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superconducting rectangular systems with spin-orbit interaction
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In the framework of the microscopic Bogoliubov-de Gennes theory, we investigate the topological defect
states under out-of-plane magnetic flux in a mesoscopic superconducting rectangular system with spin-orbit
(SO) interaction. The s + id superconducting phase with time-reversal symmetry breaking can be realized by
suitable choice of model parameters. For the perfect rectangle with pure Dresselhaus SO interaction, the unclosed
domain wall carrying two one-component vortices and double-quanta coreless skyrmions can arise stably with
increasing flux. Interestingly, when the admixed Rashba SO coupling is included, the evolution of vortex matter
toward the single-quanta coreless skyrmion with unit topological charge Q = 1 favors to take place in the present
rectangular system. The relative strength of coupled condensates can be effectively tuned by the strengths of
Rashba SO coupling and next-nearest-neighbor hopping, giving rise to rich multiple and hybrid topological
defect configurations containing even number of Q = 1 skyrmions. Moreover, an appropriate in-plane Zeeman
potential can drive the splitting of enclosed vortex chains, accompanied with the emergence of obvious single-
quanta skyrmionic characters. In particular, the number and location of topological defects are highly sensitive
to the surface indentation defect. The single-skyrmionic and multiskyrmionic states consisting of odd number of
Q = 1 skyrmions can also be produced by introducing a defect in the middle of the short or the long edge of the
rectangle. Our investigation may shed new light on the single-quanta skyrmions and provide useful information
for observing and tuning topological defect states in multicomponent superconducting systems.

DOI: 10.1103/PhysRevB.109.165401

I. INTRODUCTION

Spin-orbit (SO) interaction is generally used to describe
the fundamental coupling mechanism between the spin and
orbital degrees of freedom of electrons in solids [1–3]. There
are two types of SO interactions, which are so-called Rashba
and Dresselhaus SO couplings [4,5]. The Rashba SO coupling
arises due to the microscopic structural inversion asymme-
try, while the Dresselhaus one is originated from the bulk
inversion asymmetry in crystalline structures and the interface
inversion asymmetry [6]. In recent years, the emergence of
various topological phases in condensed matter systems has
drawn a great deal of attention where the SO interaction plays
a critical role [2,7,8]. Among them, the topological supercon-
ductors with first-order and second-order topological phases
are significant as they can host zero-energy Majorana edge
and corner modes, which are believed to have great poten-
tial applications in topological quantum computations [9–16].
Considering that the search for odd-parity superconducting
materials with p-wave pairing symmetry, which can provide
a natural realization of topological superconductivity, is a
challenge, many realistic equivalent routes have been pro-
posed [17–20], such as the system with an even-parity s-wave
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or d-wave superconductor in proximity contact with materials
with strong SO coupling.

On the other hand, the novel states of topological defects
in superconductors with multicomponent order parameters
have attracted tremendous interest recently. The compe-
tition between coupled condensates can result in several
distinct classes of vortex matter. Nonuniform vortex pat-
terns [21–23] and domain-wall structures separating different
chiral states [24–27] can take place in such superconducting
systems with broken time-reversal symmetry. Remarkably,
a complex coreless vortex state, i.e., the skyrmion with a
closed domain wall, can be less energetic than conventional
singular-core vortices and become thermodynamically stable
in chiral p + ip superconductors [28–32]. Such skyrmionic
topological defects do not exhibit singularity in the order-
parameter space and can be labeled by nonzero and integer
topological charge Q [33,34]. Rich and unique phenomena as-
sociated with vortices and skyrmions have also been discussed
in s + is and s + id superconducting systems [35–37]. Partic-
ularly, the topological defect state can be further stabilized in
the presence of mesoscopic edges and its spatial configuration
is strongly influenced by the geometric effect [38]. Besides
the singly quantized vortex state with a pointlike core, a large
number of coreless skyrmionic configurations with Q � 2 are
always energetically favored in finite-size superconducting
systems containing coexisted pairing orders [39].

Notably, a single-quanta skyrmionic structure with Q = 1
is difficult to obtain as a ground state in bulk and finite-size
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p-wave superconducting samples. Supported by biquadratic
density interactions, a Q = 1 chiral skyrmion can remain sta-
ble in a superconductor with three bands [40]. Also, a peculiar
type of coreless vortices consisting of two spatially sepa-
rated half-quantum vortices, i.e., the nematic skyrmion with
unit topological charge, has been observed in two-component
nematic superconductors [41,42]. Especially, unusual vortex
configurations can emerge when a mixed s- and d-wave su-
perconducting order is coupled to the nematic order [43].
Our recent studies have shown that the multiskyrmionic pat-
tern containing several single-quanta skyrmions can be found
in mesoscopic superconductors with mixed even-parity pair-
ing symmetries [44]. However, the single-quanta skyrmionic
mode consisting of two nonoverlapping half-quantum vortices
remains little explored in s + id superconductors up to now.
Notice that, for a Rashba superconducting square system, the
competition between participating s- and d-wave condensates
can result in unconventional vortex matter [37]. Consider-
ing the combination effect of Rashba and Dresselhaus SO
couplings [45–47], unique topological defect configurations
may be produced in such systems. Additionally, the emer-
gent quantum states in topological superconductors depend
strongly on the aspect ratio of fully open systems with SO cou-
pling [48] and can be effectively tuned by applying in-plane
Zeeman fields [49]. Particularly, the surface defects can play
a pronounced role in vortex penetration in mesoscopic super-
conductors due to the small size of their boundary [50]. Thus,
one may expect that interesting physical phenomena related
to skyrmionic states can be present in mesoscopic rectangular
superconducting systems with coexisted even-parity pairing.

