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Transport-based fusion that distinguishes between Majorana and Andreev bound states
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It has proven difficult to distinguish between topological Majorana bound states and nontopological Andreev
bound states and to measure the unique properties of the former. In this work, we aim to alleviate this problem
by proposing and theoretically analyzing a different type of fusion protocol based on transport measurements
in a Majorana box coupled to normal leads. The protocol is based on switching between different nanowire
pairs being tunnel coupled to one of the leads. For a Majorana system, this leads to switching between different
states associated with parity blockade. The charge being transmitted at each switch provides a measurement of
the Majorana fusion rules. Importantly, the result is different for a system with nontopological Andreev bound
states. The proposed protocol only requires measuring a DC current combined with fast gate control of the tunnel
couplings.
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I. INTRODUCTION

Finding Majorana bound states (MBSs) in topological
superconducting systems has been an intensely pursued
goal in condensed matter physics for over a decade [1–6].
A promising platform to find MBSs is based on one-
dimensional superconductor-semiconductor hybrid structures
[7–10]. There have been encouraging results in the form
of observations of zero-bias peaks consistent with Majorana
physics; see, e.g., Refs. [9,11–17]. However, these exper-
iments offer no definite proof of topological MBSs, as
topologically trivial systems hosting Andreev bound states
(ABSs) can exhibit similar features [18–27].

To obtain definite proof for the topological nature of the
observed states, it is necessary to probe their non-Abelian
properties. Despite a large number of theoretical proposals
(see Refs. [28–39] for a few examples), there has been no
experimental realization of a braiding protocol. Fusion rules
is another unique property of topological MBSs. The outcome
of fusing two MBSs, i.e., coupling them and measuring the
resulting state, can be either a quasiparticle or the vacuum
state. The idea of a fusion protocol is to initialize the system
by fusing the MBSs in one pairing configuration and then
measure it by fusing them in another pairing configuration.
There exist various suggestions for experimental realizations
of such fusion protocols [29,34,39–42]. Unfortunately, some
fusion protocols can give the same outcome for zero-energy
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ABSs as for MBSs [39,43] and therefore do not offer sufficient
proof of a non-Abelian topological phase.

The main goal of this paper is to provide a proposal for
a Majorana fusion experiment that explicitly distinguishes
between topological and trivial systems. Our proposal is based
on DC transport measurement and does not require fast or
single-shot read out, only fast gate voltage pulses.

The platform we consider is a Majorana box qubit [44,45] a
candidate for scalable topologically protected quantum com-
puting [36,46–48]. We connect it in a transport setup with two
normal metallic leads (source, drain) and tune the connections
between the source and box via a magnetic flux to establish
parity blockade. Parity blockade, i.e., destructive interference
between two paths via two Majoranas, was introduced in
previous works on Majorana box qubits connected to quantum
dots [49–52] and in transport setups [53].

The proposed fusion protocol works as follows: In a
transport setup with three MBS wires coupled to the same
lead, parity blockade projects the box state onto well-defined
blocking states. By repeatedly switching between different
configurations of the lead-wire couplings, the system alter-
nates between different blocking states. The projection of one
blocking state onto another is similar to MBS fusion and, at
the same time, determines the probability for a single elec-
tron to be transferred. A DC current measurement reveals the
average outcome of the fusion protocol.

The paper starts in Sec. II with an introduction to the
system and transport setup, the concept of parity blockade,
and the quantum master equation (QME) used for the trans-
port simulations. Afterwards, we investigate how to employ
parity blockade to distinguish between topological and trivial
systems in Secs. III and IV. First, we show that the possibility
to block the current via parity blockade is not sufficient to
distinguish topological from trivial systems (Sec. III A). In
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FIG. 1. (a) Floating Majorana box with four topological
nanowires hosting three MBSs γ0,1,2 connected to the source (S) and
one γ3 to the drain (D) via tunnel couplings t0,1,2,3. Two magnetic
fluxes �01, �12 are threaded through the loops t0, t1 and t1, t2 to
adjust the relative phases. (b) Tunnel couplings tl , t̃l to two Majorana
operators γl , γ̃l describing an ABS in a topologically trivial system.
(c) Basis rotation U † to describe two ABSs via two coupled and two
decoupled MBSs.

order to distinguish these cases, we first introduce a simple
protocol based on establishing parity blockade, followed by
switching off different tunnel couplings (Sec. III B), before
moving on to the fusion protocol (Sec. IV).

