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Topological phase transition between Z2 and second-order topological insulators in a kagome circuit
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The notion of higher-order topological phases has endowed topological states of matter beyond the first order.
In this work, we report the topological phase transition between the conventional Z2 topological insulator and
second-order topological insulator in a kagome circuit. Such a phase transition emerges at the competition
between the spin-orbit couplings and nonequivalent nearest-neighbor hoppings without breaking symmetry.
The bulk topological invariants, the Z2 index and spin-polarized bulk polarizations, are calculated to describe
the complete phase diagram. The one-dimensional gapless helical edge states of Z2 topological phase and
zero-dimensional corner states of second-order topological phase are observed in the ribbon and finite-size
circuit samples, respectively. Our findings in the electric circuits provide an experimental bridge to connect
the first-order and higher-order topological phases.
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Topological insulators (TIs) [1–4], featured with topologi-
cal boundary states in the bulk bandgap, have flourished for
decades and extended from electronic to classical systems,
including optic, acoustic, and circuit systems. In recent years,
it has been found that d-dimensional (dD) nth-order TIs
host (d−n)D topological boundary states [5,6], developing
the bulk-boundary correspondence. For the first-order TIs, the
dimension of the boundary states is one less than that of the
bulk states. For example, the Chern insulators characterized
by Chern number with broken time-reversal symmetry have
chiral edge states [7–11], while the Z2 TIs described by
Z2 index possess helical edge states protected by the time-
reversal symmetry [12–21]. For the higher-order TIs with
lower-dimensional boundary states, zero-dimensional (0D)
corner states in two-dimensional (2D) second-order TIs (SO-
TIs) [22–33], 3D third-order TIs [34–37], and 1D hinge states
in 3D SOTI [38–41] are extensively studied. The topologi-
cal origins of SOTIs include quantized multipole moments
[42], Wannier-type [43], and boundary-obstructed topolog-
ical phase [44]. Recently, orbital interactions are proposed
to realize TIs in spinless systems [45]. The TIs are extend-
ing to the non-Hermitian [46–48] and non-Abelian [49,50]
cases.

Phase transitions are essential for the discovery of new
phases of matter. It was previously thought that phase transi-
tions could be uniformly described by Landau’s spontaneous
symmetry breaking theory. However, the occurrence of topo-
logical phases has broken through this understanding. The
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topological phase transition marks the transformation between
two different topological phases without changing symmetry,
and is described by the change of the bulk topological invari-
ants. For example, the Z2 TI with Z2 index ν = 1 can transit
to normal insulator with ν = 0, when tuning the staggered
sublattice potential and keeping the symmetries [12]. Inter-
estingly, the TIs of different orders can transit to each other
with or without breaking symmetries [51–54]. For instance,
a 3D acoustic TI can transit to second-order and third-order
TIs with Dirac hierarchy by breaking different boundary sym-
metries [51,52], and the 2D acoustic TIs can transit to SOTIs
without changing symmetry [53,54]. Although plenty of effort
has been made on the realizations of the topological phase
[55–65], the topological phase transition between the first-
order and higher-order TIs is yet to be revealed in electric
circuits.

In this work, we realize a 2D kagome circuit to observe
the topological phase transition between Z2 TI and SOTI in
the presence of time-reversal symmetry. The kagome circuit is
based on the inductor-capacitor network, where the spin-orbit
couplings are achieved by next-nearest-neighbor capacitors
with braided connections and nonequivalent nearest-neighbor
hoppings are realized by capacitors with direct connections.
Three distinct phases are found in the kagome circuit, in-
cluding Z2 TI, SOTI, and normal insulator. The topological
phase transition between Z2 TI and SOTI can be realized by
adjusting the values of capacitors, which is experimentally
confirmed in two different circuit samples. One is a ribbon
sample in Z2 TI phase, and the dispersions of 1D gapless
helical edge states are observed. The other is a triangle-
shaped sample in SOTI phase, and the 0D in-gap corner states
are confirmed by the voltage responses at corners and field
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FIG. 1. Schematic of kagome circuit. (a) Kagome circuit with
five layers. Nonequivalent nearest-neighbor hoppings are indicated
by blue and red lines, spin-orbit couplings are denoted by green lines
with arrows. Inset: unit cell marked by black hexagon box. Each site
contains two inductances X with nodes X± and Y with nodes Y±. (b)
Specific circuit connections of capacitors Ca, Cb and Cc, forming the
hoppings in (a).

distributions. All the circuit experiments are well consistent
with the simulations.

