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Energetic comparison of exciton gas versus electron-hole plasma in a bilayer two-dimensional
electron-hole system
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We study the zero-temperature phase diagram of a symmetric electron-hole bilayer system by comparing the
ground-state energies of two distinct limiting cases, characterized by an electron-hole plasma or an exciton gas,
respectively. For the electron-hole plasma, the random-phase approximation is used; for the exciton gas, we
consider three different approximations: the unscreened Coulomb interaction, the statically screened one, and
the dynamically screened one under the plasmon-pole approximation. Our results suggest that the exciton gas is
stable at small layer separation. However, static screening in general suppresses the formation of excitons, and
dynamic screening gives different results depending on the representative energy scale we used in the plasmon-
pole approximation. We conclude that energetic considerations alone are very sensitive to the approximation
schemes, and the phase diagram of the system may depend crucially on exactly how the electron-hole attraction
is treated in the theory. For very small and very large densities, however, all our approximations show the exciton
gas to have lower energy than the plasma.
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I. INTRODUCTION

The idea that particles and holes in a solid-state system
could pair up to form excitons, hydrogen-atom-like bound
states, and consequently give rise to novel states of matter,
has a long and complicated history in the condensed-matter
literature, spanning almost a century [1–5]. However, due to
the fast rate of recombination of the constituent particles,
stable exciton-based phases have never been realized in tra-
ditional, three-dimensional solid-state systems. On the other
hand, the advent of two-dimensional (2D) heterostructures,
in which excitons are stabilized due to the electron and hole
being confined to different layers, thus substantially reduc-
ing recombination [2,3,5], has caused a renaissance in the
investigation into excitons. Consequently, 2D exciton sys-
tems are now being produced in the laboratory [6–8] and
their properties are being explored. Exciton phases could be
novel, useful states of matter in solid-state physics, possi-
bly with some eventual applications such as in optics and
optoelectronics [9,10].

One central question is the phase diagram of such a bilayer
system, where one layer is doped with electrons and the other
with holes. There are many possible phases, including an
electron-hole (eh) plasma, an exciton gas/liquid, an exciton
condensate, or a Wigner crystal phase [11]. The phase di-
agram has been studied extensively using several variations
of the Monte Carlo method [12–18], and also using exact
diagonalization [19], density-matrix renormalization group
[20], diagrammatic calculation [21], and mean-field theory
[22–24]. However, the results do not all agree across the
various approaches, and different methods and assumptions
yield a huge range of possible transition temperatures Tc

into the condensate phase. In addition, numerical approaches

require some uncontrolled assumptions, making the compar-
ison among various approximations difficult. For example,
in the variational Monte Carlo approaches, the variational
wave function already assumes the formation of excitons;
in the mean-field approach, the Coulomb interaction is of-
ten taken to be the unscreened one, not even the screened
interaction in the random phase approximation (RPA) (but
the latter has been used in a slightly different context for
a one-dimensional electron-hole system [4]). A key unre-
solved question is whether the bilayer system allows a stable
electron-hole plasma ground state for some values of the
system parameters (i.e., layer separation and layer density) or
whether the excitonic system is always the ground state. It is
especially interesting to see if an exciton condensate phase
can exist at a high temperature, which is a key open theoret-
ical question (not considered in the current work, where we
compare only the plasma and exciton gas phases).

In the graphene literature, the problem of exciton conden-
sation has been studied using different models of the Coulomb
interaction [25–30], where it is found that the result depends
crucially on the model of screening. In particular, while the
unscreened model gives a reasonable Tc for the excitonic
condensate, the statically screened model suppresses it ex-
ponentially, ruling out bilayer exciton condensation at any
experimentally relevant temperature.