II. SETUP AND TRANSPORT DESCRIPTION

A. Majorana box

We consider a Majorana box consisting of four topological
nanowires hosting MBSs at their ends, connected by a small
piece of superconductor in the trivial regime; see Fig. 1(a).
The entire system, i.e., wires and connecting superconductor,
is floating and has a charging energy EC , which we take to
be the largest energy scale of the problem. A gate voltage Vg

capacitively coupled to the box tunes the amount of energeti-
cally favorable charge ng, thereby setting the electron number
N of the ground state. Furthermore, we include small but finite
energy splitting in the degenerate ground-state sector due to
exponentially small overlaps εlk between MBSs γl , γl ′ . The
Majorana box Hamiltonian reads

HMB = i

2

∑
ll ′

εll ′γlγl ′ + EC (N − ng)2, (1)

where the sum runs over l < l ′. We note that there will be,
in general, four additional MBSs at the points where the
nanowires meet the trivial superconductor, and the overlaps
with these MBSs might be larger than between MBSs at
different nanowire ends. However, in the limit where the over-
laps set the smallest energy scale of the problem, the results
presented below remain qualitatively the same, independent of
which MBSs couple, which we verified numerically. There-
fore, these additional MBSs at the interface to the trivial
superconductor can safely be neglected.

To enable charge flow, we connect the box to source (S) and
drain (D) leads, described by noninteracting electrons, Hres =∑

r=S,D Hr , with Hr = ∑
k ξrkc†

rkcrk . The operators c†
rk, crk

create/destroy an electron in lead r with momentum k and
energy ξrk . We neglect spin, assuming that either the leads
are spin polarized by a large magnetic field or all MBSs have
equal spin polarization [53]. The leads are characterized by a
temperature Tr = T and a symmetrically applied bias voltage
setting the chemical potentials μS,D = ±Vb/2.

The leads are connected to the box via tunnel amplitudes
tlr between the lth MBS and lead r,

HT
MB =

∑
lrk

γl (tlrcrk − t∗
lrc†

rk ). (2)

We consider wide-band leads with energy-independent tunnel
couplings. Only one MBS (γ3) is coupled to the drain, while
three MBSs (γ0,1,2) are coupled to the source, and to enable
parity blockade, these MBSs need to connect to the same
channel of the source [53]. The relative phases of tl and tl ′
can be controlled via fluxes �ll ′ .

Unless stated otherwise, we assume |tl | = t > 0 for all l .
This introduces a tunneling rate � = 2πν t2, where ν is the
density of states in the leads, which we take to be energy
independent and equal for source and drain.

B. Andreev box

For comparison, we will also consider an “Andreev box”,
i.e., a system that is equivalent to the Majorana box, but where
the (near) zero-energy states are nontopological ABSs. To
facilitate the comparison to the Majorana box, we decompose
each ABS into two MBSs, γl and γ̃l ; see Fig. 1(b). This allows
writing the Hamiltonian for the Andreev box in a very similar
way to Eq. (1),

HAB = i

2

∑
l

εlγl γ̃l + EC (N − ng)2, (3)

where the energy εl of ABS l is included as an overlap
between the constituent MBSs and we have neglected over-
laps between different ABSs εll ′ which are expected to be
a lot smaller. We have numerically confirmed that including
small internanowire overlaps does not change the qualitative
behavior of the later investigated protocols. We assume that εl

constitutes the smallest energies in the problem, which is the
case where ABSs and MBSs are hard to distinguish.

The source and drain leads are described in exactly the
same way as for the Majorana box, and their coupling to the
Andreev box is given by

HT
AB =

∑
lrk

[γl (tlrcrk − t∗
lrc†

rk ) + γ̃l (t̃lrcrk − t̃∗
lrc†

rk )], (4)

where, for ABS l , electrons can tunnel into/out of both MBS
constituents γl and γ̃l with amplitudes tl and t̃l ; see Fig. 1(b).
For nontopological ABSs, even if εl is small, γl and γ̃l have
similar spatial distribution [26,54,55] and one expects both tl
and t̃l to be finite. The situation is complicated by the fact
that both the relative amplitudes and phases of tl and t̃l are
important, but there is freedom in choosing the way each ABS
is decomposed into MBSs which allows us to fix one of them.
We choose the Majorana basis such that |tl | = |t̃l |, leaving the
relative phase

t̃l = eiθl tl (5)
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as a parameter that is determined by the specific realization of
the system. We will show, in Secs. III and IV, that the value
of θl quantifies how well an ABS resembles a single localized
MBS.

C. Transport description via QME

To calculate the transport properties of the Majorana and
Andreev box, we use a QME approach based on leading-order
perturbation theory in �. After tracing out the lead degrees of
freedom, the equation of motion of the Majorana box density
matrix is given by

∂tρ = Lρ = −i[HXB, ρ] + D ρ. (6)

The Liouvillian L consists of two general parts, i.e., the uni-
tary time evolution, determined by the box Hamiltonian HXB,
either HMB [Eq. (1)] or HAB [Eq. (3)], and a dissipative part D
introduced by the coupling to the leads.

