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Quantum transport in nonequilibrium settings plays a fundamental role in understanding the properties of
systems ranging from quantum devices to biological systems. Dephasing—a key aspect of out-of-equilibrium
systems—arises from interactions with a noisy environment and can profoundly modify transport properties.
Here we investigate the impact of dephasing on the nonequilibrium steady-state transport properties of noninter-
acting fermions on a one-dimensional lattice with long-range hopping (proportional to 1/rα), where α > 1. We
demonstrate the emergence of distinct transport regimes as the long-range hopping parameter, α, is tuned. In the
short-range limit (α � 1), transport is diffusive. Conversely, in the long-range limit [α ∼ O(1)], we observe a
superdiffusive transport regime. Using numerical simulations of the Lindblad master equation and corroborating
these with an analysis of the current-operator norm, we identify a critical long-range hopping parameter,
αc ≈ 1.5, below which superdiffusive transport becomes pronounced and rapidly becomes independent of
the dephasing strength. Our results elucidate the intricate balance between dephasing and unitary dynamics,
revealing steady-state transport features.
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I. INTRODUCTION

Quantum transport of charge and energy in nonequilib-
rium settings is foundational in modern physics, relevant
to processes like light harvesting in photosynthesis, chemi-
cal reactions in chemical and biological systems [1,2], and
emerging nonequilibrium states in nanofabricated quantum
devices [3–6]. Specifically, charge transport measurements us-
ing quantum dot arrays have led to breakthroughs in Coulomb
blockade, Kondo physics, superconductivity, quantum-point-
contact universal conductance, and quantum computing
[4,7–10].

The study of quantum transport often involves analyzing
the temporal behavior of a wave packet’s mean squared dis-
placement, or the flow of energy and charge through a system
using a boundary drive [11–17]. Ballistic transport results in
quadratic growth of the mean squared displacement, while
diffusive systems exhibit linear growth of the same in time.
Similarly, in boundary-driven setups, a linearly decreasing
steady-state current with the system size indicates a diffusive
transport, while for a ballistic transport, the steady-state cur-
rent is independent of the system size. Any deviations from
these scaling behaviors signify anomalous transport [18–21].
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Dephasing, introduced via environmental coupling, sig-
nificantly affects quantum transport in lattice systems
[15–17,22,23]. This includes Zeno-type dephasing with clas-
sical noise, leading to environment-assisted quantum transport
[1,24–27]. Dephasing can also result in anomalous transport
in localized systems, exhibiting subdiffusive, diffusive, or
logarithmic behavior depending on noise sparsity [22,23,28].
Recent research on a boundary-driven system in the nearest-
neighbor chain of free fermions suggests a transition from
ballistic to diffusive transport with varying dephasing strength
[29,30].

Short-range hopping systems have been the main focus
in recent times, leaving open questions regarding transport
properties in long-range systems with power-law hopping in
the presence of dephasing [31–35]. These systems, found in
nature and engineered in cold-atom and trapped ionic setups,
exhibit significant qualitative changes in various physical
properties, including equilibrium phase, ground state, and
dynamics [36–46]. For α � d (where α is the long-range
hopping exponent, and d is the dimension of the system),
the physics largely resembles short-range systems, but as α

is decreased new universality classes can emerge, new phases
can be stabilized [47], and, in the extreme limit but for
α < d , it introduces novel features like logarithmic entangle-
ment growth, heating suppression, light-cone evolution, and
self-trapping [48–53].

Here we investigate the nonequilibrium steady-state
(NESS) transport properties of long-range systems coupled
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FIG. 1. Schematic of our setup: a noninteracting fermionic lattice
chain with long-range hopping (indicated by yellow solid lines) is
placed between two baths (electrodes kept at the infinite bias limit:
L, left; R, right) injecting and extracting particles at the first and last
sites, respectively. At each site of the chain, an on-site dephasing is
applied that mimics the Zeno-type measurement of number density
at that site, indicated by arrows.

to dissipative particle injection-extraction baths with a rate �

corresponding to an infinite bias condition and a dephasing
environment with a rate γ , using the Lindblad master equa-
tion [54,55]. Previous work focused on these systems without
dephasing, and subdiffusive conductance scaling was ob-
served under proper tuning of chemical potential bias [56]. A
finite bias window also leads to significant non-Markovianity
[57,58], which requires further investigation.