In this work, we address the question of the stability of
the exciton gas by considering the 2D bilayer electron-hole
system in two extreme limits: one in which the system is
an electron-hole bilayer plasma, and another in which it is
a bilayer exciton gas. Directly comparing the ground-state
energy per particle of these two distinct systems (but with
the same parameters) gives a hint as to which one is ener-
getically favored in which regime, with the caveat that we are
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carrying out an energetic comparison between two possible,
but qualitatively distinct, regimes. In the first limit, we as-
sume the system is an interacting electron-hole plasma, with
electrons and holes in separate 2D layers. We use the RPA
to calculate the ground-state energy, which is exact in the
high-density limit. In the competing case, we assume that
nonperturbative effects of the particle-hole attraction have
led to the creation of interlayer excitons. In this limit, we
may simply take the ground-state energy per particle to be
the ground-state energy of a single exciton, which we get
directly from the Schrödinger equation. By reconsidering the
latter calculation with a screened interaction, we may study
how screening affects the stability of the exciton gas. In this
paper, we do this comparison for a symmetric 2D bilayer
system with parabolic band dispersions, and we plot the re-
sulting phase diagram with respect to the density parameter rs

and the layer separation d . We do this for different models
of screening—both static and dynamic screening cases are
considered. For the latter, we use the plasmon-pole approxi-
mation with the external frequency fixed to a representative
energy scale, which should be a reasonable approximation
for dynamical screening. Essentially, we solve the excitonic
Bethe-Salpeter equation using the unscreened or the screened
interlayer electron-hole Coulomb interaction.

By carrying out an energy comparison between these ex-
treme cases (bilayer electron-hole plasma and bilayer exciton
gas), we construct a qualitative phase diagram for which of
these two phases is energetically lower as a function of 2D
electron/hole density and layer separation. We find that, while
excitons are preferred at small d in the unscreened model,
static screening suppresses the formation at all d (except for
very small or very large rs). Dynamical screening, on the other
hand, gives a result similar to either the unscreened case or
the statically screened case, depending on what representative
energy scale we use. Interestingly, for small rs (i.e., high
density), the exciton gas always has lower energy compared
with the electron-hole plasma for all layer separations. The
same seems to be true generically for very large rs (i.e., very
low density).

II. THEORY

We consider a two-dimensional, two-layer system, with
one layer containing (spinless) electrons and the other
containing (spinless) holes with no interlayer tunneling. (In-
clusion of spin is an unnecessary complication that would
not change our conclusion since the Coulomb interaction is
spin-independent.) The layers are separated by a distance d ,
and are coupled by the electron-hole Coulomb interaction. We
take both the electrons and holes to have parabolic dispersion
with mass m, and all particles interact with each other via the
Coulomb interaction. We consider the balanced situation with
equal electron-hole density in the layers. To approximate the
effects of charge-gating, each layer has a background charge
that neutralizes its total charge. (That is, each layer is a 2D
“jellium” system—in experimental systems, there are external
gates controlling the layer densities, and these gates act as the
neutralizing background.) Both layers have N particles, and
are described by the usual dimensionless density parameter
rs, which gives a rough estimate of the ratio of potential and

kinetic energy in the system. Explicitly, the density parameter
(which is also the coupling constant for Coulomb interaction)
rs is defined by

rs = S

πa2
BN

, (1)

where S is the 2D area of the system. Above and in the rest of
the manuscript, we use Gaussian units with h̄ = 1. Also, the
Rydberg Ry = me4/2 can be used as a natural energy unit and
the Bohr radius aB = 1/me2 can be used as the natural length
unit.

The Hamiltonian is

H =
∑
k,σ

k2

2m
c†

k,σ ck,σ

+ 1

2

1

S

∑
q

∑
k,σ

∑
k′,σ ′

Vσ,σ ′ (q)c†
k+q,σ c†

k′−q,σ ′ck′,σ ′ck,σ

+ N

S

∑
k,σ

∑
σ ′

[−Vσ,σ ′ (q = 0)]c†
k,σ

ck,σ

+ 1

2

N2

S

∑
σ

∑
σ ′

Vσ,σ ′ (q = 0). (2)

The four terms are, respectively, kinetic energy of the parti-
cles, interaction between two particles, interaction between a
particle and a charge-compensating background, and interac-
tion within the charge-compensating backgrounds. Here, σ is
the layer index indicated by + (holes) and − (electrons). The
Coulomb interaction is

Vσ,σ ′ =
⎧⎨
⎩

+ 2πe2

q , σ = σ ′,

− 2πe2

q e−qd , σ �= σ ′.
(3)

All interlayer tunneling effects are neglected, assuming the
two layers to be coupled only by Coulomb interaction and not
by single-particle tunneling.

