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Ultraviolet π-plasmon contribution to the transverse optical response of doped
single-walled carbon nanotubes
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A model for the effective permittivity of a doped single-walled carbon nanotube (CNT) thin film in the optical
range is proposed. The permittivity of CNT walls is calculated from the quantum theory of π -electron transitions.
The contributions from σ electrons and ultraviolet π plasmon are taken into account phenomenologically using
experimental data obtained for graphene and CNT film. These contributions lead to an enhancement of the
depolarization effect thereby strongly suppressing the transverse response of the CNTs. They also cause a
decrease in both the frequency and height of the absorption peak associated with the azimuthal intersubband
plasmon in doped CNTs. This eliminates the existing discrepancy between experimental and previous theoretical
data. The azimuthal plasmon response is studied in a bundle of doped CNTs.
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I. INTRODUCTION

There are many experimental studies wherein optical pa-
rameters of single-walled carbon nanotube (CNT) thin films
have been measured [1–9]. In these studies the theoretical
description usually comes down to fitting the absorption or
permittivity spectrum of a CNT film with a Drude-Lorentz
formula [1]. Concurrently, the quantum model of π -electron
transitions [10–12] is considered to be the most appropriate to
determine the frequency and strength of the optical transitions
in CNTs [1,6–9]. Although, the attempt has been made in Ref.
[10] to adopt this model for the description of the permittivity
of a CNT film, the developed approach has not been used by
the experimental groups [1–9]. One of the reasons is that the
model cannot quantitatively describe a π plasmon in CNTs
[13,14].

π plasmon occurs in the ultraviolet range 4–6 eV and
significantly contributes to the CNT absorption in the wide
spectral range 0.5–6.5 eV [1,15]. It is associated with a mix-
ture of interband transitions from the electronic π bound states
to the π∗ excited states at the saddle point (M) in the band
structures [10,13,14]. Those transitions lead to a surface plas-
mon excitation in CNTs [13,16] and graphene [16–18] and
to longitudinal electron oscillations in graphite [16,19]. The
frequency and form of the π -plasmon absorption band are de-
termined by excitonic effects [20] and the interference effect
between the discrete and continuum spectra of the optical tran-
sitions [21]. It has been shown that the height of π -plasmon
absorption peak varies with temperature [22] and number of
defects [7]. Its central frequency depends on the tube diameter
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[9,14] and is red shifted due to strong e-h interactions of
the quasiparticles near the 2D saddle-point singularity [18].
Note also that various models predict different values for the
π -plasmon frequency (see Fig. 1 in [23]).

The contribution from the π plasmon to the absorption
spectrum is considered additive [1]. However, this is valid
only for the axial response of the CNT. The transverse re-
sponse of CNT is significantly affected by the depolarization
field [10,24,25], which depends on the surface conductivity
of the CNT along the circumferential direction. The contri-
bution of π plasmon to the transverse response of CNTs has
been taken into account in Ref. [26], where the nanotube is
modeled as a prolate spheroid with the effective permittiv-
ity described by the Drude-Lorentz formula. However, the
π -plasmon contribution has been omitted when studying the
azimuthal plasmon in CNTs in the frame of both the rigorous
model of π -electron transitions [27–29] and simplified model
of the Drude conductivity [30,31]. The transitions from oc-
cupied σ bands have been also ignored in those models. For
such approximations, the calculated height of the azimuthal
plasmon absorption peak turns out to be greater than observed
in the experiment (compare experimental data in Fig. 5 in
[1] with theoretical data in Fig. 6 in [27]), and the plasmon
frequency is found to be blue shifted by 0.1 eV as compared
to measured value (see Fig. 6(b) in [1]). These discrepancies
have been proposed to be explained (i) by additional losses in
the conductive environment [32] or (ii) by modification of the
exciton binding energy due to the bundling of CNTs [28,33].

In this paper, we propose to calculate the conductivity
of CNTs using a quantum model of π -electron transitions
[10] and phenomenologically taking into account the con-
tributions from both π plasmon and σ electrons. Choosing
the parameters of π plasmon, we assume that the real part
of the permittivity of CNT walls should be similar to that of
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graphene. This approach makes it possible to quantitatively
describe the optical parameters of CNT films from the micro-
scopic consideration and eliminate the discrepancy between
theory and experiment when describing the response from
azimuthal plasmon in doped CNTs. We explain why the az-
imuthal plasmon is observed during electrostatic doping of
CNTs in the ionic liquid [1,26,34–38] and only for heavily
doped CNT films in the air [39–41]. Finally, we also investi-
gate the transverse optical response of a doped CNT bundle.