Remarkably we observe that above a critical value of the
long-range parameter, αc ≈ 1.5, the NESS charge current
exhibits diffusive scaling with the system size (J∞ ∼ L−1).
However, below the critical parameter αc, we observe su-
perdiffusive transport with a power-law dependence on system
size for 1 < α < 1.5, and for α � 1, an inverse logarithmic
dependence of current on system size, indicating anoma-
lous transport. These distinctive transport regimes arise due
to the interplay between long-range hopping and dephas-
ing, as discussed in subsequent sections. Furthermore, we
highlight similarities between the NESS current heat map in
the α-γ plane and the entanglement phase diagram of the
measurement-induced phase transition (MIPT) in long-range
hopping systems [59–61].

II. MODEL HAMILTONIAN AND FORMULATION

We consider a linear chain of L sites hosting noninteracting
spinless fermions with long-range hoping, as shown in Fig. 1.
The model Hamiltonian for the chain is given by

Ĥ =
L−1∑
j=1

[∑
r

J

rα
(ĉ†

j ĉ j+r + H.c.)

]
=

L−1∑
i, j=1

∑
r

ĉ†
i H

(r)
i, j ĉ j

with H(r)
i, j = J

rα
(δi, j+r + δi+r, j ), (1)

where J
rα is the long-range hopping strength with the ex-

ponent of the spatial dependence α, r = |i − j| being the
distance between lattice sites i and j. The operator norm of the
long-range hopping term is given by L1−α , and for α < 1, it
becomes dominant in the thermodynamic limit [62]. However,
one can rescale such a term by an α-dependent factor Nα

which is N∞ = 2 and N0 = L [63–66]. Nevertheless, since
experiments are performed with a finite number of sites, such

rescaling does not appear naturally [3,31,32,67]. Therefore,
we do not consider this rescaling in our paper. We couple the
system to a particle injecting source and a particle extraction
sink to the left and right end, respectively, with a constant
rate �. Additionally, we add Zeno-type dephasing at each
site with strength γ providing an energy relaxation channel.
The equation of motion of the density matrix of the system is
governed by the standard Lindblad quantum master equation:

∂ρt

∂t
= −i[Ĥ, ρt ] + Dd [ρt ] + DL[ρt ] + DR[ρt ],

Dd [ρt ] = γ

2

L∑
j=1

(
n̂ jρt n̂ j − 1

2
{n̂ j, ρt }

)
,

DL[ρt ] = �

2

(
ĉ†

1ρt ĉ1 − 1

2
{ĉ1ĉ†

1, ρt }
)

,

DR[ρt ] = �

2

(
ĉLρt ĉ

†
L − 1

2
{ĉ†

LĉL, ρt }
)

, (2)

where Dd [ρt ], DL[ρt ], and DR[ρt ] are the Lindblad dissipators
corresponding to the on-site dephasing, left, and right bound-
ary drive, respectively, and n̂i is the fermion number operator
at site i.

For the long-range Hamiltonian, the local current is defined
from the particle number conservation [27]: dn̂ j

dt = Ĵ j,in −
Ĵ j,out. For the site connected to the left lead, the current into
the first site is Ĵ1,in = DL[n̂1] = �(1 − n̂1) and the current
out of the first site is Ĵ1,out = i[Ĥ, n̂1]. Similarly, for the
last site connected to the right lead, the current into the last
site is ĴL,in = i[Ĥ, n̂L] and the current out of the last site
is ĴL,out = DR[n̂L] = �n̂L. For all other sites, i.e., 2 � j �
L − 1, Ĵ j,in − Ĵ j,out = i[Ĥ, n̂ j], which gives

Ĵ j,in = −i
∑

r

J

rα
(ĉ†

j ĉ j−r − ĉ†
j−r ĉ j ),

Ĵ j,out = −i
∑

r

J

rα
(ĉ†

j+r ĉ j − ĉ†
j ĉ j+r ). (3)

Our approach is based on analyzing the single parti-
cle correlation matrix C with matrix elements Cn,m(t ) =
Tr[ρ(t )ĉnĉ†

m], which for the noninteracting systems can be
computed more efficiently [29,68–70]. The equation of mo-
tion for the correlation matrix is given by

∂C

∂t
= −i[H,C] − {D,C} + P , (4)

where (D)m,k = δm,k

2 (γ + �[δm,1 + δm,N ]), and (P )m,k =
δm,k[γCm,m(t ) + �δm,Nδk,N ].