Note that if we separate the q = 0 and q �= 0 part of the
interaction between electrons and holes, then all the q = 0
terms will cancel exactly the terms involving the charge-
compensating background. Therefore, we are left with an
equivalent Hamiltonian with only the kinetic and the electron-
hole interaction terms but with Vσ,σ ′ (q = 0) redefined to be
zero,

H =
∑
k,σ

k2

2m
c†

k,σ ck,σ + 1

2

1

S

∑
q �=0

∑
k,σ

∑
k′,σ ′

× Vσ,σ ′ (q)c†
k+q,σ c†

k′−q,σ ′ck′,σ ′ck,σ . (4)

Since the zero-momentum component of the effective
interaction is zero, all tadpole diagrams including a zero-
momentum interaction line will vanish.

We will also make use of the “excitonic units” [31]. These
are defined as

a∗
B = 2aB, (5)

1 Ry∗ = 1
2 Ry. (6)

We will use a∗
B as the unit of length and Ry∗ as the unit of

energy throughout this paper (unless otherwise noted).
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FIG. 1. The Feynman diagrams used in the calculation of the
eh plasma energy. Red solid line: electron; green solid line: hole;
red wavy line: Coulomb interaction between holes; green wavy line:
Coulomb interaction between electrons; black wavy line: interlayer
Coulomb interaction. (a) The Fock energy. (b) The second-order
exchange correlation energy E (b)

2 . (c) The RPA correlation energy
Ecorr, which includes all ring diagrams of second or higher orders.

A. Electron-hole plasma

We calculate the ground-state energy per electron/hole as-
suming that the system is an electron-hole plasma, in excitonic
units,

E

N
= 8

r2
s

− 64

3πrs
+ E (b)

2

N
+ Ecorr

N
, (7)

where the four terms are the kinetic energy, the Fock (i.e., the
exchange) term, the second-order exchange energy, and the
ring contribution (RPA) of the correlation energy, respectively
[32] (see the diagrams in Fig. 1). As mentioned above, the
Hartree terms in the expansion vanish due to cancellation
with the background charge. Note also that the excitonic
electron-hole attraction inside the polarization bubbles is not
explicitly included in the plasma energetics since these are
vertex corrections, and therefore higher-order effects beyond
RPA, where only the bare ring/bubble diagrams are retained.

We include the second-order exchange energy because the
divergence in the RPA series starts at third order in rs. This
energy is given by [32]

E (b)
2

N
= 1

π3

∫
d2q

∫
d2k1

∫
d2k2

× f (k1) f (k2)[1 − f (|k1 + q|)][1 − f (|k2 + q|)]

× 1

q|q + k1 + k2|
1

q2 + q · (k1 + k2)
, (8)

where f (k) = 1 if k < 1 and zero otherwise, and is numeri-
cally evaluated to approximately 0.456 Ry.

To calculate Ecorr, we first write the full RPA energy (sum
over all elementary rings or polarization) as

ERPA = F+ + F−, (9)

F±
S

=1

2

∫ ∞

0

dq

2π
q

∫ ∞

−∞

dω

2π
log

[
1−(1 ± e−qd )

2πe2

q
�(ω, q)

]
,

(10)

FIG. 2. The diagrams for the Bethe-Salpeter equation describ-
ing the excitons. (a) Unscreened electron-hole Coulomb coupling;
(b) screened Coulomb coupling; (c) the screening approximation in
RPA. Here the solid lines with arrows are the electron and hole propa-
gators in each layer (in the single exciton limit), and the wavy/double
wavy lines are the unscreened and screened interlayer electron-hole
coupling between the two layers with the polarization bubble being
the screening function approximated in either the zero-frequency
limit (“static screening”) or a fixed finite-frequency limit (“plasmon
pole screening”) as described in the main text.

where we have defined the polarization operator [33]

�(ω, q) = m

2π

⎧⎨
⎩Re

⎡
⎣

√(
1 − i

2m

q2
ω

)2

− 4p2
F

q2

⎤
⎦ − 1

⎫⎬
⎭.