II. EFFECTIVE-PERMITTIVITY MODEL

Let us consider a thin film composed of randomly dis-
persed single-walled CNTs embedded in the host medium
with the permittivity κ . The film thickness is much less than
the length of CNTs, so we assume that all the tubes are
randomly oriented within the film plane. The chosen CNTs
are described by the dual index (a, b) and chiral angle θab =
arctan[

√
3b/(2a + b)]. We designate the single index j to

identify the type of CNTs with uniquely specified structures.
Following Ref. [10], we use a tubule index (a, b) satisfying
a � 1 and −a + 1 � b � 0, so that −π/3 � θab � 0. In this
case, the index j enumerates the types of CNTs with different
dual indexes (a, b).

Typically, the CNT is modeled as a hollow cylinder with in-
finitely thin wall having the surface conductivity σ

( j)
|| and σ

( j)
⊥

along the axial and circumferential directions, respectively. To
compute σ

( j)
||,⊥, we use a quantum theory of π -electron transi-

tions, where the energy band structure of CNT is calculated
in the tight-binding approximation (see Appendix A and Ref.
[10]). The contribution of the transitions from occupied σ

bands, εσ = 1.4, is included phenomenologically in σ
( j)
||,⊥ [see

Eqs. (A3), (A4), (A9), and (A10) in Appendix A].
Nowadays, there is no direct measurements of the surface

conductivity of individual CNTs in the optical range, while
the surface conductivity of graphene is well established in
experiment [17]. Very often, the measured optical data for
the graphene are represented via the effective permittivity
assuming the thickness of graphene layer to be 0.34 nm. For
comparison of the optical parameters of CNTs with those of
graphene, we assume in our further analysis that the tube walls
have a finite thickness of d = 0.34 nm. The permittivity of
the CNT wall along the axial and circumferential directions at
angular frequency ω can be found as

ε
( j)
||,⊥ = 1 + 4π iσ ( j)

||,⊥
ωd

. (1)

Let us introduce the CNT wall permittivity averaged over all
types of CNTs in the film as

ε||,⊥ = f −1
∑

j

f jε
( j)
||,⊥. (2)

Here f j is a volume fraction of CNTs of type j conceived as
hollow cylinders of volume 2πRjLd , where L and Rj are the
length and radius of CNT, respectively. f denotes the volume
fraction occupied by all CNTs, f = ∑

j f j . Since no finite-
length effect [42] is expected above 0.4 eV, for simplicity, the
distribution function Nj (L) describing the number density of
CNTs of type j and length L will be taken the same for all

FIG. 1. (a) Frequency dependencies of the real and imaginary
parts of ε||,⊥ − 2.4 and εpl . (b) Frequency dependencies of the real
and imaginary parts of the CNT film permittivity. Symbols: experi-
mental data taken from Fig. 1(c) of Ref. [3]. Solid and dashed lines:
theoretical results. The inset show the comparison of experimental
data (symbols) for the permittivity of graphene on SiO2/Si substrate
from Table A1 of Ref. [17] and calculated data (lines) for the average
permittivity of CNT wall ε⊥ + εpl along circumferential direction.

types of CNTs. Then f j depends on Rj and does not depend
on L.

All our numerical calculations will be done for the film
comprising 56 all possible types of CNTs with radii between
1.35 and 1.55 nm at electron relaxation time τ = 13.2 fs. Car-
bon nanotubes of similar radii are often used in experimental
studies [1,34–36]. Chosen relaxation time has also been used
in [27,28]; it corresponds to the bandwidth of the electronic
transitions detected in individual CNTs by Rayleigh scattering
[43]. The number densities of CNTs of different types are
taken to be the same, so that f j/ f = Rj/

∑
j R j .

Let us now consider the contribution to the permittivity
from π -electron transitions, ε||,⊥ − 2.4 [here 2.4 = 1 + εσ ,
see (A4) in Appendix A]. The frequency dependencies of
Re(ε||,⊥ − 2.4) and Im ε||,⊥ for chosen CNT film are rep-
resented in Fig. 1(a). If one ignores the oscillations due to
interband transitions below 3 eV, one may conclude that the
spectra of ε|| and ε⊥ coincide well with each other in the
spectral range 1–6 eV. Both spectra have resonance behavior
at 6.2 eV due to a mixture of interband transitions at the saddle
point in the band structure. The total contribution of all the
transitions into the real part of the average CNT permittivity
vanishes in the spectral range 2.5–6 eV.

