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Characterizing and mitigating timing-noise- induced decoherence in single-electron sources
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Identifying and controlling decoherence in single-electron sources (SESs) is important for their applications
in quantum information processing. The recent experiments with ultrashort electron pulses [J. D. Fletcher
et al., Nat. Commun. 10, 5298 (2019)] demonstrate strong decoherence that cannot be caused by traditional
mechanisms such as electron-electron or electron-phonon interactions. Here we propose timing noise as a
universal model, consistent with existing experimental data, to explain strong decoherence of ultrafast SES
pulses, without resorting to any specific microscopic mechanism for such decoherence. We also propose a
protocol to filter out timing noise which works even in the presence of other decoherence effects, such as those
present in, e.g., low-energy SESs.
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I. INTRODUCTION

Understanding the decoherence of electronic excitations
is crucial for applying solid-state devices to quantum tech-
nologies. In devices near equilibrium, decoherence is char-
acterized by the coherence length. This is determined by
the interaction of the plane-wave electron at the Fermi level
with the surrounding electrons, [1] phonons, and impurities
[2,3]. In the case of interferometers such as Mach-Zehnder
[4] or Fabry-Pérot [5], the competition between the coher-
ence length and the size of the interferometer determines the
visibility.

Decoherence is a significant problem in single-electron
sources (SESs) [6–17] because these systems are typically
very sensitive to external noise. SESs generate nonequilibrium
electron excitations by AC driving, in an on-demand fashion.
This leads to time-resolved studies of the coherent oscilla-
tions [11,18–20], fermionic statistics [21–24], and Coulomb
interaction [25–29] of a few electron excitations. These works
suggest the possibility of realizing electron flying qubits [7].
In low-energy SESs, such as Leviton pumps [9,10] and meso-
scopic capacitors [11–13,30], the decoherence effect after
the emission from the SESs is generally caused by interac-
tion with the surrounding electrons [21–23,31] and impurities
[32]. Two-particle interferometer platforms, an electronic
analog of the Hong-Ou-Mandel setup, show an incomplete
shot-noise suppression, as opposed to the expectation by the
Pauli exclusion principle, which can be well explained by such
decoherence [22,23,33].

On the other hand, in high-energy SESs, namely, quantum-
dot pumps [14–16,19,34,35], the decoherence after the
emission is small because the single-electron excitation is
effectively isolated from the Fermi sea and the phonons
[3,36,37]. However, recent tomography experiments reveal
that the electron has quantum purity as low as ∼ 0.04 [38].
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This suggests that decoherence intrinsic to the SES is sig-
nificant. The time uncertainties in the excitations of the
high-energy SES (∼5 ps [38]) are much smaller than those
of low-energy ones (∼ 40 ps [39]), and hence a small classical
fluctuation in timing (e.g., caused by jitter in time-dependent
voltage [35]) might cause a severe decoherence in high-energy
SESs.

In this work we study the decoherence effect induced
by timing noise in SESs, see Fig. 1. This noise generates
a stochastic ensemble of wave packets which are tem-
porally translated. Thus, the coherence between different
energy components is suppressed when the time uncertainty
of the noise is much larger than that of the wave packet.
We present a protocol to identify the timing noise, i.e., to
decide whether a SES involves timing noise and to obtain
its noise distribution. The protocol also enables us to extract
the time uncertainty of the timing noise that characterizes the
noisy SES. We show that an energy filtering can recover the
coherence when the time elongation due to the filtering is
larger than the time uncertainty of the timing noise.

This paper is organized as follows. In Sec. II we develop
the theory of the timing noise. In Sec. III A we show the
identification protocol and an example applied to the high-
energy SES with timing and shape noise. In Sec. III B we
present a simpler method to identify the timing noise as
the only source of decoherence. This method shows that the

( )

FIG. 1. Single-electron sources with timing noise. At each emis-
sion (dashed lines) the electron wave packet is temporally translated
by a random timing shift τ , governed by probability distribution
P(τ ), possibly with additional distortions due to other noise (noise
to the packet shape is considered in the figure).
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low-purity bivariate Wigner function, observed in Ref. [38],
is consistent with the timing noise. In Sec. IV the protocol to
mitigate the timing-noise-induced decoherence is presented.
The conclusion is given in Sec. V.