The QME we are using is a Redfield-type approach (called
first-order von Neumann in Ref. [56]), which is equivalent
to the first order of real-time diagrammatics [57–59]. The
procedure for the numerical solution is as follows: We start by
diagonalizing HXB, thereby obtaining the eigenenergies and
many-body eigenstates of the disconnected system. In the next
steps, we express Eq. (6) in the many-body eigenbasis. Based
on the tunneling Hamiltonian in Eqs. (2) and (4), we calculate
the tunnel matrix elements between eigenstates |a〉 and |b〉 as

T r,MB
b→a =

∑
l

tlr 〈a|γl |b〉 (7)

for the Majorana box and as

T r,AB
b→a =

∑
l

[tlr 〈a|γl |b〉 + t̃lr 〈a|γ̃l |b〉] (8)

for the Andreev box. Next is the calculation of the dissipative
part D of Eq. (6), according to the first-order von Neumann
method. See Appendix A and [56] for details on the calcu-
lation of D. Equation (6) is now expressed in superoperator
notation,

∂t |ρ) = L̂ |ρ). (9)

The density matrix is rearranged into the vector |ρ) and the
Liouvillian is expressed as a matrix L̂ called the kernel.

We obtain the solution of this equation via numerical di-
agonalization of the kernel. As the kernel is non-Hermitian,
the left and right eigenvectors |lh), |rh) for a given eigenvalue
χh are not guaranteed to be the same. We calculate both and
obtain the solution as

|ρ)(t ) = |ρ)ss +
∑
h>0

eχht ch|rh), (10)

where ch is obtained from the initial state |ρ0) as

ch = (lh|ρ0). (11)

The solution consists of two parts: the stationary state so-
lution |ρ)ss and the finite-time contribution. Due to the
non-Hermiticity of the kernel, its eigenvalues are complex
valued. In order for a physical solution, there are two con-
ditions that have to be fulfilled by the eigenvalues. First, there
needs to be a zero eigenvalue χ0 = 0 yielding the stationary

state solution. Second, the real-valued parts of the remaining
eigenvalues are strictly negative and lead to a decay of all
finite-eigenvalue contributions. Depending on the system, this
decay can be decorated with oscillations due to an imaginary
part. As a last step, we calculate the current through the system
from the density matrix as in [56].

D. Parity blockade

As in previous studies on Majorana box qubits connected
to quantum dots [49–52] and in transport setups [53], we use
the magnetic flux � as a tunable parameter to establish the
parity blockade. In the most simple case of the Majorana box,
the source connects to the MBSs γ0 and γ1 with the same
strength for the tunnel couplings |t0| = |t1| = t and is discon-
nected from γ2. We describe the systems via the fermionic
occupation n01 = f †

01 f01 with f01 = γ0 + iγ1. The combined
tunnel matrix element for an electron to enter the system via
f01, f †

01 reads

T S,MB
0→1 = t (1 + ieiφ ), T S,MB

1→0 = t (1 − ieiφ ), (12)

where φ is tuned via a magnetic flux �01 threaded between
the connections from the source to γ0 and γ1. We use it to
establish constructive or destructive interference between the
two available paths. For example, tuning the phases to φ = π

2

results in T S,MB
0→1 = 0 and therefore prohibits the transition n =

0 → n = 1, which we refer to as the establishing of parity
blockade.

Returning to the full Majorana box (Sec. II A), we choose
the fermionic basis by combining MBSs γ0 with γ1 and γ2

with γ3, defining the Fock states |n01n23〉. Parity blockade at
the source projects the system on a state with total even parity
(−1n01+n23 = 1) spanned by |00〉 and |11〉. The exact form of
the blocking state depends on the way it is established via
choices of t0, t1, t2.

In the Andreev box (Sec. II B), the intuitive way to un-
derstand parity blockade for zero-energy ABSs is that there
always exists a unitary rotation of the Majorana basis to effec-
tively only couple two MBSs to the lead [52]; see Fig. 1(c).
In our case, the ABSs and therefore also the effective MBSs
are on separate nanowires with a magnetic flux threaded in
between, such that we can use the connections and flux to
establish parity blockade.

III. STATIONARY STATE PROTOCOLS

In this section, we focus on results obtained by solving
for the stationary state current. In Sec. III A, we conclude
that observing parity blockade is insufficient to distinguish the
Majorana box from the Andreev box. Afterwards, we provide
a protocol allowing their distinction in Sec. III B.

