311 (2014).

[22] J. Ordonez-Miranda, Y. A. Kosevich, B. J. Lee, M. Nomura, and
S. Volz, Phys. Rev. Appl. 19, 044046 (2023).

[23] D.-m. Kim, J. Nam, and B. J. Lee, Phys. Rev. B 108, 205418
(2023).

[24] Y. Guo, S. Tachikawa, S. Volz, M. Nomura, and J.
Ordonez-Miranda, Phys. Rev. B 104, L201407 (2021).

[25] C. Yeh and F. Shimabukuro, The Essence of Dielectric Waveg-
uides (Springer, New York, 2008).

[26] S. A. Maier et al., Plasmonics: Fundamentals and Applications,
Vol. 1 (Springer, New York, 2007).

[27] T. P. Otanicar, P. E. Phelan, R. S. Prasher, G. Rosengarten,
and R. A. Taylor, J. Renew. Sustain. Energy 2, 033102
(2010).

[28] B. J. Lee, K. Park, T. Walsh, and L. Xu, J. Sol. Energy Eng. 134,
021009 (2012).

[29] A. D. Avery, S. J. Mason, D. Bassett, D. Wesenberg, and B. L.
Zink, Phys. Rev. B 92, 214410 (2015).

[30] C. Kittel and P. McEuen, Introduction to Solid State Physics
(Wiley, New York, 2018).

[31] M. A. Ordal, R. J. Bell, R. W. Alexander, L. L. Long, and M. R.
Querry, Appl. Opt. 24, 4493 (1985).

[32] M. A. Ordal, R. J. Bell, R. W. Alexander, L. A. Newquist, and
M. R. Querry, Appl. Opt. 27, 1203 (1988).

[33] E. D. Palik, Handbook of Optical Constants of Solids, Vol. 1
(Academic, San Diego, 1998).

[34] D. Gall, J. Appl. Phys. 119, 085101 (2016).
[35] T. L. Bergman, Fundamentals of Heat and Mass Transfer

(Wiley, New York, 2011).
[36] M. Dressel and M. Scheffler, Ann. Phys. 518, 535 (2006).
[37] Z. Tong, S. Li, X. Ruan, and H. Bao, Phys. Rev. B 100, 144306

(2019).
[38] S. Dutta, K. Sankaran, K. Moors, G. Pourtois, S. Van Elshocht,

J. Bömmels, W. Vandervorst, Z. Tőkei, and C. Adelmann,
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