For comparison, the permittivity spectrum of CNT thin
film measured in [3] is represented by symbols in Fig. 1(b).
One can see a resonance behavior at 4.5 eV associated with
π -plasmon excitation.

The π -plasmon contribution to the permittivity of graphene
sheet is well known from experiment [17] [see symbols in
the inset of Fig. 1(b)]: the real part of graphene permittivity
varies between 5 and 6 in the broad spectral range 1–4 eV, and
its imaginary part corresponds to an asymmetrical Fano-line
shape of π -plasmon absorption peak [18]. We shall suppose
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that the π plasmon contributes in a similar way to both
graphene and CNT wall permittivities.

For the theoretical description of the experimental data, we
propose to add in (1) an extra term

εpl = ε′
pl + iε′′

pl , (3)

determining phenomenologically the contribution from π

plasmon.
We choose ε′′

pl in a way to take into account the Fano line
shape [21] of π -plasmon absorption peak

ε′′
pl (ω) = ω0

ω

(qνr/2 + ω − ωr )2

(ω − ωr )2 + (νr/2)2
, (4)

whereas ε′
pl is determined by the Kramers-Kronig relation

ε′
pl (ω) = 2

π

∫ ∞

0

ω′ε′′
pl (ω′)

ω′2 − ω2
dω′. (5)

Here ωr and νr are the frequency and bandwidth of the
π -plasmon peak, which can be found from the measured
absorption spectrum of CNT film. The frequency ω0 in (4)
should be chosen such that Re(ε||,⊥ + εpl ) ≈ 5 in the spectral
range 2–3 eV that corresponds to the real part of the measured
graphene permittivity [17] [see inset in Fig. 1(b)]. The restric-
tion on a choice of ω0 comes from expected similarity of the
mechanism of π -plasmon excitation in graphene and CNTs.
The factor q in (4) is responsible for the Fano line shape; it can
be determined by fitting the measured CNT film permittivity
with the calculated one.

The phenomenological term εpl is associated with the extra
contribution to the CNT surface conductivity

σpl = −iωdεpl/4π, (6)

which is assumed to be the same along the axial and circum-
ferential directions.

Using the effective medium theory and neglecting the local
field effect, the in-plane and out-of-plane effective permittivi-
ties of CNT film can be found as

εin,out = 1 + (κ − 1)(1 − f ) + 4π i f σin,out

ωd
, (7)

where the second and third terms describe the contributions
from the host medium and CNTs, respectively. σin,out are
the effective CNT surface conductivities in-plane and out-of-
plane of CNT film,

σin = 0.5(σ || + σ pl|| + 0.5σ⊥), σout = 0.5σ⊥, (8)

where σ || and σ pl|| are the average axial surface conductivities
due to σ - and π -electron transitions and π -plasmon excita-
tion, respectively,

σ || = f −1
∑

j

σ
( j)
|| f j, σ pl|| = σpl , (9)

and σ⊥ is the average effective surface conductivity along the
circumferential direction,

σ⊥ = f −1
∑

j

f j
σ

( j)
⊥ + σpl

1 + i2π (σ ( j)
⊥ + σpl )/ωRjκ

. (10)

The factor 0.5 before brackets in (8) takes into account ran-
dom orientations of CNTs in the plane of the film, whereas

the factor 0.5 before σ⊥ is due to the cylindrical form of
CNT surface. The denominator in (10) accounts for the de-
polarization field, which occurs when the incident electric
field is polarized perpendicular to the CNT axis [10,25]. Note
that σ

( j)
⊥ in the denominator of (10) includes phenomeno-

logically the contribution from σ electrons [see (A9) and
(A10) in Appendix A]. Via the depolarization field, this con-
tribution influences the frequency and height of azimuthal
plasmon peak in doped CNTs (see Sec. III), and it has not
been taken into account in previous theoretical papers [27,28].

The best fit of (7) to the permittivity spectrum observed
for densified CNT film in Ref. [3] [see Fig. 1(b)] yields
q = −10, h̄ωr = 4.5 eV, h̄νr = 1.4 eV, and h̄ω0 = 0.35 eV at
κ = 1 and f = 0.39. The value f = 0.39 corresponds to the
carbon density 0.86 g/cm3, that is close to 0.89 g/cm3 de-
clared for densified CNT film [44]. Interestingly, the average
permittivity of CNT wall along the circumferential direction
ε⊥ + εpl at chosen parameters q, ω0, ωr , and νr practically
coincides with the graphene permittivity in the spectral range
1.2–5 eV [compare the experimental and calculated data in the
inset of Fig. 1(b)]. This indicates that the obtained π -plasmon
bandwidth νr for considered CNT film is determined to a
greater extent by the plasmon lifetime in each CNTs and
to a lesser extent by the inhomogeneous broadening caused
by the dependence of plasmon frequency on the nanotube
diameter [9,14].