In the remainder of the paper, the system parameters are
chosen as follows. First of all, the temperature of the leads is
assumed to be far larger than the tunneling rate to the leads,
T = 102 �. We set the chemical potential μS/D = ±103 �.
All energies resulting from MBS overlaps are of the order
of ε = 10−3 �. The box is tuned via electrostatic gates to a
degeneracy point ng = N + 1

2 between N and N + 1 charges.
The exact values for the gate and bias voltage do not influence
the general transport behavior. But to enable transport, we
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must make sure that the system is in the conducting regime
and not Coulomb blockaded.

For the Majorana box, the overlaps are zero, except for the
combinations ε01 = 1.0 ε, ε12 = 1.5 ε, ε23 = 2.0 ε. In the An-
dreev box, we choose the overlaps of MBSs on each nanowire
as ε0 = 0.5 ε, ε1 = 1.0 ε, ε2 = 1.5 ε, ε3 = 2.0 ε. The exact
choice does not influence the general behavior, but to avoid
numerical problems, we need to ensure that each MBS over-
laps with at least one other MBS and avoid fine tuning two
overlaps to the exact same value. By choosing the overlaps to
be of the same order of magnitude for the Andreev box as for
the Majorana box, we investigate the case where ABSs imitate
the ground-state degeneracy expected for MBSs.

A. Conditions for parity blockade

Related research on Majorana box qubits connected to
quantum dots [52] suggests that parity blockade from a mode
m connected to several MBSs k with tunnel couplings tmk is
established by fulfilling ∑

k

t2
mk = 0. (13)

Note that in general, tαk ∈ C such that there exist nontrivial
solutions of Eq. (13). Furthermore, the real and imaginary
parts of Eq. (13) introduce two restrictions on the four-
dimensional parameter space, introducing a two-dimensional
parity blockade submanifold. In the following, we will show
how Eq. (13) is manifested in a transport measurement for
both the Majorana box and Andreev box.

We start by investigating the submanifold of tunnel cou-
plings t0, t1, t2 resulting in parity blockade. For a current to
flow, at least one coupling needs to be nonzero. We are free
to choose one tunnel coupling real valued, t1 = t ∈ R. The
remaining four variables are the absolute values |tl | and the
phases φl , tl = |tl |eiφl for l = 0, 2. The MBS γ3 connecting to
the drain does not influence the parity blockade at the source,
and we chose t3 = t .

Figure 2 shows the regime where the current is suppressed
due to the parity blockade. In Fig. 2(a), we vary |t0| and |t2|
and, for each point (|t0|, |t2|), we tune φ0 and φ2 to find the
minimal possible current Imin. In Fig. 2(b), we explore the
opposite and vary φ0 and φ2 while tuning |t0| and |t2|. For
this, we introduce the average and difference of the phase,

φavg = φ0 + φ2

2
, φdiff = φ0 − φ2

2
. (14)

These results confirm that the parity blockade defines a two-
dimensional submanifold (dark, low-current regions in Fig. 2)
within the four-dimensional parameter space.

We emphasize that Eq. (13) holds independent of whether
the MBSs are topological or just trivial zero-energy ABSs
expressed via Majorana (Hermitian) operators; see Fig. 1(b).
As discussed in Sec. II D, parity blockade in the Andreev box
can be understood via a unitary rotation of the Majorana basis,
effectively reducing it to the same mechanism that blocks
the Majorana box. Accordingly, the system containing zero-
energy ABSs mimics a Majorana box with additional MBSs
within the wires decoupled from the lead. Consequently,
the features of the parity/current blockade in Fig. 2 remain

FIG. 2. Minimal current Imin plotted on a logarithmic color scale
for (a) varying |tl | and optimizing φl and (b) varying φavg, φdiff and
optimizing |tl |. The dark-blue patches represent the parameter ranges
with suppressed current due to parity blockade. In the remaining
lighter regions, parity blockade is not possible. With the orange
dotted lines, we show the analytical results for the boundaries of the
blockade regions found via Eq. (13).

qualitatively the same for the Andreev box. The only effect of
the additional ABS parameters θ0,1,2,3, introduced in Eq. (5),
is to stretch/narrow Fig. 2(a) along t0, t1 and to displace
Fig. 2(b) along φavg, φdiff. We show an example of parity
blockade in the Andreev box in Appendix B.

B. Simple parity-blockade-based protocol to distinguish
between MBSs and ABSs

Here, we present a protocol that yields different measure-
ment results for the Majorana box compared to the Andreev
box. During this protocol, we turn off certain connections
between the source and the box. To avoid singular matrices
L̂, we define the minimum possible pinch off as �min = 10−6.