The NESS density profile and the current can be obtained
from the elements of the correlation matrix [Cn,m(t → ∞)] as

〈n̂m(∞)〉 = 1 − Cm,m(∞), (5)

J∞ = 〈Ĵm(∞)〉 =
∑

r

2J

rα
Im[Cm,m−r (∞)]. (6)

In what follows, we will use current and resistance (R∞ =
J−1
∞ ) interchangeably in analyzing NESS transport and show

our numerical findings. We focus on the NESS density profile
throughout the lattice chain and the transport current from
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FIG. 2. Nonequilibrium steady-state density profile, viz.,
〈n̂m(∞)〉 with respect to the lattice site index, and for a range of
long-range hopping parameter α. Upper (a) and lower (b) panels
correspond to two different dephasing strengths γ = 0.05 and 2.0,
respectively.

the right lead, viz., J∞ = �〈n̂L(∞)〉. We study the system
size scaling of the NESS current to characterize the various
transport regimes. We fix the hopping amplitude J = 1. The
dephasing strength γ and particle injection-extraction rate �

are taken in the unit of J . In all the following analysis, we
consider the system-lead coupling to be � = 1. It is a rather
benign parameter compared to γ and α within our infinite
bias setup as it only determines the overall magnitude of the
current.

III. NESS DENSITY PROFILE AND CURRENT

We first study the steady-state density profile of the system
and plot 〈n̂m(∞)〉 as a function of the site index m for a
range of long-range parameter α (shown in the color bar) in
Fig. 2. We consider the dephasing strengths γ = 0.05 [upper
panel in Fig. 2(a)] and γ = 2.0 [lower panel in Fig. 2(b)]. For
α 	= 0, and small dephasing strength γ = 0.05, the density
profile shows a trend towards a linear profile for larger α

values starting from a nonlinear profile at smaller α values.
Although 〈n̂m(∞)〉 shows the same trend towards a linear
profile for larger dephasing, e.g., γ = 2.0 in Fig. 2, inter-
estingly, 〈n̂m(∞)〉 is more flattened in the bulk of the chain
compared to the level of flatness seen for γ = 0.05. This is
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FIG. 3. Nonequilibrium steady-state current J∞ corresponding to
several values of α as a function of dephasing strength γ for system
size L = 1024, in log-log scale. Black dashed lines correspond to
J∞ ≈ 1

γ
scaling.

opposite to the expectation; i.e., in the absence of dephasing,
a chain with nearest-neighbor hopping exhibits a flat density
profile in bulk with 〈nm(∞)〉 ≈ 0.5, a hallmark of ballistic
transport, and, for stronger dephasing strength, the density
profile scales as 〈nm(∞)〉 ∝ 1/L, suggesting a suppression in
transport (diffusive transport). Such contrasting features hint
towards the emergence of an interesting anomalous transport
regime in the presence of long-range hopping.

To explore the regime of unusual transport, we study the
variation of the NESS current J∞ for different values of de-
phasing γ and long-range parameter α for a fixed system
size L = 1024. Figure 3 plots J∞ as a function of dephasing
strength γ . We observe that the current gets suppressed with
increased dephasing for all the values of α. This is clearly seen
in Fig. 3 (black dashed lines) for α = 1.5 and higher, where
current decreases monotonically with γ , i.e., J∞ ∝ 1

γ
. For the

short-range hopping model, in the absence of dephasing, the
transport is always ballistic. Finite dephasing is detrimental to
this ballistic transport and plays a role in inelastic scattering
[29]. On the other side, for α < 1, current initially decreases
with increasing dephasing and, interestingly, settles down to
a plateau regime for a considerable range 10−2 � γ � 101 of
dephasing. With increasing α, the range of γ over which this
interesting plateau regime appears starts to shrink and eventu-
ally disappears for α � 1.5. The plateau regime emerges due
to the intricate interplay of long-range hopping and dephas-
ing. In other words, due to long-range hopping, particles can
now evade the inelastic scattering induced by the dephasing
more easily and, thereby, can possibly deviate from standard
diffusive transport.