Let us notice that we can trust the theoretical data in
Fig. 1(b) only below 5.5 eV. The resonance behavior at 6.2 eV
due to the transitions at the saddle point should be related to
the π plasmon. Since we take into account π plasmon in a
phenomenological way, those transitions should be excluded
from consideration.

The CNT absorption cross section averaged over all types
of the tubes and over all their orientations in the film is pro-
portional to Re σin and Re σout for in-plane and out-of-plane
polarizations of the incident field, respectively. Figure 2(a)
represents the frequency dependencies of the real parts of σout,
σin and their components 0.5σ ||, 0.5σ pl||, and 0.25σ⊥ intro-
duced in (8). As shown in Fig. 2(a), the spectrum of 0.5Re σ ||
has a peaky structure due to interband electron transitions,
whereas the spectrum of 0.25σ⊥ is smoothed and strongly
reduced due to strong depolarization effect in the transverse
direction. Thus, in spite of the similar average CNT wall
permittivities along the axial and circumferential directions
[see Fig. 1(a)], the optical absorption in undoped CNT film
occurs mostly by the axial current excitation in CNTs, so that
inequality Re σin � Re σout remains true below 4.5 eV [see
Fig. 2(a)].

As reported in [10,24,25], the depolarization effect re-
duces the effective surface conductivity along circumferential
direction of CNT. Here we notice even stronger reduction
caused by π plasmon [see the contribution of σpl to the
denominator in (10)]. Note that the impact of the depolar-
ization effect decreases as the host permittivity κ increases
[see Eq. (10)].

To illustrate the influence of the depolarization effect, we
represent in Fig. 2(b) the frequency dependence of 0.25 Re σ⊥
with (εpl 	= 0) and without (εpl = 0) π -plasmon contribution
in the air (κ = 1) and in the dielectric host medium (κ = 2).
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FIG. 2. (a) Frequency dependencies of Re σin,out and its com-
ponents presented in (8) at κ = 1. (b) Frequency dependencies of
0.25 Re σ⊥ (in units e2/h) with (εpl 	= 0) and without (εpl = 0)
π -plasmon contribution for CNTs in the air (κ = 1) and in the di-
electric host medium (κ = 2). e is an electron charge; h is the Planck
constant.

One can see that the real part of the effective surface conduc-
tivity along circumferential direction below 4.5 eV is smaller
when the contribution from π plasmon is taken into account
[compare lines at κ = 1 in Fig. 2(b)]. This conductivity is
almost twofold increases as the host permittivity κ increases
from 1 to 2 [compare lines at εpl 	= 0 in Fig. 2(b)].

Thus, we propose a model for the effective permittivity of
CNT film. Its effectiveness for the description of the absorp-
tion spectra of doped CNT films is shown in the next section.

III. INTERSUBBAND PLASMON IN DOPED CNTs

If the Fermi level shifts to the valence or conduction
band, the intersubband transitions within the band occur for
the incident field directed perpendicular to the tube axis
[see (A12) in Appendix A]. As a result, an azimuthal surface
plasmon can be excited in CNT in the spectral range just above
the transition frequencies [27,28,31]. It is also referred to as
intersubband plasmon [27,28]. Charge distribution, current
oscillations, and nonzero field components Eρ,θ and Hz for the
azimuthal plasmon are schematically represented in Fig. 3(a).
For comparison, Fig. 3(b) shows axial azimuthally symmet-
rical surface plasmon in CNT excited by axial component
of the incident field. Such plasmon occurs in the far-infrared
range [45,46] and on the high-frequency side of the interband
electron transitions [47].