In view of the above, we provide a careful insight
into the topological defect states in a mesoscopic super-
conducting rectangle with SO interaction by solving the
spin-generalized Bogoliubov-de Gennes (BdG) equations [51]
in a self-consistent manner. Different from the mesoscopic
superconductors with circular and square shapes, an asym-
metric rectangular geometry will have a strong impact on
properties of samples and novel quantum phenomena may be
induced [26]. Based on a tight-binding model Hamiltonian
in real space, the even-parity d-wave and extended s-wave
orders can coexist in the present system. The s + id state
with broken time-reversal symmetry can be induced by suit-
able choice of the model parameters. We first examine the
evolution of vortex matter under an enlarged out-of-plane
flux in the rectangular sample with only the Dresselhaus SO
interaction. The single-quanta topological structure with an
unclosed domain wall towards sample edges as well as the
double-quanta skyrmionic pattern can both appear inside the
rectangle. Furthermore, in order to tackle the issue of whether
the single-quanta skyrmionic texture can exist in our studied
mesoscopic sample, we systematically investigate the effect
of admixed Rashba SO interaction on the vortical configu-
rations. Interestingly, when the Rashba SO-coupling strength
is increased, unclosed domain-wall state enters the sample,
forming the single-quanta coreless skyrmion. Simultaneously,
the double-quanta skyrmion can divide into two parts, result-
ing in stable multiple Q = 1 skyrmions. The corresponding
spatial profiles of order parameters and zero-energy local
density of states (LDOS) as well as the relative phase dif-
ference in the order-parameter space are demonstrated. The

next-nearest-neighbor (nnn) hopping effect on order modula-
tions of competing condensates is also discussed. Moreover,
we demonstrate that the configurations of topological defects
can be effectively tuned by the in-plane Zeeman potential.
In particular, the preferable entry position for the vortex is
disturbed by the surface defects, and novel spatial patterns of
skyrmionic states can be obtained as compared to the perfect
mesoscopic sample. We expect that our present results may
provide useful information for experiments and futuristic ap-
plications in superconducting electronics.

The organization of this paper is as follows. In Sec. II,
we introduce the theoretical BdG formalism for a mesoscopic
superconducting rectangle with mixed-pairing orders in the
presence of SO interactions. In Sec. III, we present the results
for different topological defect states in a perfect rectangular
system with only the Dresselhaus SO interaction (Sec. III A)
and with combined Rashba and Dresselhaus SO couplings
(Sec. III B), respectively. We also lay special stress on ana-
lyzing the effects of nnn hopping and in-plane Zeeman field
on the vortex matter in Sec. III C. In Sec. IV, we discuss
the influences of surface defects on the tunable topological
defects. Our results are summarized in Sec. V.

II. MODEL AND FORMULAS

To characterize the property of a two-dimensional (2D)
mesoscopic superconducting rectangle in the presence of
Rashba and Dresselhaus SO interactions, we start with an ef-
fective mean-field Hamiltonian by assuming nearest-neighbor
(nn) attraction V for superconducting pairing [11,16]:

Ĥ = Ĥ0 + ĤRso + ĤDso, (1)

Ĥ0 = −
∑
〈ij〉,σ

tijexp(iϕij)c
†
iσ cjσ − μ

∑
i,σ

c†
iσ ciσ

+
∑
〈ij〉

(�ijc
†
i↑c†

j↓ + �∗
ijcj↓ci↑)

+
∑

i

[(ihy − hx )c†
i↑ci↓ + H.c.], (2)

ĤRso = VRso

∑
i

[(c†
i↑ci+�ex↓ − c†

i↓ci+�ex↑)

− i(c†
i↑ci+�ey↓ + c†

i↓ci+�ey↑) + H.c.], (3)

ĤDso = VDso

∑
i

[(c†
i↑ci+�ey↓ − c†

i↓ci+�ey↑)

− i(c†
i↑ci+�ex↓ + c†

i↓ci+�ex↑) + H.c.], (4)

where tij = t and t ′ are the nn and nnn hopping integrals,
ciσ (c†

iσ ) is the destruction (creation) operator for electron of
spin σ (σ=↑ or ↓), and �ex(y) is the unit vector along the
x (y) direction. The Peierl’s phase factor is given by ϕij =
π/�0

∫ rj

ri
A(r) · dr with the flux quantum �0 = hc/2e. Here

the vector potential A(r) is chosen the form H (−y, x, 0)/2
with magnetic field H in the symmetric gauge, yielding
an out-of-plane flux � penetrating the superconductor. μ

is the chemical potential determining the averaged elec-
tron density. hy (hx) is the strength of in-plane Zeeman
field along the y (x) direction, and VRso(VDso) is the Rashba
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(Dresselhaus) SO-coupling strength. The superconducting or-
der has the following definition: �ij = V 〈ci↑cj↓ − ci↓cj↑〉/2.
Using the Bogoliubov transformation: ci↑ = ∑

n[un
i↑γn↑ −

vn∗
i↑ γ

†
n↓], ci↓ = ∑

n[un
i↓γn↓ + vn∗

i↓ γ
†
n↑], the Hamiltonian in

Eq. (1) can be diagonalized by solving the resulting BdG
equations self-consistently:

N∑
j

⎛
⎜⎜⎜⎜⎝

Hij↑ V1 0 �ij

V2 Hij↓ �ij 0

0 �∗
ij −H∗

ij↑ V3

�∗
ij 0 V4 −H∗

ij↓

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

un
j↑

un
j↓

vn
j↑

vn
j↓

⎞
⎟⎟⎟⎟⎠ = En

⎛
⎜⎜⎜⎜⎝

un
i↑

un
i↓

vn
i↑

vn
i↓

⎞
⎟⎟⎟⎟⎠,

(5)

where Hijσ =−tijexp(iϕij) − μδij, Vm = VRso{[(−1)m+1δi+�ex,j
+ (−1)mδi−�ex,j] + λm[i(δi+�ey,j − δi−�ey,j)]} + VDso{[(−1)m+1