In this protocol, we will only need to couple the source
to two wires and, without loss of generality, take t2 = t̃2 = 0
[see Fig. 3(a)], but other realizations are possible as well [53].
The tunneling amplitudes t0, t1 and the flux �01 are tuned
to establish parity blockade between the source and the box.
Note that t̃0 = t0 and t̃1 = t1 in the case of the Andreev box
due to our previous choice of the Majorana basis (Sec. II B).
By establishing parity blockade, we enforce a fixed relation
between t0 and t1.

After the blockade is established, we keep the tunnel cou-
pling to wire l constant, but pinch off the other one and
measure the current Il ∝ t2

l . We then repeat the same pro-
cedure, but switch which tunnel coupling is pinched off. In
the case of the Majorana box, parity blockade enforces that
t0 = t1. Therefore, the current measurement yields I0 = I1.
The Andreev box contains the additional degrees of freedom
θ0, θ1. Except in the fine-tuned cases θ1 = θ0 or θ1 = π − θ0,
parity blockade is reached for |t0| 	= |t1|, leading to different
currents I0 	= I1.

Figure 3(b) shows the difference of the currents,
�I = |I1 − I0|, normalized by the total current, Itot = I1 + I0,
as a function of θ0 and θ1 for an Andreev box, measured
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I1
μS

t0
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I0
(i) μS

(a) (b)

FIG. 3. Protocol to distinguish between ABSs and MBSs based
on different currents after establishing and breaking parity blockade.
(a) We pinch off t2 and establish parity blockade by tuning the loop
t0, t1. Afterwards, we measure two currents, (i) I0 and (ii) I1, by
pinching off t1 or t0. (b) Normalized current difference �I/Itot on a
logarithmic scale for different values of θ0, θ1 in the ABSs. Compare
to �I = 0 for the Majorana box.

according to the protocol described above. The value zero
indicates a perfect imitation of the Majorana box. Exact
zeros occur only on the diagonals, θ1 = θ0, θ1 = π − θ0.
The one-dimensional diagonals represent only a parameter
space of volume zero within the two-dimensional parameter
space. Therefore, only highly fine-tuned ABSs would yield
the same results as MBSs. For an almost perfectly fine-tuned
Andreev box, θ1 ≈ θ0, π − θ0, �I is finite but perhaps too
small for detection.

IV. FUSION-RULE PROTOCOL

Next, we introduce the fusion-rule protocol. We will start
by introducing the time evolution of a Majorana box in the fu-
sion protocol. Next is an analysis of the charge transfer during
the protocol. We finish with a comparison to an Andreev box.

A. Time evolution of the Majorana box

Figure 4(a) sketches the fusion-rule protocol. Two differ-
ent parity blockades are established via two different choices
of the tunneling amplitudes t0, t1, t2, where the phases are
controlled by �01 and �12. We refer to the blockades as the
z-blockade (|t0| = |t1| = t, t2 = 0) and the x-blockade (t0 =
0, |t1| = |t2| = t). The names z- and x-blockade are motivated
by the orientation of the blocking states in terms of the basis
|n01n23〉. They are

z-blockade: |ψz〉 = |00〉 ,

x-blockade: |ψx〉 = |00〉 + |11〉√
2

,
(15)

which are eigenstates of the σz, σx operators.
The protocol repeatedly switches between both blockades,

thereby introducing two timescales; see Fig. 4(a). First, τ

time

|t1|
t

τ

|t2|
t

δτ

|t0|
t

0.0

0.5

1.0

O
cc

u
p
at

io
n τ = 6/Γ

time
0.0

0.5

1.0

O
cc

u
p
at

io
n τ = 2/Γ

p00 p11 p10 + p01

(a)

(b)

FIG. 4. (a) Fusion protocol for a Majorana box. We establish two
blockades with the connections t0, t1 and t1, t2, and repeatedly switch
between them. The first pulse connects the box via t0, t1 establishing
the z-blockade and the second connects the box via t1, t2 establishing
the x-blockade. Each blockade is established for a waiting time τ

with a changing time δτ in between the pulses. Throughout the whole
protocol, the box is connected to the drain via t3. (b) Time evolution
for the total even occupations p00, p11 and the sum of the total odd
occupations, p10 + p01. The red dotted lines mark the connection in
a new z-/x-blockade to highlight the induced time evolution. We
compare the results for a large waiting time τ = 6/� and a shorter
waiting time τ = 2/�. The changing time is fixed to δτ = τ/4.

constitutes the waiting time in a blocking configuration.
Second, the changing time δτ represents the time between
different blocking configurations. During δτ , the system is
completely decoupled from the source, but still coupled to the
drain. We assume that the ramping up and down of the tunnel
amplitudes is much faster than the relevant timescales of the
system, but sufficiently slow to avoid transitions to excited
states. In the following, we will analyze the time evolution of
the system during a full cycle, i.e., switching from z-blockade
to x-blockade, and then back to z-blockade.