(11)

Then the (ring contribution of) correlation energy Ecorr is
obtained from ERPA by subtracting the term in the integrand
which is linear in rs (from the expansion of log). The final
expression expressed using the excitonic units and the di-
mensionless integration variables q̃ = q/pF , ω̃ = 2mω/(pF q)
(chosen for numerical stability) is

Ecorr = F+
corr + F−

corr, (12)

F±
corr

N
= 8

πr2
s

∫ ∞

0
dq̃q̃2

∫ ∞

0
dω̃

× g

[
−(1 ± e− 4q̃

rs
d )

rs

q̃2
h

(
q̃

2
+ i

ω̃

2

)]
, (13)

where we define the following functions:

g(x) = log(1 + x) − x, (14)

h(z) = Re(
√

z2 − 1 − z). (15)

We obtain the ground-state energy as a function of the param-
eters d and rs by evaluating the above dimensionless integral
numerically. The results are shown as the gray curves in Fig. 3.
The characteristic features of the calculated plasma ground-
state energy are as follows: (i) it is featureless and only weakly
d-dependent (except for d < rs) as a function of interlayer
separation, and (ii) it is a strong nonmonotonic function of rs

with a minimum around rs ∼ 2 indicating a manifestly stable
plasma phase for rs ∼ 2. These features play an important role
in the phase diagram.
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FIG. 3. Ground-state energy per electron/hole of bilayer electron-hole system as a function of d and of rs under different assumptions.
In each subfigure, the six curves represent the assumptions that the system is electron-hole plasma (gray), exciton gas with unscreened
Coulomb interaction (blue), statically screened Coulomb interaction (red), and the plasmon-pole approximated dynamically screened Coulomb
interaction with external frequency ω being the unscreened exciton binding energy (light green), the Fermi energy of the eh plasma (green),
and the plasmon energy at the Fermi momentum (dark green). For very large rs, the eh plasma curves will become positive again (not shown).

B. Exciton gas

We will now consider the opposite limit that assumes that
the electrons and holes form well-defined excitons. We will
call this limit the “exciton gas” and will estimate the ground-
state energy per particle from the calculated binding energy
of the individual excitons. We ignore exciton-exciton interac-
tions and focus on the exciton gas, but we include through
screening the effects of the carriers themselves on the exciton
gas stability at an effective one-particle mean-field level.

The exciton gas approximation (see Fig. 2) is strengthened
by the fact that the first-order energy corrections due to resid-
ual dipole-dipole interactions are zero due to the background
charge cancellation. Explicitly, the dipole-dipole interaction
[VDD(q)] between excitons is given by

VDD(q) = V++(q) + V−−(q) − 2V+−(q). (16)

Since the potentials Vσ,σ ′ all vanish at q = 0 due to
background charge cancellation, so does the dipole-dipole in-
teraction. As we are considering the zero-temperature phases,
the free exciton gas is in its ground state, where all excitons
have zero momentum. Hence the first-order correction, which
only considers the processes from the ground state to the
ground state, vanishes. There are higher-order terms arising
from all the vertex (and self-energy) corrections, but these
are intractable diagrammatically within our approximation
scheme, where we want to compare the plasma energy with no
vertex corrections to the exciton energy with no many-exciton
effects.

We calculate the exciton binding energy by solving the
hydrogenlike time-independent Schrödinger equation for the

electron-hole pair (Fig. 2). Since we are only interested in
the ground state, we assume zero angular momentum. When
expressed in terms of the radial coordinate using the excitonic
units, the effective exciton binding equation for our electron-
hole bilayer becomes [31]

−1

r

∂

∂r

(
r
∂�

∂r

)
+ 2V (r)�(r) = EX �(r), (17)

where �(r) is the (radial) wave function, V (r) is the interlayer
Coulomb interaction, and EX is the exciton binding energy.