δi+�ey,j + (−1)mδi−�ey,j] + λm[i(δi+�ex,j − δi−�ex,j)]} − (−1)mihy

− hx (λm = −1 for m = 1, 2, and λm = 1 for m = 3, 4), and
δi,j represents a delta function. We can get the eigenvalues
{En} with eigenvectors {un

↑, un
↓, vn

↑, vn
↓} for the fully open

system by introducing open boundary conditions. The order
parameter �ij is calculated self-consistently from

�ij =
∑

n

V

4

(
un

i↑vn∗
j↓ + un

j↓vn∗
i↑ + un

i↓vn∗
j↑ + un

j↑vn∗
i↓

)

× tanh

(
En

2kBT

)
. (6)

Then the extended s- and dx2−y2 - wave symmetry can be de-
fined, respectively, at site i as

�s
i = (

�s
i+�ex,i + �s

i−�ex,i + �s
i,i+�ey

+ �s
i,i−�ey

)
/4, (7)

�d
i = (

�d
i+�ex,i + �d

i−�ex,i − �d
i,i+�ey

− �d
i,i−�ey

)
/4, (8)

where �s
i,j = �d

i,j = �ijexp[iπ/�0
∫ (ri+rj )/2

ri
A(r)dr]. Similar

to the studies in the px ± ipy-wave superconducting sam-
ple [31,38], the relative phase φsd = cos(φs − φd ) between
the s- and d-wave components is defined to display the 2D
skyrmionic texture in our system. When the phase difference
(φs − φd ) = ±π/2, s ± id-wave pairings with time-reversal
symmetry breaking can arise. Additionally, the topological
charge Q for the skyrmion is given by

Q = 1

4π

∫
n · (∂xn × ∂yn)dxdy. (9)

The three-dimensional pseudospin vector n is defined as [52]

n = (nx, ny, nz ) = �†σ�

�†�
, (10)

where the two-component order parameter � = (�s,�d ) and
σ is the Pauli matrices.

Note that due to the finite sample with open boundary con-
ditions, the calculated topological charge Q for a skyrmion is
not exactly an integer value. Nevertheless, a skyrmion can still
be characterized by an integer Q, as for a complete skyrmion,
the pseudospin texture n always wraps Q times around a
closed surface [31].

To examine the topological defect states in mesoscopic
samples, we can calculate the LDOS related to the tunneling
conductance in the scanning tunneling microscopic (STM)
experiments, which can be written as

ρi(E ) =
∑
n,σ

[∣∣un
iσ

∣∣2
δ(En − E ) + ∣∣vn

iσ

∣∣2
δ(En + E )

]
, (11)

where the Dirac delta-function δ(x) is taken as /π (x2 + 2)
with the quasiparticle damping  = 0.01.

Throughout this work, the distance is measured in units of
the lattice constant a, the magnetic flux in units of �0, and the
energy in units of t . In the numerical calculations, we take
kB = a = t = 1 for simplicity. By choosing an appropriate
initial �ij, the Hamiltonian is numerically diagonalized and
the calculations are repeated until the difference in the order
parameters between two consecutive iterations is less than
10−6. The applied flux as well as the other tunable parameters
are slowly increased or decreased with a regular interval to
find all the stable solutions. The ground state has the low-
est total energy among those of stable states, and then the
corresponding evolution of topological defect states can be
obtained finally.

III. TOPOLOGICAL DEFECT STATES IN PERFECT
SUPERCONDUCTING RECTANGLES

In the present study, we consider a mesoscopic supercon-
ducting rectangle with an outer size of Nx × Ny = 24 × 40
at zero temperature. In order to generate the mixed-pairing
symmetries for the studied lattice system with a nn attrac-
tive interaction, the microscopic model parameters are chosen
as: the interaction strength V = 5 and the chemical potential
μ = −2. The SO-coupling effect is introduced into the
system, giving rise to a possible s + id superconducting
phase [14,16]. In our self-consistent calculations, we fix the
strength of Dresselhaus SO interaction VDso = 0.3 and con-
sider that the Rashba SO-coupling strength VRso and the nnn
hopping strength t ′ as well as the in-plane Zeeman field are
tunable parameters.

A. System with only Dresselhaus SO interaction

We start our investigations with a perfect 24 × 40 rectan-
gular system when the Dresselhaus SO interaction is solely
introduced, and Fig. 1 displays the contour plots of different
topological defect states with increasing applied magnetic flux
�. The rows (a) and (b) in Fig. 1 give the amplitude |�s|
and phase φs for the extended s-wave order. Similarly, rows
(c) and (d) show the corresponding spatial profiles for the
d-wave order. The row (e) demonstrates the relative phase
φsd between the mixed s- and d-wave components. One can
clearly see that d-wave and extended s-wave condensates can
coexist with comparable strength in our finite-size case. At
zero out-of-plane flux (the leftmost column), the dominant
d-wave and subdominant s-wave order parameters both take
on a constant magnitude inside the sample. Meanwhile, the
relative phase φsd = cos(φs − φd ) between them is close to
zero, forming the favored s + id-wave state with broken time-
reversal symmetry.
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FIG. 1. Spatial profiles of topological defect states at different
applied magnetic flux � in a mesoscopic rectangle with Nx × Ny =
24 × 40 when VRso = 0 and t ′ = 0. Rows (a)–(b): the amplitude |�s|
and phase φs for the extended s-wave order; rows (c)–(d): the am-
plitude |�d | and phase φd for the d-wave order; row (e): the relative
phase φsd = cos(φs − φd ) between the s- and d-wave components.
The calculation is performed for V = 5, μ = −2, and VDso = 0.3 at
zero temperature.