The calculated optical densities (OD) of 80-nm thick CNT
film at various Fermi energies EF are shown in Figs. 4(a)
and 4(b) for the host permittivities κ = 1 and κ = 2, re-
spectively. The parameters of CNTs in the film are taken

FIG. 3. Schematic illustration of the charge distribution, current
oscillations jθ,z, and nonzero field components Eθ,ρ,z and Hθ,z for the
azimuthal (a) and axial (b) TM modes excited in CNT by the incident
field E0.

the same as in Sec. II. Figures 4(a) and 4(b) show that the
OD spectrum for undoped film (EF = 0) has three peaks at
0.68, 1.34, and 1.95 eV due to interband transitions S11 and
S22 in semiconducting tubes and transition M11 in metallic
CNTs, respectively [16]. With increasing doping level, the
low-energy transitions become forbidden due to the Pauli
exclusion principle [27,28]. At EF = 0.8 eV, the transitions
S11 and S22 disappear, and a peak at 1.1 eV caused by the
intersubband plasmon arises. Transformation of this peak with
Fermi energy variation in Fig. 4(b) is very similar to that
observed in experiments [1,34–36]. For CNTs embedded into
the host medium with smaller permittivity, the depolarization
effect is stronger and the peak height is smaller [compare
Figs. 4(a) and 4(b) at κ = 1 and κ = 2, respectively]. This
explains why the intersubband plasmon has not been detected
in doped CNT film in the air [48], but it has been visible
in the liquid environment [1,26,34–38]. Only recently, the

FIG. 4. Calculated frequency dependencies of the optical density
(OD) of CNT film with thickness of 80 nm at various doping levels
EF ∈ {0, 0.7, 0.8, 0.9, 1.0, 1.1} eV at κ = 1 (a), κ = 2 (b) and (c).
The arrow indicates a direction of Fermi energy increasing. The
π -plasmon and σ -electron transitions are not taken into account in
(c), σpl = 0, εσ = 0.
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FIG. 5. Frequency dependencies of the normalized absorption
cross section of a doped individual CNT, pair of CNTs, and bundle
of seven CNTs. All the CNTs are identical with tubule index (0,17)
at doping level EF = 1.1 eV and intertube distance 0.34 nm. The
orientations of the incident field E0 are indicated with arrows.

intersubband plasmon peak has been observed in highly doped
CNT films in the air [39–41].

Figure 4(c) represents the results of the same calculations
as in Fig. 4(b) but assuming σpl = 0 in (9) and (10) and εσ =
0 in (A10) that corresponds to the exclusion of π -plasmon
and σ -electron transitions from consideration. In this case, we
obtain higher frequency and height of intersubband plasmon
peak similar to that reported in previous studies [27–31] but
not observed in experiments [1,26,34–38].

Thus, the additional terms εpl from π plasmon and εσ from
σ electrons should be taking to into account when calculating
the permittivity of the CNT walls. They lead to an increase
in the depolarization field and introduce additional losses,
which results in a decrease in frequency and height of the
intersubband plasmon peak.

Previously, the discrepancy between theory and experiment
in respect to frequency and height of intersubband plasmon
peak are proposed to explain by the environmental effect due
to the bundling of CNTs [1,28,33] and additional losses in
the surrounding environment [32]. To elucidate the bundling
effect from electromagnetic point of view, in the next section,
we consider the transverse optical response from a bundle of
doped CNTs.

IV. INTERSUBBAND PLASMON IN DOPED CNT BUNDLE

In Appendix B, we develop the theory of electromagnetic
wave scattering by a bundle of doped single-walled carbon
nanotubes when the incident field is directed perpendicular to
the CNT axis. We neglect the electron tunneling between the
tubes in the bundle, and the electronic band structure in each
CNT is supposed to be the same as in the individual CNT.
Figure 5 shows the frequency dependencies of the normalized
absorption cross section �/S of a doped individual CNT, pair
of CNTs, and bundle comprising seven CNTs in a the spectral
range of the intersubband plasmon peak. The normalization is

done to the surface area of all CNTs in the bundle [see (B17)
in Appendix B]. As shown in Fig. 5, the plasmon resonance in
a pair of CNTs shifts to lower frequencies for a field directed
parallel to the long pair axis (dash-dot line), whereas a shifts
to higher frequencies occurs for the orthogonal polarization
(dashed line). Such behavior is typical for a dipole-dipole
interaction and is observed for a pair of plasmon nanoparticles
[49]. Let us also notice that the spectrum of �/S for the bundle
of seven CNTs is almost the same as for the individual CNT
indicating that the bundling cannot influence significantly the
frequency and height of the plasmon peak. We find that this
is true for any almost circular bundles with N � 7. Thus, our
calculations do not confirm a conclusion made in experimen-
tal paper [1] that an increase in the bundle size leads to a red
shift of the plasmon frequency.