In the case of the unscreened Coulomb interaction, we use
the radial potential

Vunscreened(r) = − 1√
r2 + d2

. (18)

In the momentum space, this is (with some normalization)

Vunscreened(q) = −e−qd

q
. (19)

In addition to the unscreened case, we also consider the
case in which the Coulomb interaction within each inter-
layer exciton is screened by the eh plasma background. This
is equivalent to considering the question of whether the eh
plasma will be destabilized by the formation of excitons.
One should think of this screening as an effective mean-
field theory motivated on physical grounds, with the goal of
approximately including the effect of all the other particles
in the system beyond the single exciton. Such a screening
approximation can only be justified on heuristic grounds since
excitons themselves do not provide effective screening as they
are charge-neutral.
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First, we consider the statically screened Coulomb in-
teraction, in which we approximate the potential using the
long-wavelength limit [3,26]:

Vstatic(q) = − e−qd

q + 2κ + κ
2(1 − e−2qd )/q

, (20)

where κ = 2 is the inverse Debye screening length. This is
basically the Thomas-Fermi or Debye screening, which is
density-independent in 2D. We also consider the dynamically
screened Coulomb interaction

Vdynamic(q, ω) = − e−qd

qε(q, ω)
, (21)

where the dielectric function ε(q, ω) is obtained from the
plasmon-pole approximation for the sake of simplicity,

ε(q, ω) = 1 − ω2
p

ω2 − ω2
q

, (22)

ωp is the long-wavelength 2D plasmon frequency (in
units of Ry∗),

ωp =
√

4πNe2q

mS
= 4

rs

√
2q, (23)

and ωq is determined by the condition

Vdynamic(q, 0) = Vstatic(q). (24)

We use the approximation in which the external frequency ω

is assumed to be a constant, so that we have again a static
potential to solve the time-independent Schrödinger equation.
We try three different energy scales for ω: the unscreened
exciton binding energy (ω = −EX ), the Fermi energy of the
electron-hole plasma (ω = EF ), and the plasmon frequency
at the Fermi momentum of the electron-hole plasma [ω =
Ep = ωp(qF )]. Note that similar approximations have been
used in previous studies (in different contexts) and have been
shown to be good [34–36]. We guess that ω = −EX might
be the most relevant energy scale physically (as the scale is
likely set by the process of exciton formation itself). How-
ever, deciding which approximation is the most accurate in an
experimental setup requires some more detailed microscopic
theory and is beyond the scope of this work. Therefore, we
just present the results for each of the approximations in
this paper.

For unscreened and statically screened cases, the ground-
state energy is obtained by numerically solving the
Schrödinger equation using standard numerical integration
techniques; for the dynamically screened cases, it is ap-
proximately solved using the variational method with an
exponential trial wave function proportional to exp(−r/a)
with parameter a [this approach avoids the highly oscillatory
V (r) by doing the calculation directly from V (q)]. Our main
interest being the qualitative phase diagram, these approxima-
tions are adequate for our purpose.

III. RESULTS

Figure 3 shows the calculated E/N , the ground-state en-
ergy per electron/hole (equivalent to per exciton for the
exciton gas) under various assumptions or various parameters,

particularly as a function of density rs and interlayer separa-
tion d . We can see that the statically screened free exciton
model shows much smaller (less negative) binding energies
than the unscreened model, as expected. For the dynamically
screened model, although it is usually between the unscreened
and statically screened case, it sometimes shows a larger
(more negative) binding energy than the unscreened model,
manifesting the antiscreening effect which is well-known in
the context of dynamical screening (because the dielectric
function could become less than unity depending on the pa-
rameters). Note that in experiments such as transition-metal
dichalcogenide (TMD) [6,7], rs is tunable, with the maximum
being the order of rs ∼ 10. Therefore, the parameter range in
our calculation is experimentally relevant.

For a given exciton screening assumption (unscreened,
static, ω = −EX , ω = EF , or ω = Ep), we can compare the
corresponding E/N (a colored line) with that of the eh plasma
(the gray line). If the latter is larger (more negative), it means
that the eh plasma is stable in our theory; if the former is
smaller, it means that the exciton phase is more stable (or
at least that the eh plasma phase will be destabilized by the
formation of excitons). The resulting phase diagram is shown
in Fig. 4.