When a small finite flux turns on, the ground state of our
system with pure Dresselhaus SO coupling is still the vortex-
free state, analogous to the Meissner state in conventional
s-wave superconductors. As shown in the second column
of Fig. 1 when �/�0 = 10, there is no flux trapped in the
rectangle and only the regions near long sides of outer edges
are influenced. With increasing flux, two one-component vor-
tices in both s- and d-wave condensates can simultaneously
enter the sample from the middle of two long sides along
the horizontal direction at some critical flux value. Then,
the unclosed domain-wall states can stabilize near the long
boundaries. As an illustrative example, the third column of
Fig. 1 depicts the general picture of this state when � =
11�0. Two vortices penetrate the sample’s edge and are local-
ized near the rectangular center in �s and �d each, which can
be clearly revealed in the phase plots for these two coupled
condensates. As shown in the φs and φd panels, phases near
−π are given by blue regions and phases near π by red
regions. When encircling the region near the vortex core coun-
terclockwise, the phase changes 1 × 2π , which means the
vorticity L = 1. Particularly, the singly quantized vortex state
with two overlapped one-component vortices does not take
place, although the vortex cores in �s and �d are very close.
Instead, the domain-wall bound state with an unclosed vortex

FIG. 2. The pseudospin texture n(x, y) of the double-quanta
skyrmion with the topological charge Q = 2 shown in the fourth
column of Fig. 1(a) and the single-quanta one with Q = 1 shown
in the second column of Fig. 3(b). The color indicates the amplitude
of the z component of the pseudospin field n(x, y).

chain occurs, indicating the possible presence of multibody
intervortex interactions in superconductors with competing
order parameters [53]. Note that additional vortices are failed
to penetrate the long edges of the rectangle due to the presence
of energy barriers, while the attraction of one-component
vortices towards the mesoscopic edges provides stability to
the continuous chain structure. As depicted in the φsd profile,
half of total four individual vortices align their cores to give
rise to one of the two opposite unclosed chains, and φsd

alternates two times between negative and positive values on
each domain wall.

If we keep increasing the applied external field, more
flux will nucleate inside the mesoscopic rectangle. Similar
to the vortex evolution discussed above, one can find that
two one-component vortices in �s and �d each enter the
sample from the middle of the left and right long sides and
a striking type of topological defect states can stabilize. As
clearly displayed in the fourth column of Fig. 1 for an enlarged
�/�0 = 14, four one-component vortices in s- and d-wave
orders do not coincide in space near the left and right edges.
Thus, they can combine into a topological structure that ex-
hibits skyrmionic character. Correspondingly in the profile of
φsd , a rectangular-loop-like phase domain wall, where four
shift nodes correspond to the location of four one-component
vortices, can be seen near both long sides, i.e., a coreless
vortical structure carrying two flux quanta is formed. The
skyrmionic feature of such a coreless vortex can be clearly
revealed by the corresponding pseudospin texture n, as plotted
in the left panel of Fig. 2. It is seen that the nz projection of
the pseudospin rotates along the domain wall by 4π , resulting
in the net topological charge Q = 2. Notice that the spatial
structure of the enclosed vortex chain is modulated by the
noncircular shape in our mesoscopic system. In this situa-
tion, two enclosed vortex chains are elongated vertically and
compressed horizontally as a result of the aspect-ratio effect.
Moreover, such two double-quanta skyrmions tend to stabilize
along one of the diagonal directions. We may attribute this to
the reduction of the symmetry of Fermi surfaces from C4 to
C2 once a finite Dresselhaus SO coupling is included into the
system [46].

With further enlarging the external magnetic flux, the Ls(d )

vorticities increase with flux, and more complex topological
patterns can be obtained. Two representative examples are
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FIG. 3. Spatial profiles of topological defect states at different
flux �/�0 for finite values of VRso in a mesoscopic 24 × 40 rectangle.
Displayed quantities are the same as in Fig. 1. The calculation is
performed for V = 5, μ = −2, and VDso = 0.3 at zero temperature.

given in two rightmost columns of Fig. 1. One can see that
a hybrid topological defect state containing two enclosed
skyrmions inside the sample and two unclosed domain-
wall structures near the short sides shows up when � =
15�0. By contrast, a multiskyrmionic configuration with four
rectangular-loop-like skyrmions surrounded the sample center
can emerge at a higher � = 19�0. It is noted that the vortex
penetration through the long sides is no longer found due to
the influence of stronger vortex-vortex repulsion along the
horizontal direction. In these cases, one-component vortices
can enter the sample through the short sides two by two for
each of orders. Simultaneously, the closed domain walls of
two newly formed skyrmions near the short sides tend to be
elongated along the horizontal direction. Such multiple fea-
tures can be easily distinguished according to their signatures
in the φsd plots.