In the following, we elaborate further on the appearance
of the plateau and restrict ourselves to the dephasing strength
0.1 < γ < 2.0, for which the J∞ plateaus in Fig. 3. We plot
a heat map of the J∞ as a function of long-range parameter α

and dephasing γ in Fig. 4, for L = 1024. We find that apart
from the magnitude of J∞, other features do not distinctively
differ for different system sizes (see Supplemental Material
[71]). First, we observe that NESS current becomes almost
negligible for very small values of α → 0. In this limit, the
system manifests all-to-all coupling that hinders transport and
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FIG. 4. The heat map of current J∞ = 〈ĴL,out〉 as a function of the
dephasing strength γ and long-range hopping exponent α. The color
bar represents the magnitude of J∞ for L = 1024.

incites cooperative shielding, akin to Anderson localization
[72]. Intriguingly, this cooperative shielding is robust against
the dephasing and system size L, as evident from Fig. 4. Then,
for a finite α, we note a surge in NESS current, peaking
near α ≈ 0.6 for values of γ > 0.1 and remaining almost
independent of γ . Recall that this is reminiscent of the plateau
observed in Fig. 3 for larger γ values for α = 0.65. On further
increasing the value of α, the plateau regime shrinks and
eventually disappears for α > 1.5 irrespective of γ , as seen
from Fig. 4.

IV. NATURE OF THE NESS TRANSPORT

To understand the nature of the underlying NESS transport,
we examine the system size scaling of the NESS resistance,
denoted as R∞ = 1/J∞, for various values of α. Note that the
scaling results presented below are almost insensitive to γ for
γ > 0.1. We, therefore, present results for γ = 10. Depending
on the system size scaling of R∞ different transport regimes
are classified, namely, for ballistic transport R∞ ∼ L0 [73] and
for diffusive or normal transport R∞ ∼ L [29]. Anything away
from these scaling relations is often categorized as anomalous
transport, for example, R∞ ∼ Lν with ν > 1 is subdiffusive
[56] whereas for ν < 1 it is superdiffusive.

In Fig. 5, we demonstrate the system size scaling of R∞
for different values of α to analyze the regimes of transport.

256 384 512 640 768 8961024

10
3

10
4

FIG. 5. NESS resistance R∞ = 1/J∞ as a function of system
size L on a log-log scale from α = 1.1 to 2.0 (bottom to top) in an
increment of 0.1.

FIG. 6. Transport exponent ν obtained from the fit R∞ ∼ Lν as a
function of α for α > 1.0 and different values of dephasing strength
γ . The error bars are associated with the fitting of R∞ ∼ Lν .

In Fig. 5(a), we first concentrate on α � 1. We plot R∞ as a
function of system size L for α = 0.9 and 1.0. Interestingly,
we observe logarithmic system size scaling, R∞ ∼ log(L), as
clear from the straight-line fitting of the numerical data on
a log-linear scale. This clearly demonstrates an anomalous
superdiffusive transport regime for α � 1. Next, in Fig. 5(b)
we focus on the case of α > 1. We plot R∞ as a function of L
for 1.0 < α � 2. Remarkably, in this regime of α we observe
a power-law dependence: R∞ ∼ Lν with an α-dependent ex-
ponent ν. This is evident from the plot of R∞ on a log-log
scale. Therefore, it is clear from Figs. 5(a) and 5(b) that as α

increases beyond the value 1, the scaling of R∞ changes from
a logarithmic to a power-law behavior in system size.

To further elaborate on the nature of the transport for
α > 1, we plot the dependence of the transport exponent ν

with α in Fig. 6. Our numerical calculations show that ν

increases with increasing α before saturating beyond α � 1.6.
In fact, we find from numerical calculations that ν ≈ 2α − 2
for α � 1.6. It is worth mentioning that the superdiffusive
transport for 1.0 < α � 1.6 is extremely robust against the
dephasing strength. However, a finite amount of dephasing
along with the long-range hopping is necessary to observe the
emergence of these intriguing transport regimes. Remarkably,
for α � 1.6, a diffusive transport regime sets in independent
of the value of dephasing. However, we show below that
the transition from superdiffusive to diffusive transport in the
thermodynamic limit happens exactly at α = 1.5. We believe
this difference is due to the finite-size effect.