Since the eh interlayer Coulomb potential is attractive,
the free exciton model always leads to a negative binding
energy no matter how weak the binding potential is or how
dense the excitons are. On the other hand, the eh plasma
energy for small rs is positive since the kinetic energy dom-
inates. Thus, within our approximations, the exciton gas is
the stable ground state at small rs independent of the value
of d . Although this seems to be an artifact of our ap-
proximation scheme, where exciton-exciton interactions are
ignored, we believe that this result is correct since the at-
traction between the interlayer electrons and holes cannot
be screened away giving the excitons always a negative en-
ergy (which could be very small), whereas the eh plasma
must have a positive energy at small rs arising from the
kinetic energy contribution. Of course the energy difference
between the exciton gas and the eh plasma could be ex-
tremely small, leading to Saha ionization of the excitons into
an eh plasma at finite temperatures. But our current theory
applies at T = 0, where we believe that excitons are the stable
ground state with a lower energy than the eh plasma even for
very small rs.

For general rs and d , however, our theory predicts a sta-
ble eh plasma around rs ∼ 2 because of the minimum in
the plasma energy around this rs value, but for very large
rs, again the exciton gas appears to be the preferred ground
state of the system for arbitrary d . We speculate that many-
body corrections ignored in our theory would most likely
stabilize the exciton system for all rs and d since we see
no particular reason for the comparative stability to show
nonmonotonicity as a function of rs and d . But our theory
for the plasma energy is accurate only for small rs, whereas
our theory for the exciton gas is accurate only for large
rs, and the intermediate rs regime, where we find a stable
plasma phase, is not a theoretically reliable regime for our
approximations since both the plasma and the exciton energies
are inaccurate at intermediate rs values in our approximation
scheme.
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FIG. 4. Phase diagrams of the bilayer electron-hole system obtained from our models. The five subfigures describe different screening
models of the interlayer Coulomb interaction used in the calculation of excitonic binding energy. The “phase” here is determined by comparing
the ground-state energy assuming the two extremes, so the blue (white) region corresponds to where the eh plasma energy per electron/hole is
lower (higher) than the exciton binding energy.

IV. CONCLUSION

By comparing the ground-state energies of an electron-hole
bilayer system assuming that it is an eh plasma and that it
is an exciton gas, we have calculated the qualitative zero-
temperature phase diagram under various assumptions of the
screening of the Coulomb interaction. We find that the exciton
gas is favored at small d if the unscreened interaction is used
in the calculation of the exciton binding energy, while eh
plasma is favored even at small d if the statically screened
Coulomb interaction is used. For the dynamically screened
excitons, we find that the result depends on which energy
scale we use for the external frequency ω. In particular, the
ω = −EX and the ω = Ep cases look qualitatively similar
to the unscreened situation, while the ω = EF case appears
to be similar to the statically screened case. It is interesting
that the energy scale of the dynamic screening is able to
tune between unscreened (with stable excitons) and statically
screened cases (without stable excitons). This suggests that
nontrivial many-body interaction physics plays a key role in
deciding the stability of the exciton gas, and that it is not
trivial to assume that the formation of an exciton is always
preferred in such a bilayer system, and a more accurate model
is required to solve the problem of exciton formation.

We also find that within our approximation schemes, the
exciton gas is quite generally stable for high (small rs) and

low (large rs) densities, but the plasma phase may be sta-
ble for intermediate rs, although we have argued that this
may be an artifact of our theory being inaccurate for both
the plasma and the exciton energetics in the intermediate
rs regime.

We note that the exciton gas, being a gas of bosons, would
form a superfluid excitonic condensate, producing a sponta-
neous interlayer coherence, which we do not consider at all
in our theory where no symmetry breaking is allowed in the
ground state. The formation of such an interlayer electron-
hole superfluid involves a condensate energy which further
lowers the exciton energy, and it is possible that the inclusion
of this condensation energy would automatically make the
exciton system more stable at T = 0 for all values of rs and
d (even if the exciton gas is higher in energy than the plasma
for intermediate rs and d , as we find in the current approx-
imations). The superfluid formation is beyond the scope of
the current work, where we only consider and compare the
energetics of two independent limiting scenarios: an exciton
gas and an electron-hole plasma.
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