B. System with combined Rashba and Dresselhaus SO couplings

In this section, we would like to investigate characteristic
vortex configurations when the admixed Rashba SO interac-
tion is involved in the mesoscopic rectangular system. It is
known that the ratio between Rashba and Dresselhaus SO
couplings greatly influences the spin textures and topological
edge state [45–47]. Figure 3 displays the spatial profiles of
topological defect states induced by finite VRso at different
flux values. As compared to the case with solely Dresselhaus
SO interaction in the third column of Fig. 1, the unclosed
domain-wall state can still be observed for a weak VRso when
�/�0 = 11 (see the first column when VRso = 0.4). However,
the positions of two one-component vortices interconnecting
to form the unclosed vortex chain tend to be modified by the
relative Rashba magnitude. For a sufficiently strong VRso, the
superconducting phase transitions between different vortex

FIG. 4. (a) The averaged order parameters |�s| and |�d | for the
extended s-wave and d-wave pairing symmetries as a function of VRso

at �/�0 = 11 in the mesoscopic 24 × 40 rectangle. (b) The averaged
|�s| and |�d | as a function of t ′ for VRso = 0.4 at �/�0 = 11 in
the mesoscopic 24 × 40 rectangle. The calculation is performed for
V = 5, μ = −2, and VDso = 0.3 at zero temperature.

states are expected to take place in the Rashba-dominated
regime. In Fig. 4(a), we plot the corresponding averaged
order parameters over all lattice sites as a function of VRso

when �/�0 = 11. One can see that there generally exists a
destructive effect of the Rashba SO coupling on the dominant
d-wave order. By contrast, the subdominant s-wave order is
highly suppressed with increasing VRso. As a consequence, the
vortices per component favor to move toward the sample’s
center. As depicted in the second column of Fig. 3 when
VRso = 0.6, two adjacent one-component vortices combine to
form a new coreless vortex state in both left and right halves
of the rectangle, i.e., the single-quanta skyrmionic pattern
with split cores between the component condensates may
arise in the present system with mixed-pairing symmetries.
Such a skyrmionic topological defect with Q = 1 can be
demonstrated from Fig. 2(b) where the z component of the
pseudospin flips two times when moving along the domain
wall. Notice that the single-quanta skyrmion manifests as
twofold symmetry, similar to the skyrmionic mode with unit
topological charge as a lowest-energy topological excitation
in two-component nematic superconductors [41,42]. In addi-
tion, the singular vortex with a pointlike core, which always
exhibits a cloverleaf pattern in the relative phase profile [38],
is hard to reach here due to present disbalance between the
coexisted orders.

Next we present the topological defect states exposed to
larger perpendicular flux when the effects of Rashba SO inter-
action is included. Interestingly in the third column of Fig. 3
when �/�0 = 14, one can find that the multiskyrmion states
containing two Q = 2 skyrmions can still be found for a weak
VRso = 0.4, while the skyrmions tend to move and stabilize
in a line along the long side of the rectangle in comparison
to the case without Rashba SO interaction in Fig. 1. Partic-
ularly, the Q = 2 skyrmionic configuration becomes unstable
and splits up into two parts for further enlarged VRso, leading
to the emergence of a novel multiskyrmion state with four
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FIG. 5. Spatial profiles of the zero-energy local density of states
ρ(0) for topological defect states at different flux when VRso = 0 in
Fig. 1 [row (a)] and when VRso = 0.6 in Fig. 3 [row (b)] in a meso-
scopic 24 × 40 rectangle. The calculation is performed for V = 5,
μ = −2, t ′ = 0, and VDso = 0.3 at zero temperature.

Q = 1 skyrmions, as clearly revealed in the fourth column of
Fig. 3. Similarly, the four right columns in Fig. 3 show the
influences of VRso on the phase transitions between topological
defects in our rectangular system when �/�0 = 15 and 19.
Generally, as compared to the corresponding pure Dressel-
haus SO-coupling cases at the same flux values in Fig. 1, we
can conclude that the unclosed domain-wall states near the
boundaries will enter the sample and the Q = 2 skyrmions
cannot remain and will split with increasing VRso, accom-
panied with the occurrence of topological defect structures
with multiple Q = 1 skyrmions. Notably, our asymmetric
rectangular geometry will favor different arrangements of
Q = 1 skyrmion lattices. We can find that the skyrmion lattice
structure tries to evolve into a triangular shape in the order-
parameter space (see the sixth column of Fig. 3 when �/�0 =
15 and VRso = 0.6). By contrast, when two extra Q = 1
skyrmions are generated inside the sample (the rightmost col-
umn when �/�0 = 19 and VRso = 0.6), the triangular lattice
configuration is somewhat deformed in such a case because
of the influences of vortex-vortex repulsion and geometric
effect.

Moreover, the spatial variations of LDOS at zero energy
corresponding to the presented topological defects with and
without Rashba SO coupling are depicted in Fig. 5. Clearly
for the case of VRso = 0 [the top row (a)], the zero-bias peaks
mainly appear at the unclosed or closed domain walls as
a result of the existence of domain-wall bound states cor-
responding to the coreless vortex states in Fig. 1. In the
bottom row (b) of Fig. 5, we also calculate the distributions
of zero-energy LDOS for Q = 1 skyrmions at different flux
cases in Fig. 3 when VDso = 0.6. Apparently, the elongated
zero-bias peaks in the LDOS profile reveal the occurrence
of unusual vortex bound states, in agreement with images of
vortices observed in nematic superconductors [54]. Particu-
larly, unique twin-peak structures can be found in the right
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FIG. 6. Spatial profiles of topological defect states for different
values of t ′ at the magnetic flux �/�0 = 11 [panels (I)] and 15 [pan-
els (II)] in contrast to the corresponding t ′ = 0 case in Fig. 3. Panels
(III) depict the evolution process of skyrmions with increasing the
strength hy of an in-plane Zeeman field applied along the y direction.
Displayed quantities are the same as in Fig. 1. The calculation is
performed for V = 5, μ = −2, and VDso = 0.3 at zero temperature.

panel when �/�0 = 19 due to the existence of two separated
one-component vortices for a single-quanta skyrmion. Notice
that such two adjacent zero-bias peaks for a Q = 1 skyrmion
tend to merge together around the sample’s center as a result
of the finite-size effect, presenting a similar feature as the case
of a singly quantized vortex.