V. CONCLUSIONS

We proposed a model of the effective optical permittivity
of CNT film where the CNT wall permittivity was calcu-
lated from quantum theory of π -electron transitions and the
contributions from π plasmon and σ electrons were taken
into account phenomenologically. By choosing the π -plasmon
parameters, we assumed that the real part of the averaged
CNT wall permittivity in the spectral range 2–3 eV should be
similar to that measured for graphene, other parameters were
determined by fitting the experimental data for CNT film.

π -plasmon contribution to the CNT wall permittivity leads
to an enhancement of the depolarization effect thus strongly
suppressing the transverse response of undoped CNT in a
spectral range below 4 eV. Also, this contribution together
with one from the σ electrons causes a red shift and reduction
of intersubband plasmon peak in the absorbance spectrum
of doped CNT thin film. Since the depolarization effect de-
creases with increasing the host permittivity, the azimuthal
intersubband plasmon is observed in electrostatically doped
CNTs in the liquid and in heavily doped CNTs in the air.

We developed the theory of optical scattering by a doped
CNT bundle for the incident field polarized perpendicular to
the bundle axis. We showed that the bundling cannot influ-
ence significantly the frequency and height of intersubband
plasmon peak in the absorbance spectrum of doped CNT film.
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APPENDIX A: THE SURFACE CONDUCTIVITY OF CNT

Here we shall represent the analytical formulas from Ref.
[10] for calculating the surface conductivity σ|| and σ⊥ of a
single-walled CNT along the axial and circumferential direc-
tions, respectively. We shall supplement those formulas with
(A12), which takes into account intersubband transitions in
doped CNTs. Also, we shall include phenomenologically the
contribution from σ electron to the CNT surface conductivity.
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The permittivity of CNT in the framework of the linear
response theory [10,12,13,27] is calculated as follows:

ε = 1 + εσ + 8πe2 h̄

m2
eω

1

Sd

∑
λ,λ′=1,2

∑
N,N ′

∫
dk

×
∫

dk′ |〈N ′k′λ′| p̂|Nkλ〉|2
ελ′ (N ′, k′) − ελ(N, k) + h̄ω + i/τ

× fλ′ (N ′, k′) − fλ(N, k)

ελ′ (N ′, k′) − ελ(N, k)
, (A1)

where εσ = 1.4 takes phenomenologically into account the
transitions from occupied σ bands [19]; e and me are charge
and mass of electron; h̄ is the reduced Planck constant; p̂ is
the electron momentum; k is a wave number; ω is angular
frequency; τ is the time constant of the electron mean free
path; the subscript λ stands for the conduction (λ = 2) and
valence (λ = 1) bands. S and d are the surface area and thick-
ness of CNT wall, so that Sd is a volume occupied by the CNT
lattice. Since we use εσ = 1.4 the same as for graphite, the
value of d should be chosen equal to the interlayer distance in
graphite, i.e., d = 0.34 nm. ελ(N, k) is an energy of 1D band
with number N ; fλ(N, k) is the Fermi function,

fλ(N, k) =
{

exp

[
ελ(N, k) − μ

kBT

]
+ 1

}−1

, (A2)

where T is the absolute temperature; kB is the Boltzmann
constant; μ is the chemical potential. μ = 0 for undoped
tubes, whereas μ = EF for doped CNT, where EF is the Fermi
energy.

Following Ref. [10], a tubule index (a, b) satisfies a �
1 and −a + 1 � b � 0. The axial surface conductivity of
CNT is

σ|| = −iωd
(
ε|| − 1

)
4π

, (A3)

where d is the thickness of CNT wall and

ε|| = 1 + εσ + ε1|| + ε2||. (A4)

Here ε1|| (ε2||) is the contribution from the interband (intra-
band) transitions,

ε1|| =
(

eh̄2

me

)2
4ρC

al0

a−1∑
N=0

∫ π/l0

−π/l0

dk
f2(N, k) − f1(N, k)

ε2(N, k) − ε1(N, k)

× (Re K0(N, k))2

h̄2ω(ω + i/τ ) − (ε2(N, k) − ε1(N, k))2 , (A5)

ε2|| =
(

eh̄

me

)2 2ρC

al0

1

ω(ω + i/τ )

a−1∑
N=0

∫ π/l0

−π/l0

dk

× [Im K0(N, k)]2{ f ′[ε2(N, k)] + f ′[ε1(N, k)]}, (A6)

where l0 = 1.5b0, b0 = 0.142 nm is the in-plane C-C distance
of the graphite; ρC = √

3/dl2
0 is the density of carbon atoms

per volume in the graphene lattice;