To understand the system dynamics on an intuitive level,
we consider the limit of large waiting times, τ � 1/� . The
system is initialized in |ψx〉, then we switch on the z-blockade.
Under z-blockade conditions, a charge cannot tunnel onto the
box if it is in the state |00〉. Therefore, time evolution will
eventually result in a projective measurement in the basis |00〉,
|11〉, each occurring with 50% probability since the initial
state is |ψx〉. This measurement of the parity n01 which prob-
abilistically results in one of two possible outcomes probes
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the MBS fusion rules. If the measurement yields |00〉, parity
blockade prevents the electron from tunneling. But if the mea-
surement results in |11〉, the charge can tunnel into the box,
projecting the system onto |01〉. Afterwards, a charge tunnels
out into the drain, projecting the box on the blocking state,
|ψz〉 = |00〉. We can summarize the dynamics in the following
sequence:

|ψx〉 = |00〉 + |11〉√
2

⇒
{|00〉
|11〉 → |01〉 → |00〉 .

(16)

The timescale for each transition of the dynamics is ∼1/�. It
is important to note that at each step in the dynamics, there
is only one possible tunneling event due to the large charging
energy of the box.

In total, either zero or one charge tunnels through the
system. Both options happen with a 50% probability. One can
check that the same holds for the opposite direction (|ψz〉 →
|ψx〉), which finishes a full cycle of the protocol. Therefore,
on average, the protocol transmits one charge per full cycle.

For a finite waiting time, it is not guaranteed that the system
is fully projected onto |ψx/z〉 by the blockade. To achieve pe-
riodicity (equivalence between protocol cycles n and n + 1),
we need to make sure that the state at the end of one cycle is
the same as in the beginning. Therefore, we run the protocol
for 1000 cycles to ensure this self-consistency between states.
Figure 4(b) shows the time evolution of the system for a long
waiting time τ = 6/� (upper panel) and a short waiting time
τ = 2/� (lower panel). It shows the time evolution during
the 1001st protocol cycle. The self-consistency is seen in the
equivalence of states at the first and last red dotted line.

We start our discussion with τ = 6/�, where the behavior
follows the intuitive arguments above. Initially, the system
is approximately in the state |ψx〉. We switch on the z-
blockade, starting a time evolution into |ψz〉 intermediately
occupying the states |10〉 , |01〉. The moment we switch to
the x-blockade, this causes the system to evolve from |ψz〉
to |ψx〉. It intermediately occupies |10〉 , |01〉 again. The time
evolution works qualitatively the same for the shorter waiting
time τ = 2/�. But in this case, the waiting time is too short to
complete the transition between the blocking states. Note that
the time evolution is also nontrivial during the changing time
δτ because tunneling to the drain is still possible.

B. Charge transfer in the Majorana box

We now investigate how the waiting time affects the
amount of transmitted charge. Figure 5 shows the numerical
result for the time evolution of the current through the source
(solid blue line), which decays exponentially on the timescale
1/�. We obtain the transmitted charge (solid red line) by
numerically integrating the current. The amount of trans-
mitted charge develops a plateau at value 1 e for τ � 1/�,
confirming the intuitive reasoning in Sec. IV A. Although the
current is suppressed by parity blockade, there exists a small,
but finite remnant current Irem because of the MBS overlaps
ε, Irem ∝ ε2/� [53]. The contribution of this remnant current
develops a magnitude of the order of 1 e if τ � �/ε2 and leads
to the upward bending of the charge plateau at long times.
The same happens for a small deviation from the blockade
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FIG. 5. Current Itrans (solid blue line) and transmitted charge
(solid red line) for the time evolution |ψz〉 → |ψx〉 as a function
of the waiting time τ (logarithmic scale). The transmitted charge
is multiplied by a factor of 2 to obtain the result of a full cycle of
the fusion protocol. The dotted red line represents the transmitted
charge during a full cycle for a self-consistent treatment of states
in the fusion protocol. The changing time is fixed to instantaneous
changes δτ = 0.

conditions and we expect similar behavior also for a small but
finite quasiparticle poisoning rate.

Until now, we investigated the charge transfer by initializ-
ing the system in a perfect projection on |ψz〉 and considered
the time evolution in the x-blockade. For a self-consistent
treatment of the blocking states (as described in Sec. IV A),
the average amount of transmitted charge per cycle of the
protocol is shown by the red dotted line in Fig. 5. We find
a decrease in the transmitted charge already at larger τ com-
pared to the charge transfer starting at a perfectly projected
blocking state. For large waiting times τ � 1/�, the previous
results are recovered.