We start from constructing the kagome circuit. Figure 1(a)
shows the schematic of kagome circuit with triangle-shaped

geometry, where unit cell (black hexagon box) contains three
sites (A, B, and C). Each site is formed by two inductors
labeled as X and Y described by the inset at the right panel
of Fig. 1(a). Importantly, color lines between sites represent
the different hoppings. Red and blue lines between nearest-
neighbor sites denote the nonequivalent nearest-neighbor
hoppings. Green lines marked with arrows between next-
nearest-neighbor sites represent the directional hoppings,
which are analogous to the spin-orbit coupling. The circuit
realization of these hoppings is illustrated in Fig. 1(b). We
make full use of four circuit nodes labeled by X± and Y± at
each site to design circuit connections and achieve different
hoppings. The nonequivalent nearest-neighbor hoppings can
be realized by the direct connections of circuit nodes through
capacitor Ca and Cb. The next-nearest-neighbor hoppings are
implemented by the braided connections of the circuit nodes
through capacitor Cc to construct the spin-orbit coupling. All
the inductors have same inductance L.

We then discuss the circuit equations and derive the circuit
Hamiltonian to analyze topological properties. According to
the Kirchhoff’s law and Ohm’s law [56], we can obtain the
circuit equations for each node in a unit cell as I = JV , where
I and V are the input current and response potential at these
nodes, and circuit Laplacian J is a 12 × 12 matrix. By the
unitary transformation, the circuit Laplacian matrix can be
divided into three parts, including spin-up component J↑ with
a 3 × 3 matrix, spin-down component J↓ with a 3 × 3 matrix,
and another component J0 with a 6 × 6 matrix possessing triv-
ial solutions. So the topological properties of kagome circuit
are only dependent on the spin-up and spin-down components.
The spin-up and spin-down voltages are defined as U↑,↓ =
UX ± iUY , where UX (Y ) = VX+(Y+ ) − VX−(Y− ) is the voltage at

FIG. 2. Phase diagram and typical bulk dispersions of kagome circuits. (a) Phase diagram determined by topological invariants Z2 index
ν and spin-polarized bulk polarization P1s, where s = ↑ (↓) represents the spin up (spin down). There exist three topologically distinct phases,
including Z2 TI, SOTI, and normal insulator. White lines denote the phase boundaries. (b) Bulk dispersion of point E with a degenerate point.
Inset: the first Brillouin zone. (c) and (d) Bulk dispersions with band gaps (left), spin-dependent Wannier bands (middle), and the topological
states in band gaps (right) at points D and F, described the Z2 TI and SOTI, respectively.
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the both ends of inductor X (Y ). We take the basis vector as
(U A

↓ , U B
↓ , UC

↓ ,U A
↑ , U B

↑ , UC
↑ )T , and the circuit Hamiltonian

can be deduced by the spin-dependent circuit Laplacian as
[66]

H =
(

H0 − Hso 0
0 H0 + Hso

)
, (1)

where

H0 =

⎛
⎜⎝

0 Ca + Cbeik·a2 Ca + Cbeik·a1

Ca + Cbe−ik·a2 0 Ca + Cbeik·a3

Ca + Cbe−ik·a1 Ca + Cbe−ik·a3 0

⎞
⎟⎠, (2)

Hso = iCc

⎛
⎜⎝

0 −e−ik·a1 − eik·a3 eik·a2 + eik·a3

eik·a1 + e−ik·a3 0 −eik·a1 − e−ik·a2

−e−ik·a2 − e−ik·a3 e−ik·a1 + eik·a2 0

⎞
⎟⎠. (3)

The lattice constant is set to unity, and k is the 2D momen-
tum, a1 = (1, 0), a2 = (1,

√
3)/2, and a3 = (1,−√

3)/2. H0
functions as the Hamiltonian of tight-binding kagome lattice,
which can possess SOTI phase [43]. Hso has the form of
the intrinsic spin-orbit coupling, and can lead to the Z2 TI
phase [67]. The Hamiltonian’s analysis further verifies that
our circuit system can induce the different-order topological
phases, offering the possibility of achieving topological phase
transition.