ε1,2(N, k) = ∓γ0

{
1 + 4 cos

(
2πN

a
− a + 2b

2a
kl0

)

× cos

(
kl0
2

)
+ 4cos

(
kl0
2

)2
}1/2

. (A7)

γ0 = 3.1 eV is the hopping energy. K0(N, k) corresponds to
the dimensionless matrix element of the momentum operator,

K0(N, k) = exp [−i�(N, k)]
3∑

λ=1

exp [−iφλ(N, k)]

× [J1 cos ηλ + J2(1 − cos ηλ)2]ξλ. (A8)

η1 = −π (a + b)

a2 + ab + b2
, ξ1 = −a + b

3
√

a2 + ab + b2
,

η2 = πb

a2 + ab + b2
, ξ2 = 2a + b

3
√

a2 + ab + b2
,

η3 = πa

a2 + ab + b2
, ξ3 = −a − 2b

3
√

a2 + ab + b2
,

φ1(N, k) = 0, φ2(N, k) = kl0,

φ3(N, k) = 2πN

a
− b

a
kl0,

J1 = −9e−u

20N0
u2

(
u2

3
+ u + 1

)
,

J2 = −27R2e−u

80l2
0 N0

u4(u + 1), u = Zl0
3aBohr

,

N0 = 1 − 9e−2u

4

(
1 + u + 2u2

5
+ u3

15

)2

,

�(N, k) = arg

{
exp

[
− i

(
2πN

a
− b

a
kl0

)]

+ exp[−ikl0] + 1

}
,

where R = √
3b0

√
a2 + ab + b2/2π is a radius of CNT; Z =

3.136 is the “best atom” effective charge for carbon in units
of electron charge e for the 2p Slater orbital, aBohr = 5.29 ×
10−9. The notation f ′(ε1,2) = ∂ f1,2/∂ε1,2 is used in (A6).

The surface conductivity along circumferential direction of
the CNT is

σ⊥ = −iωd (ε⊥ − 1)

2π
, (A9)

where

ε⊥ = 1 + εσ + ε1⊥ + ε2⊥. (A10)

The key point for further consideration is that εσ is included
into the CNT conductivity in Eq. (A9) thus influencing the
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frequency of the azimuthal plasmon in CNTs via the denomi-
nator in (10). ε⊥1 (ε⊥2) is due to interband transitions between

the conduction and valence bands (between subbands of the
same band),

ε1⊥ = χρC

a−1∑
N=0

∫ π/l0

−π/l0

f2(N + 1, k + κ0) − f1(N, k)

ε2(N + 1, k + κ0) − ε1(N, k)

∣∣K+(N + 1, k + κ0) + K∗
−(N, k)

∣∣2

h̄2ω(ω + i/τ ) − [ε2(N + 1, k + κ0) − ε1(N, k)]2 dk, (A11)

ε2⊥ = χρC

2

a−1∑
N=0

∫ π/l0

−π/l0

fs(N + 1, k + κ0) − fs(N, k)

εs(N + 1, k + κ0) − εs(N, k)

∣∣K+(N + 1, k + κ0) − K∗
−(N, k)

∣∣2

h̄2ω(ω + i/τ ) − [εs(N + 1, k + κ0) − εs(N, k)]2 dk. (A12)

Here s = 1 (s = 2) for p-type (n-type) doping, and the asterisk
means complex conjugation.

κ0 = π (a + 2b)

l0(a2 + ab + b2)
, χ =

(
eh̄2

πme

)2
a2 + ab + b2

3al0
,

K±(N, k) = 1√
2

exp [−i�(N, k)]
3∑

λ=1

exp [−iφλ(N, k)]

× [J1(2 cos ηλ − 1) + J2(1 − cos ηλ)2]

× (1 − exp(±iη1)).

APPENDIX B: THE TRANSVERSE RESPONSE
OF CNT BUNDLE

Let a bundle of Ñ parallel doped CNTs be located in a
host medium with permittivity κ and exposed to the elec-
tromagnetic wave with an electric field perpendicular to the
tube axis. We choose indexes n and m to enumerate CNTs
in the bundle: n, m = 1, 2 . . . Ñ . Let z axis of the cylindrical
coordinate system (ρn, θ, zn) coincides with the axis of the nth
CNT, and the direction θ = 0 coincides with the x axis of the
chosen Cartesian coordinate system (see Fig. 6). The incident
field E0 directed at an angle θ0 is assumed to be homogeneous
within a bundle cross section.