The experiment we envision aims to detect the plateau at
1/� � τ � �/ε2. The measured DC current is quantized to
IDC = f e, where f = 1/2(τ + δτ ) is the frequency associated
with a full cycle of the protocol.

C. Fusion protocol result for the Andreev box

Next, we investigate the results of the fusion protocol
for the Andreev box, demonstrating the absence of a quan-
tized current. As explained in Sec. III A, also for ABSs we
are guaranteed to find a setting for the tunnel couplings |tl |
and magnetic fluxes �ll ′ to establish parity blockade in the
previously introduced x- and z-blockade configurations. The
blocking states are determined by the unitary operation U †

rotating the two ABSs into a basis where only one MBS
is coupled from each of the two wires; see Fig. 1(c). This
rotation depends on the additional degree of freedom θl for
each ABS. A further complication arises as the MBSs uncou-
pled from the lead, after application of the unitary U †, still
have a small overlap with the coupled MBSs. These overlaps
introduce dynamics on an additional timescale 1/ε. Figure 6
shows the results of the fusion protocol with an Andreev box.
The gray lines represent the results of the fusion protocol for
10 configurations of θ0,1,2,3, randomly drawn from a uniform
distribution between 0 and 2π , as a function of waiting time
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FIG. 6. Transmitted charge for the Andreev box in a full protocol
cycle vs the waiting time τ . The changing time is fixed to instanta-
neous changes δτ = 0. Each gray line represents the results for one
realization of randomly drawn ABS parameters θl ∈ [0, 2π ] for each
ABS on the nanowires, l = 0, 1, 2, 3. Depending on these parame-
ters, we determine the tunnel couplings and fluxes to establish parity
blockade while connecting the source to ABSs 0, 1 (z-blockade) and
1, 2 (x-blockade). Afterwards, we run the fusion protocol as we did
for the Majorana box; see Fig. 4(a). We run this protocol 1000 times
to establish the same blocking states at each cycle. We compare the
results to the previously obtained charge transfer for a Majorana box
(red dashed line).

τ . We also included the result for the pure Majorana box
(red dashed line), for comparison. For short waiting times
τ < 1/�, the transmitted charge for both systems tends to
zero, as expected. In the other limit τ > (ε2/�)−1, the trans-
mitted charge increases linearly due to the remnant current
Irem ∝ ε2/� introduced by the finite overlaps of the order
of ε.

The main difference between the Majorana box and the
Andreev box appears for intermediate waiting times, 1/� <

τ < (ε2/�)−1. As discussed above, the Majorana box features
a plateau at the predicted value of 1 e. Detecting this quantized
plateau for the Majorana box is the feature that allows us to
distinguish it from the Andreev box, which shows a similar
but nonquantized plateau before going over to oscillations at
τ ≈ ε−1. Therefore, we conclude that both the quantized cur-
rent at the plateau and the stability of the plateau are signatures
of MBSs which are very unlikely to appear in a similar system
with nontopological zero-energy ABSs.

Finally, we comment on why our fusion protocol is able to
distinguish between MBSs and zero-energy ABSs when some
other fusion protocols fail to do so [39,43]. The difference
lies in the number of involved MBSs. For an Andreev box,
the number of fermionic states increases to four described by
eight MBSs compared to just four MBSs in the Majorana box.
These additional MBSs take part in the fusion process and add
additional states to the possible fusion outcomes. This is not
the case for the fusion protocols in, e.g., Refs. [39,43], which
considered trivial cases with only two fermionic states.

D. Experimental parameters and energy scales

A typical experimental value for the electron temperature
in a dilution refrigerator is T = 50 mK ≈ 5 μeV. Given this

value for T , the choice of parameters used in the paper
corresponds to a bias voltage Vb ≈ 100 μV and tunnel rate
� ≈ 0.05 μeV ≈ 10 MHz. The charging energy and super-
conducting gap would have to be larger than eVb (but a smaller
Vb would not change our results).

It is then possible to measure the quantized current plateau
in the fusion protocol (see Fig. 5) for waiting times τ >

1/� ≈ 100 ns. The magnitude of the quantized DC current at
the short waiting time edge of the plateau would be IDC, short =
f e � 1

2 �e ≈ 0.5 pA, which is within experimental reach.
With these parameters, all overlaps are chosen to be of the
order of ε ∼ 0.5 neV. This sets the upper limit for the waiting
time τ < �/ε2 ≈ 100 ms, leading to a DC current at the
long waiting time edge of the plateau, IDC, long = f e � 0.5 aA.
This current is too small to be measured with conventional
electronics. But measuring until this limit is not necessary
for the fusion experiment, as one only needs to be able to
measure the current somewhere on the plateau. We also point
out that we chose a very large separation between � and
T = 100 � to make sure that the QME method is valid. We
expect the physics to also hold for larger � where the current is
larger.