C. Effects of nnn hopping and in-plane Zeeman field on the
vortical configurations

Apart from the Rashba SO coupling, we also consider
the effects of nnn hopping and in-plane Zeeman field on
the vortex matter in our mixed-pairing system. Notably, the
finite nnn hopping in the Hubbard model is an important
electronic parameter characterizing superconducting materi-
als [55]. Hence, we first introduce the nnn hopping in the
effective model Hamiltonian and examine the evolution of
topological defect states by tuning the magnitude t ′ of the nnn
hopping. As seen in the panels (I) of Fig. 6 when �/�0 =
11, the spatial order-parameter distributions for the cases of
VRso = 0.4 and 0.6 are given when t ′ = 0.3. Comparing to
the case of t ′ = 0 in the first column of Fig. 3 at the same
values of � and VRso, the unclosed domain-wall state becomes
unstable near the rectangular long sides for a finite t ′ result-
ing from the modification of relative strengths of competing
pairing symmetries. In Fig. 4(b), we show the corresponding
evolution of averaged order parameters as a function of t ′
when VRso = 0.4. It is obvious that the amplitude of domi-
nant d-wave component is highly reduced with increasing t ′
compared to the s-wave one, leading to a clear change of the
dominant order from d-wave to s-wave pairing. As a result,
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the unclosed domain-wall chains disappear and two enclosed
coreless chains carrying unit topological charge each favor to
occur, as depicted in the first column of Fig. 6. Simultane-
ously, the vortices in both s- and d-wave components will
rotate nearly π/2 when t ′ is varied, and two formed Q = 1
skyrmions stabilize almost along the vertical direction as a
result of the confinement of the rectangular shape. Likewise,
the positions of single-quanta skyrmions generated in the
situation of t ′ = 0 is also sensitive to the effect of nnn hop-
ping. As displayed in the second column of Fig. 6 when
VRso = 0.6, the vortex configuration can be rearranged for
a finite t ′ = 0.3 in contrast to the t ′ = 0 case shown in the
second column of Fig. 3, and two Q = 1 skyrmions tend to
be situated along the direction in parallel with the long edge
of the sample analogous to the stable mode shown in the first
column.

Moreover, the superconducting phase transition between
the Q = 2 and Q = 1 skyrmions can also take place when a
finite nnn hopping is introduced. The panels (II) of Fig. 6 give
a representative sample for such an evolution process when
�/�0 = 15 and VRso = 0.4. As compared to the case without
t ′ in the fifth column of Fig. 3, the topological defect structures
with hybrid Q = 2 and Q = 1 skyrmions can still stabilize
for a small value of t ′, while the domain-wall structure of
Q = 2 skyrmions is deformed in the vertical direction (see
the third column when t ′ = 0.3). If t ′ is further enlarged, the
strength of the d-wave order is highly suppressed, and the
core sites of vortices in this condensate will be effectively
tuned (see the fourth column when t ′ = 0.4). Consequently,
the Q = 2 skyrmions around the rectangular center both split,
and the multiple Q = 1 skyrmionic mode can be realized in
the order-parameter space.

In the next step, let us turn our attention to the effect of a
Zeeman field lying in the two-dimensional plane and examine
the peculiar phase transitions driven by the in-plane Zeeman
potential. It is noted that the in-plane Zeeman field can cause
a nonmonotonic energy shift for the bulk energy spectrum
and also suppress the superconducting gap size [49]. Bulk
and boundary topological phase transitions can be induced,
relying on the direction and strength of applied in-plane
Zeeman field [56]. According to above analysis, one Q = 2
skyrmion favors to stretch along the long side and split the
one-component vortex chain to form two Q = 1 skyrmions in
our present rectangular system. Thus, we mainly examine the
effect of Zeeman field applied in the y direction (i.e., parallel
to the long side of the rectangle) here. As a representative
instance, the panels (III) in Fig. 6 demonstrate the evolution
of spatial distributions of the order parameter at � = 14�0 as
a result of an increasing in-plane Zeeman field when VRso = 0
and t ′ = 0. Indeed, for the multiskyrmionic state with two
Q = 2 skyrmions shown in the fourth column of Fig. 1, a
finite hy can lead to the breaking of two enclosed domain
walls one by one along the vertical direction according to the
signatures in the phase difference φsd plots. Simultaneously,
two neighboring one-component vortices interconnect to form
one single-quanta skyrmion. It is noted that the skyrmion size
depends on the applied Zeeman field and can expand along the
horizontal direction by further increasing the field strength.
Consequently, four enclosed coreless chains with the obvious
looplike feature show up for an appropriate hy.
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FIG. 7. Spatial profiles of topological defect states at different
applied flux � in a mesoscopic 24 × 40 rectangle with a surface
indentation defect in the middle of the long side (five columns on
the left) and with one in the middle of the short side (four columns
on the right) when VRso = 0 and t ′ = 0. Displayed quantities are the
same as in Fig. 1. The calculation is performed for V = 5, μ = −2,
and VDso = 0.3 at zero temperature.

IV. TOPOLOGICAL DEFECT STATES IN
SUPERCONDUCTING RECTANGLES

WITH SURFACE DEFECTS

In the above sections, we concentrated on the vortical
configurations in a perfect smooth rectangle. It is noted that
a superconductor with surface roughness is inevitable in ex-
periments and one should deal theoretically with defects at
the surface. A surface indentation defect can act as the nu-
cleation center for vortex entry, which decrease the surface
barrier [50]. Therefore, we turn to study the effect of surface
defects on vortex penetration in this section and only consider
a small indentation defect with fixed length l = 3 and depth
d = 1 placed at the middle of the long or the short side of the
rectangle.