We shall consider a frequency range nearby the intersub-
band transitions (N, k) → (N + 1, k + κ0) of doped CNT [see
(A12)]. In this spectral range, predominantly two azimuthal
modes of the surface current density are excited along the
circumferential direction in the nth CNT [27],

jn(θ ) =
∑

l

j (l )
n exp (ilθ ), (B1)

FIG. 6. Geometry of mth and nth CNTs.

where l = −1,+1. Ohm’s law is valid for each mode

j (l )
n = σ (l )

n

⎛
⎝E (l )

0n +
Ñ∑

m=1

E (l )
nm

⎞
⎠, (B2)

where σ (l )
n is the surface conductivity of the nth CNT for the

lth mode. Note that σ (+1)
n = σ (−1)

n = σn is true in the absence
of the Aharonov-Bohm flux along the tube axis [27]; σn =
σ⊥ + σpl [see (A9) and (3) for σ⊥ and σpl ]. E (l )

0n is an azimuthal
component of the incident field responsible for the lth mode
excitation,

E (l )
0n = −1

2π

∫ 2π

0
E0 sin(θ − θ0) exp(−ilθ )dθ. (B3)

E (l )
nm is an azimuthal component of the field scattered by the

mth CNT on a surface of the nth CNT,

E (l )
nm = 1

2π

∫ 2π

0
Enm(θ ) exp(−ilθ )dθ, (B4)

Enm(θ ) = − 1

Rn

∂ϕnm

∂θ
. (B5)

Here Rn is a radius of nth CNT; ϕnm is the electric potential
created on a surface of the nth CNT by the surface charge
density ρ (l )

m of the mth CNT [25],

ϕnm(θ ) = −2Rm

κ

∫ 2π

0

∑
l

ρ (l )
m eilθ ′

ln[rnm(θ, θ ′)]dθ ′, (B6)

where

rnm(θ, θ ′) = {(xm + Rm cos θ ′ − xn − Rn cos θ )2

+ (ym + Rm sin θ ′ − yn − Rn sin θ )2}1/2 (B7)

is a distance between two points on the mth and nth CNTs (see
Fig. 6). The meaning of xm,n, ym,n, θ and θ ′ is clear from Fig. 6,
where the mth and nth CNTs are shown. Equation (B6) gives
the potential of the field scattered by the mth CNT in the point
with coordinates (ρ, θ ), if one supposes xn = xm, yn = ym, and
Rn = ρ in (B7).

The continuity equation

∂

∂t
ρ (l )

m exp(ilθ − iωt ) + 1

Rm

∂

∂θ
j (l )
m exp(ilθ − iωt ) = 0

(B8)

yields the relation between the surface current and charge
densities

ρ (l )
m = l

ωRm
j (l )
m . (B9)
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Subsequent substitution of (B9), (B6), and (B5) in (B4)
with the following integration at m = n yields

E (l )
nm =

∑
l ′=+1,−1

M (ll ′ )
nm j (l ′ )

m , (B10)

M (ll ′ )
nn = − i2π

κRnω
, (B11)

M (ll ′ )
nm, n 	=m = l ′

πωκRn

∫ 2π

0
dθ

× ∂

∂θ

[∫ 2π

0
exp(il ′θ ′) ln[rnm(θ, θ ′)]dθ ′

]

× exp(−ilθ ). (B12)

Substituting (B10) in (B2) and taking into account (B12), we
arrive at a system of 2Ñ equations for the surface current
density

j (l )
n

[
1

σ
(l )
n

+ i2π

κRnω

]
−

Ñ∑
m=1,	=n

∑
l ′=+1,−1

M (ll ′ )
nm j (l ′ )

m = E (l )
0n .

(B13)

The solution of Eq. (B13) allows us to obtain the transverse
polarizability of CNT bundle per unit length

αb =
Ñ∑

n=1

−iRn

ωE0

∫ 2π

0
jn(θ ) sin (θ − θ0)dθ, (B14)

where sin(.) appears due to the current projection on the
direction of the incident field. Substitution of (B1) into (B14)
followed by integration yields

αb =
Ñ∑

n=1

πRn

ωE0

∑
l

l exp (ilθ0) j (l )
n . (B15)

The transverse polarizability of the individual nth CNT per
unit length can be found as

αn = iπσnRn

ω

(
1 + i2πσn

ωRnκ

)−1

. (B16)

The absorption cross section � of the bundle normalized to
the surface area S of all the tubes is

�/S = 2ω

c
∑Ñ

n=1 Rn

Im αb, (B17)

where c is the speed of light in vacuum.
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