Finally, we note that the exact choice of overlaps is, in a
sense, arbitrary because they depend on, for example, local
gates and the applied magnetic field. Both for MBSs in a finite
length nanowire and for nontopological ABSs, the overlaps
can be reduced all the way down to zero at fine-tuned points
in parameter space. In general, we can safely assume that the
overlaps are small because one can first perform a standard
conductance measurement to confirm the presence of a zero-
bias peak before attempting the proposed fusion protocol.

V. CONCLUSIONS

In this paper, we have studied transport through a Majo-
rana box using a QME, aiming to identify unique signatures
of topological MBSs originating from the physics of parity
blockade. Although parity blockade seems to be a special
property of MBSs, we showed that nontopological ABSs also
give rise to parity blockade that looks qualitatively similar
in steady-state transport experiments. To distinguish between
MBSs and ABSs, we first proposed a simple experiment
based on comparing two current measurements with different
configurations of lead tunnel couplings. Then we turned to
a transport-based cyclic fusion protocol, where the system is
interchangeably projected onto two different blocking states,
also here by switching tunnel couplings on and off. For the
Majorana box, we showed that the fusion rules result in a
quantized DC current given by exactly the electron charge
times the protocol frequency. We also discussed the limiting
effects of MBS overlaps, quasiparticle poisoning, and devi-
ations from the ideal blockade condition, showing that the
current quantization can remain over a large frequency range.
In contrast, for the Andreev box, we found a current that is not
quantized and, furthermore, much less stable to changes in the
protocol frequency. This not only provides a way to identify
the presence of topological MBSs based on qualitative trans-
port features, but also allows access to the fusion rules without
the need for fast or single-shot readout.
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APPENDIX A: TIME-EVOLUTION FIRST-ORDER VON
NEUMANN MASTER EQUATION

Here we briefly introduce the explicit form of the first-
order von Neumann master equation; for more details, see
[56]. To obtain the dissipative part, we define the tunneling
rate matrix �r

ba,a′b′ ,

�r
ba,a′b′ = 2πvF T r,XB

a→b T r,XB
b′→a′ , (A1)

where the tunnel matrix elements are defined in Eq. (7) for
the Majorana box and in Eq. (8) for the Andreev box, and an
integral over the Fermi distribution f ,

2π Ir±
ba =

∫ K

−K

f
( ± E−μr

Tr

)
E − (Eb − Ea) + iη

dE , (A2)

where K is the bandwidth and η → 0+. We obtain the time
evolution of the density matrix as

i∂tρbb′ = (Eb − Eb′ )ρbb′

+
∑
b′′α

ρbb′′

[∑
a

�b′′a,ab′ Iα−
ba −

∑
c

�b′′c,cb′Iα+∗
cb

]

+
∑
b′′α

ρb′′b′

[∑
c

�bc,cb′′ Iα+
cb′ −

∑
a

�ba,ab′′ Iα−∗
b′a

]

+
∑
aa′α

ρaa′�ba,a′b′
[
Iα+∗
b′a − Iα+

ba′
]

+
∑
cc′α

ρcc′�bc,c′b′
[
Iα−∗
c′b − Iα−

cb′
]
, (A3)

(a) (b)

FIG. 7. Minimal current Imin of an Andreev box plotted on a
logarithmic color scale for (a) varying |tl | and optimizing φl and
(b) varying φavg, φdiff and optimizing |tl |. The dark-blue patches
represent the parameter ranges with suppressed current due to parity
blockade. In the remaining lighter regions, parity blockade is not
possible. The Andreev parameters are chosen as θ0 = +0.3π , θ1 =
−0.2π , θ2 = +0.1π , θ3 = −0.15π . The parity blockade regions are
qualitatively the same as the parity blockade regions of the Majorana
box.

where the indices c and a run over states with fixed electron
number, Nc = Nb + 1, Na = Nb − 1.

APPENDIX B: CONDITIONS FOR PARITY BLOCKADE
IN THE ANDREEV BOX

We show that the Andreev box shows qualitatively the
same regions for parity blockade as the Majorana box ana-
lyzed in Sec. II D.

For a perfectly fine-tuned Andreev box, Fig. 7 would
exactly coincide with Fig. 2 for the Majorana box. Finite
values for θ0,1,2 stretch/quench Fig. 7(a) and shift Fig. 7(b).
Changing θ3 does not change Fig. 7 as this nanowire only
connects to the drain and therefore has no influence on the
parity blockade.
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