The topological invariants are defined to classify topo-
logically distinct phases, including Z2 index ν to de-
scribe the Z2 TI phase and spin-polarized bulk polariza-
tions P1s (P2s) with s =↑,↓ to describe the SOTI phase
[66]. Because of the C3 symmetry, there is P1s = P2s.
The complete phase diagram determined by ν and P1s
is shown in Fig. 2(a), which consists of Z2 TI (ν = 1)
and SOTI (ν = 0, P1s = −1/3) and normal insulator (ν =
0, P1s = 0) phases in the Cc/Cb − Ca/Cb plane. Phase bound-
aries labeled by white lines are accompanied with the
band gap closure, which satisfy Ca/Cb = ±4Cc/(

√
3Cb) + 1.

For the calculation of phase diagram, there are fixed capacitor
Cb = 10 nF and inductor L = 10 μH. Different phases can
be transformed into each other by only adjusting the param-
eters Ca and Cc without breaking symmetry, hence we can
conveniently realize the topological phase transition between
different-order topologies.

To investigate the topological phase transition between Z2
TI and SOTI, we choose three points (D, E, and F) with the
same parameter Cc/Cb = 0.22. Point D with Ca/Cb = 0.82,
point E with Ca/Cb = 0.5 and point F with Ca/Cb = 0.1 are
located at Z2 TI phase, phase boundary, and SOTI phase,
respectively. For point E, the spin-up (red dashed lines) and
spin-down (black solid lines) frequency dispersions along
high symmetry lines of first Brillouin zone are displayed
in Fig. 2(b), with a degenerate point representing band gap
closure. For point D, the degenerate point is opened to form
a Z2 TI gap, as shown in the left panel of Fig. 2(c). For
point F, the degenerate point is opened to form a SOTI gap,
as shown in the left panel of Fig. 2(d). As discussed in
Ref. [66], the topological properties of kagome circuit can
be described by the spin-dependent Wannier bands defined

as θ1s(k2) = ∫ 4π/
√

3
0 〈Us|i∂k1|Us〉dk1, where Us = U↑,↓ and U↑

(U↓) is the eigenvector for the third spin-up (spin-down) band.
The spin Chern numbers can be obtained from the evolution
of the spin-dependent Wannier bands as Cs = 1

2π

∫
k2

dθ1s. In

FIG. 3. Observations of 1D gapless helical edge states in Z2 TI.
(a) Partial detail photo of ribbon circuit sample. Enlarged image
shows the circuit unit cell, corresponding to the schematic one. (b)
and (c) Edge dispersions with spin up (left panel) and spin down
(right panel) of bottom and top boundaries. Color maps denote the
experimental results, and the gray (white and green) dots denote
the numerical bulk (edge) states. The parameters are selected as
Ca = 8.2 nF, Cb = 10 nF, Cc = 2.2 nF, and L = 10 μH.
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FIG. 4. Observations of 0D corner states in SOTI. (a) Photo of triangle-shaped circuit sample with five layers. (b) Frequency spectra as
a function of Ca/Cb, included bulk, corner and edge modes. (c) Left panel: measured bulk, edge and corner voltage response spectra. Right
panel: red (green) circle marks the position of the source (detector). (d) Measured spin-up voltage field distributions at different frequencies,
corresponding to bulk, corner, edge and bulk modes, respectively. The color denotes the normalized magnitude. The parameters are chosen as
Ca = 1 nF, Cb = 10 nF, Cc = 2.2 nF, and L = 10 μH.

the middle panel of Fig. 2(c), θ1s varies ±1 along k2, showing
the spin Chern numbers Cs = ±1 and leading to Z2 TI with
v = (C↑ − C↓)/2 = 1. In the middle panel of Fig. 2(d), θ1s

vary 0 along k2, resulting to v = 0. And the spin-polarized

bulk polarizations can be defined as P1s = −1
SBZ

∫ 4π/
√

3
0 θ1sdk2

where SBZ is the area of the first Brillouin zone [68], which are
equal to the exact values of −1/3, revealing the SOTI phase.
By calculating the finite structures, we can get the topological
states in the bandgaps: edge state and corner state, as shown
in the right panels of Figs. 2(c) and 2(d), respectively. Con-
sequently, by reducing Ca, the Z2 TI gap with edge states is
closed to a degenerate point, and then reopen as a SOTI gap
with corner states, realizing the topological phase transition
between different-order topologies.