Figure 7 gives the evolution of vortex states at different
applied flux � in a mesoscopic 24 × 40 rectangle with the
surface indentation defect in the middle of the long side (four
columns on the left) and with one in the middle of the short
side (four columns on the right) when VRso = 0 and t ′ = 0.
For the perfect rectangle without surface defects in Fig. 1,
two vortices for each component enter the sample opposite
to each other from the middle of the long sides at the first
penetration field. By contrast, a defect with size l × d = 3 × 1
in the middle of the right long side can highly change the
first vortex entry and also the vorticity L. As shown in the
first column of Fig. 7, the one-component vortex can penetrate
the sample at a reduced flux �/�0 = 8.5 because the surface
defect is introduced at the entering position of the vortex.
Meanwhile, only one vortex per component enters from the
defect position when the vortex-free state becomes unstable.
Thus, just one unclosed domain wall appears and can stabilize
near the right long edge of the rectangle at weak flux as a result
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of the suppression of narrow edges, as seen in the φsd plot.
With increasing flux, the second one-component vortex still
enters through the defect and combines with the first nucleated
one, leading to one Q = 2 skyrmion inside the sample (see the
second column in Fig. 7). Due to the presence of the skyrmion
in the center of the rectangle, the new entering vortex through
the defect for further enlarged flux is repelled by this adjacent
skyrmion. Simultaneously, two new preferable entry positions
for vortices are created along the two short edges. As a conse-
quence, one can observe two unclosed domain-wall structure
developed first near the short boundaries and then the third
one from the defect site in the third to fourth columns of
Fig. 7. If we keep increasing the field, because of the stronger
repulsion between the vortices along the horizontal direction,
additional one-component vortices are easier to enter from the
short edges in both s and d condensates, and then two Q = 2
skyrmions are newly formed inside the rectangle (see the fifth
column in Fig. 7).

In contrast, if the same surface indentation defect is added
in the middle of the bottom short edge, we checked that the
first penetration field is nearly the same as the one for the
perfect rectangle in Fig. 1. However, the surface defect can
act as an easier position for first vortex penetration in this sit-
uation. One vortex per component enters the sample through
the middle of the short side where the defect is located, while
the domain-wall state containing one unclosed vortex chain
is hard to stabilize now due to the weak confinement effect
along the vertical direction parallel to the long edge. Thus, the
second one-component vortex enters through the defect at the
next penetration field until a Q = 2 skyrmionic state stabilizes
at the rectangle’s center, as clearly seen in the sixth column
of Fig. 7 when �/�0 = 12. Similarly, the one-component
vortices enter one by one through the defect site and another
Q = 2 skyrmion can emerge at higher fields (see the seventh
column). Interestingly, for further increased flux, the top short
edge can act effectively as a new nucleation center for vortex
entry instead of the surface defect and the long edges due
to the rectangle’s aspect-ratio effect as well as the interplay
between the vortex-vortex repulsion. As displayed in the two
rightmost columns in Fig. 7, one can find the formation of an
unclosed domain wall and then a Q = 2 skyrmion near the
upper short edge with increasing field.

Next, we investigate the influence of the admixed Rashba
SO interaction on the skyrmion structure, and the correspond-
ing results are given in Fig. 8. It is already known that the
relative strength of competing s and d condensates is con-
trollable when the Rashba SO coupling is included in the
perfect rectangular system in above section. However, only
multiskyrmionic patterns with even number of single-quanta
coreless skyrmions can be found in such a perfect system. No-
tice that, once the surface defect is introduced into the sample,
topological defect states containing odd number of unclosed
domain walls have been predicted to generate in the imperfect
system (see Fig. 7). Thus, similar to the evolution process
described in the perfect case, the location and number of the
Q = 1 skyrmions can be effectively tuned in the presence of
combined effect of Rashba and Dresselhaus SO interactions
and several novel Q = 1 skyrmionic states should be obtained.
Clearly in Fig. 8 where the spatial profiles of topological de-
fects are depicted for the rectangle with a surface indentation

0

0.45

−3

0

3

0

0.56

−3

0

3

−1

0

1

(e) φ
sd

(a) |Δ
s
|

(b) φ
s

(c) |Δ
d
|

(d) φ
d

17, 0.88.5, 0.6 14.5, 0.8 15, 0.6 17, 0.812, 0.6
Φ/Φ

0
,

 V
Rso

12, 0.6 13, 0.6 15, 0.8

FIG. 8. Spatial profiles of topological defect states at different
applied flux � in a mesoscopic 24 × 40 rectangle with a surface
indentation defect in the middle of the long side (five columns on
the left) and with one in the middle of the short side (four columns
on the right) when a finite VRso is introduced. Displayed quantities
are the same as in Fig. 7. The calculation is performed for V = 5,
μ = −2, t ′ = 0, and VDso = 0.3 at zero temperature.

defect in the middle of the long side (five columns on the left)
or with one in the middle of the short side (four columns on the
right), the unclosed domain wall and the Q = 2 skyrmion can
both transform into the Q = 1 skyrmion beyond a critical VRso

for different flux values, accompanied with the emergence of
peculiar single-skyrmionic and multiskyrmionic states con-
sisting of odd number of Q = 1 skyrmions. Meanwhile, the
spatial profiles of Q = 1 skyrmions are modulated by the
rectangular shape and the surface defect as well as the vortex-
vortex interaction, leading to rich stable configurations with
skyrmionic character.