To substantiate the above numerical observation that a
diffusive transport emerges only for α > 1.5, we show that
the behavior of the current-operator norm (in the absence of
the dephasing), analogously to the Hamiltonian operator norm
discussed in [61], can provide more insightful information.
We start by writing down the operator for current into the site
L as

ĴL,in = −i
L−1∑
r=1

J

rα
(ĉ†

L−r ĉL − ĉ†
LĉL−r ). (7)

The corresponding operator norm ||JL|| = Tr(
√

Ĵ†
L ĴL ) exhibits

the following system-size dependence (see [71] for the details
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of calculation):

||JL|| ∼ L3/2−α

√
(2α − 1)(3/2 − α)

, for α < 1.5,

∼ constant independent of L for α > 1.5. (8)

The current-operator norm, which indicates the maximum
possible coherent particle transport rate, does not change with
L when α > 1.5. Therefore, in a finite-size system, suffi-
ciently high dephasing strength can hinder coherent transport,
causing diffusive transport. In fact, for α > 1.5, it suggests
that any finite dephasing can prompt a diffusive transport in
the thermodynamic limit, akin to what is seen in short-range
systems [74].

For α < 1.5, the current-operator norm diverges with sys-
tem size, implying that no amount of dephasing is enough to
cause diffusive or subdiffusive transport in the thermodynamic
limit. Furthermore, the presence of an extensive number of
dephasing sites along with the scaling of the current norm
suggests the absence of a ballistic transport, leaving the pos-
sibility of superdiffusive transport. Thus, the operator norm
scaling in the absence of the dephasing highlights α = 1.5 as
a critical point, helping explain the crossover from superdif-
fusive to diffusive transport in the presence of dephasing.

V. SUMMARY AND DISCUSSION

In summary, due to a nontrivial interplay between the
long-range hopping and the dephasing strength, we have
found the emergence of distinctive regimes of NESS trans-
port as one tunes the long-range exponent α. Specifically, we
demonstrate that for α > 1.5 the transport is diffusive/normal,
whereas, for α < 1.5, the transport is superdiffusive. Further-
more, we observe two different system-size scalings within
the superdiffusive regime; namely, for 1 < α < 1.5, we find a
power-law system size dependence with an α-dependent ex-
ponent ν < 1, and for α � 1 we observe inverse-logarithmic
system size scaling for the current. Remarkably, the superdif-
fusive regime is robust against the dephasing strength. We
further provide analytical insights to support our numerical
findings by analyzing the current-operator norm.

It is worth pointing out that the heat map of the NESS
current on the α-γ plane, as presented in Fig. 4, bears a close
resemblance to the phase diagram of entanglement measures
related to the MIPT [61]. Unlike our steady-state solution
of the Lindblad quantum master equation, the transition of
entanglement entropy from an area law phase to a volume law
phase in MIPT emerges through a specific unraveling of the
Lindblad master equation. For free fermions in one dimension

(without the boundary drive), MIPT appears at the long-range
exponent α = 1.5 [61]. Intriguingly, in our setup, a transition
from superdiffusive to diffusive regime also appears at the
same long-range exponent value, i.e., α = 1.5. Given that
number-conserving local dephasing in our setup acts like a
Zeno-type local number density measurement, our results hint
at a possible connection between the MIPT and the transition
from anomalous to normal transport observed in the NESS
current.

However, our identification of transport as a possible sig-
nature of the underlying MIPT is not caveat free. Indeed,
the absence of a direct link between mutual information and
particle current renders such an identification nontrivial, posit-
ing an intriguing avenue for future research. Relevantly, prior
numerical analyses have pointed out interesting connections
between NESS transport current and entanglement measures,
like mutual information and concurrence, particularly in quan-
tum dot setups [75–77]. Establishing a more rigorous link
could pave the way for discerning MIPT in experiments via
current measurements. Additionally, when the boundary drive
is absent, our setup can be considered a long-range hopping
system subjected to time-dependent delta-correlated classical
Gaussian noise, where the particle density profile follows a
fractional diffusion equation [78,79]. However, an intriguing
question for future exploration is how the presence of the
boundary drive, akin to quantum noise, alters this diffusion-
like equation.
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[16] M. Žnidarič and M. Horvat, Transport in a disordered tight-
binding chain with dephasing, Eur. Phys. J. B 86, 67 (2013).
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