According to the bulk-boundary correspondence, the Z2

TI phase with ν = 1 supports the existence of 1D gapless
helical edge states. Here, we investigate the edge states based
on a ribbon circuit sample with period boundary condition
along the x direction and open boundary condition along the y
direction. To obtain Z2 TI phase, the parameters are chosen as
those of point D in the phase diagram, where Ca/Cb = 0.82,
Cc/Cb = 0.22, Cb = 10 nF and L = 10 μH. The ribbon circuit
is experimentally implemented by a finite sample with 21 × 5
unit cells, as depicted in Fig. 3(a). The enlarged image of
circuit unit cell shows the one-to-one correspondence with
the model shown in Fig. 1. Due to the missing hoppings
at boundary sites, it is noted that we set the corresponding
capacitors Ca, Cb or Cc to link the ground to compensate for
the difference of on-site potentials at these sites.

We observe the dispersions of 1D gapless helical edge
states. We first investigate the edge states at bottom boundary,
and place a voltage source at node X+ located at the middle
position of bottom boundary. Voltage responses (UX,Y ) of all
the inductor at bottom boundary are measured. By the Fourier
transforming U↑ = UX + iUY and U↓ = UX − iUY , we can
obtain the measured projected dispersions (color map) of spin
up and spin down, as shown in the left and right panels of
Fig. 3(b), respectively. The calculated projected dispersions of
ribbon are revealed by solid curves, in which the white curves
represent the gapless helical edge states at bottom boundary,
and the gray curves denote the bulk states. One can see that the
spin-up and spin-down edge states have the opposite group
velocities and transmission directions, forming a pair of he-
lical edge states. In addition, the measured (color map) and
calculated (green lines) projected dispersions for edge states
at top boundary show in Fig. 3(c), where the voltage source
is placed at the top boundary. All the measured results are
consistent well with the theories, demonstrating the existence
of gapless edge states. By combining Figs. 3(b) and 3(c),
a pair of helical edge states transmits oppositely along the
bottom (top) boundary, revealing that this kagome circuit is
a Z2 TI.

The SOTI phase with quantized P1s guarantees the exis-
tence of 0D corner states in the band gap. We construct a
triangle-shaped circuit sample with five layers and 15 unit
cells, as shown in Fig. 4(a). The parameters are chosen as
Cc/Cb = 0.22, Cb = 10 nF, and L = 10 μH, taking Ca/Cb

from 0 to 0.49. According to the phase diagram, the circuit
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sample with these parameters has the SOTI phase, and thus
possesses corner states. To demonstrate that, we calculate the
frequency spectra of triangle-shaped circuit as a function of
Ca/Cb, as shown in Fig. 4(b). It is found that the corner states
(red lines) emerge from the band gap as expected. In addition,
the gapped edge states (blue lines) also appear in the band gap
same as the other SOTIs.

Corner states are observed by measuring the voltage re-
sponses and voltage field distributions. Here, one case with
Ca/Cb = 0.1 (point F in the phase diagram) is selected to
experimentally demonstrate the existence of corner states. As
shown in the left panel of Fig. 4(c), we measure the voltage
response spectra of bulk (gray), boundary (blue), and corner
(red) of circuit sample. The voltage source is excited at the
red site (node X+) and the voltage response U↑ are recorded
at green site, as illustrated in the right panel of Fig. 4(c).
One can see that the resonance peaks of corner are observed
at 406 kHz, which corresponds to the corner states. Reso-
nance peaks of boundary and bulk result from the edge and
bulk states. Corner states can be visualized by measuring the
spatial distribution of voltage. Figure 4(d) shows the field
distributions of spin-up voltages (|U↑|2) at the frequencies of
lower bulk (335 kHz), corner (406 kHz), edge (503 kHz), and
upper bulk (736 kHz) states, and each of them is normalized
by the sum of |U↑|2 at all sites. Results show that the volt-
ages at 406 kHz are well confined at three corners, which is
different from the voltages at other frequencies, evidencing
the presence of corner states. For the measurements of field

distributions, we place a voltage source at node X+ for one
site, and measure the voltage response U↑ at the same site.

In conclusion, we have illustrated a topological phase tran-
sition between Z2 TI and SOTI without breaking symmetry
in a kagome circuit. The topological properties of these two
different-order topological phases, including 1D helical edge
states of the Z2 TI phase and 0D corner states of the SOTI
phase, are demonstrated in circuit simulations and experi-
ments. Our findings may enable the potential applications for
the multifunctional topological devices in circuit systems. Our
circuit system provides an experimental platform to explore
topological phases with multiple orders, which also may be
extended to the photonic and elastic wave systems with same
or different lattices. Furthermore, it is interesting to unveil the
conversions between different-order topological phases in 3D
systems, and from this inspire an applicable and adjustable
topological circuit.
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