Finally, we discuss how the in-plane Zeeman field induces
a singular Q = 1 skyrmion and affects its structure in a rect-
angle with a surface indentation defect in the middle of the
long edge. The left panels (I) in Fig. 9 present the corre-
sponding evolution from the unclosed domain-wall state to
the single-skyrmion state for in-plane Zeeman fields applied
along the x and y directions in the sample with pure Dres-
selhaus SO interaction when �/�0 = 8.5. The contribution
from the Zeeman potential will cause unusual behaviors in
the present case with only one unclosed domain-wall structure
because of the asymmetric effect. Clearly in the two leftmost
columns, the attraction of the one-component vortex towards
the defect is destroyed across a critical hx. Consequently as
expected, a singular Q = 1 skyrmionic state, which carries
two one-component vortices aligning along the y direction
arises inside the sample. Particularly, if we rotate the direction
of the Zeeman field by π/2, the unclosed domain wall can
also be tuned by a finite hy (see the third column). One can
observe the resulting Q = 1 skyrmion due to the absence
of vortex-vortex repulsion along the short side (the fourth
column). In addition, for the formed Q = 1 skyrmion shown
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FIG. 9. Spatial profiles of topological defect states at the mag-
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panels (II)]. Displayed quantities are the same as in Fig. 7. The
calculation is performed for V = 5, μ = −2, t ′ = 0, and VDso = 0.3
at zero temperature.

in the first column of Fig. 8 when VRso = 0.6, a finite in-
plane Zeeman field can highly influence the distance between
one-component vortex cores. As displayed in panels (II) of
Fig. 9, the two one-component vortices trapped in an enclosed
domain wall have more separated cores in the horizontal di-
rection with increasing hx. In comparison, an enlarged hy can
elongate the closed vortex chains along the vertical direction
due to the anisotropic effect of in-plane Zeeman fields. As a
result, the skyrmionic topological feature that is characterized
by a coreless vortex structure in the φsd plots can be readily
found.

V. CONCLUSIONS

In conclusion, we have systematically investigated the
possible topological defect states and the associated phase
transitions in a mesoscopic superconducting rectangular sys-
tem with mixed d-wave and extended s-wave condensates in
the presence of SO interactions. We performed numerically
self-consistent calculations using the spin-generalized BdG
equations. By suitable choice of model parameters, the s + id
superconducting phase with broken time-reversal symmetry
can be obtained in the present system. For the case with
only the Dresselhaus SO interaction, one can observe the un-
closed domain walls near outer boundaries and double-quanta
coreless skyrmionic patterns inside the sample under applied
out-of-plane magnetic flux due to present disbalance be-
tween two competing orders. Interestingly, when the admixed
Rashba SO coupling is involved, the single-quanta coreless
skyrmion with unit topological charge Q = 1 favors to form
in our rectangular system. Meanwhile, the relative strength

of competing pairing symmetries can be effectively tuned
by the strengths of Rashba SO coupling and nnn hopping,
giving rise to several peculiar multiple and hybrid topological
defect structures containing even number of Q = 1 skyrmions.
Moreover, the influence of in-plane Zeeman field on the phase
transitions of order-parameter modulations was revealed. An
appropriate in-plane Zeeman potential with a certain applied
direction can drive the splitting of unclosed and enclosed
domain-wall structures, accompanied with the emergence of
obvious single-quanta skyrmionic feature. Finally, the effect
of surface defects on the position and number of topological
defects was studied, together with the influences of Rashba
SO coupling and in-plane Zeeman field. By introducing a
defect in the middle of the short or the long side of the
rectangle, the single-skyrmionic and multiskyrmionic states
hosting odd number of Q = 1 skyrmions can also be produced
in our mixed-pairing system.

Our theoretical results clearly demonstrate that several
distinct classes of vortical configurations, especially the
single-quanta skyrmionic state, can arise stably in the rect-
angular system with coupled condensates in the presence
of the SO interaction. With the development of experimen-
tal techniques, nanostructured superconducting samples with
different shapes are possible to be fabricated. Also, SO in-
teractions related to the inversion asymmetry may be created
at surfaces and interfaces of superconductors, and the Zee-
man field can be generated by exchange interaction in a
quantum material. Therefore, our investigations might provide
an experimental setup to detect and manipulate topological
defect states in multicomponent superconducting systems.
Moreover, our calculations can be useful for some relevant
systems, such as the copper-oxide and iron-based supercon-
ductors with s + id superconductivity [57–60]. In addition,
one can experimentally consider placing surface defects at
different edges of the sample according to our results, in
order to fine tune the path of vortex entry and supercon-
ducting phase transition. A quantized superconducting vortex
can be used as an information bit, which is utilized for cre-
ation of high-density digital cryoelectronics [61]. Particularly,
the half-quantum vortices are known to host Majorana zero
modes, with possible implementation of quantum comput-
ing. The one-component vortices are spatially separated in
the skyrmionic configuration and each of them carries half
vorticity of a full vortex, which may be rather easily sta-
bilized in mesoscopic superconducting samples. We expect
that our theoretical predictions will be verified experimentally
and may provide useful guidance for futuristic applications in
superconducting electronics.

Finally, we remark that the mixed-pairing case consisting
of dx2−y2 -wave and extended s-wave symmetries is mainly
considered in our BdG simulations. In contrast to the time-
reversal-symmetry-broken s ± id-wave state induced in the
present rectangular lattice, new effective pairings may be
stabilized within the same type of interaction for other fi-
nite lattice systems. For instance, a highly unconventional
superconducting state with a spin-singlet dx2−y2±idxy-wave,
i.e., the chiral d-wave symmetry, can emerge in graphene,
which is intimately linked to the hexagonal crystal lattice
and edge modes [62]. Since the chiral superconductivity is
characterized by the breaking of time-reversal symmetry, rich
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phenomena related to the tunable vortical and skyrmionic
states may take place in such multicomponent superconduct-
ing systems [63].
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