II. SINGLE-ELECTRON SOURCE WITH TIMING NOISE

Periodically, the source generates a single-electron exci-
tation, described by a density matrix χ of time uncertainty
σt (namely, the position uncertainty divided by the velocity),
with random time shifts τ distributed according to the proba-
bility function P(τ ) of variance σ 2

P , see Fig. 1. Note that the
source generates the excitation in periodic fashion to generate
an electric current sufficiently large enough to be measured.
We assume that the period T is much larger than the time
uncertainties of the excitations to ensure stochastic indepen-
dence between the periods, T � σt , σP. We also assume that
the waveguide into which the SES emits the excitation has a
linear dispersion relation between energy and momentum to
avoid the wave-packet spreading. We assume that the noise
distribution is an even function, P(−τ ) = P(τ ), as the noise
does not prefer a specific time direction.

The random timing shift can be caused by various mecha-
nisms, e.g., a jitter in an arbitrary wave-form generator [35] or
by charge fluctuations which affect the potential of the quan-
tum dot, leading to emission delay [40]. Rather than studying
the microscopic mechanism, we focus on the characterization
and identification of the state generated by the noisy SES.

The electron state generated by the noisy SES is given
by the stochastic ensemble of wave packets χ with different
timings and are hence described by the density matrix

ρ =
∫

dτ P(τ )T̂(τ )χ T̂†(τ ). (1)

Here T̂(τ ) is the translation operator which delays the emis-
sion timing by τ . In general, χ is a mixed state. For example,
an SES may involve a noise in a parameter determining the
shape of the wave packet, which would result in the mixed
state χ , see Sec. III A. When the timing noise is the only
source of the decoherence, χ is a pure state. In terms of
Wigner distribution, Eq. (1) is equivalent to

W (E , t ) =
∫

dτ P(τ )W0(E , t − τ ), (2)

where W is the Wigner distribution of the electron
state ρ, and the connection between the Wigner
distribution and the density matrix is W (E , t ) =
(2/h)

∫
dE〈E + E |ρ|E − E〉e−i2Et/h̄.W0(E , t ) is determined

by the same equation replacing ρ with χ . Note that t is
the arrival time [36], which is an observable equivalent to
position due to the linear dispersion relation.

Equation (1) provides the properties of the mixed state ρ

generated by the noisy SES. Due to the convolution form
of Eq. (2), the temporal variance of the mixed state, �2

t ≡∫
dE dt t2W (E , t ) − {∫ dE dt tW (E , t )}2, is the summation

of variances of the timing noise and the wave packet,

�2
t = σ 2

P + σ 2
t , (3)

for any P(τ ) and χ . The convolution form also suggests that
the coherence stored in different energies is reduced. In fact,

the timing noise induces pure dephasing [41–44] in the energy
basis, which can be seen by Fourier transforming Eq. (2):

〈E |ρ|E ′〉 = 〈E |χ |E ′〉
∫

dτ P(τ )ei(E−E ′ )τ/h̄. (4)

The integral, i.e., the Fourier transform of P(τ ), equals 1 for
E = E ′ [due to the normalization of P(τ )] and decays when
the energies E and E ′ differ more than h̄/σP. In the case
of Gaussian noise, the integral becomes e−σ 2

P (E−E ′ )2/(2h̄2 ). It
follows that timing noise suppresses the off-diagonal elements
while keeping the diagonal elements the same, 〈ρ〉E = 〈χ〉E .
The coherence stored in different energies is almost lost when
the variance of the timing noise is much larger than the time
uncertainty of χ , that is, σP � σt . This is clearly seen for
a Gaussian noise and a Gaussian packet χ , when the quan-
tum purity, γ = Trρ2, of the mixed state is determined as
γ = 1/

√
1 + (σP/σt )2.

III. IDENTIFYING THE TIMING NOISE

We put forward a method that not only tells us if a SES
involves timing noise or not, but also provides details about
the noise distribution P(τ ) and the original state χ . Such
identification is not a trivial task, because the microscopic
mechanisms are difficult to be controlled, and neither the noise
distribution P(τ ) nor χ are known in advance. Our protocol
only relies on the information about the density matrix of ρ

that can be obtained from tomography, see Ref. [38].

A. General method

We find that the timing noise effect can be detected by
solving the following optimization problem.

Problem 1. For a given ρ, let χ̃ be a positive-semidefinite
matrix having the same dimension as ρ, and let a function g̃(E )
and its Fourier transform P̃(τ ) be

g̃(E ) ≡ 〈Ē + E/2|ρ|Ē − E/2〉
〈Ē + E/2|χ̃ |Ē − E/2〉 , (5)

P̃(τ ) ≡ 1

h

∫
dE g̃(E )e−iEτ/h̄, (6)

where Ē ≡ ∫
dE E〈E |ρ|E〉 is the mean energy of ρ. Find

χ̃ , which maximizes the variance σ 2
P̃

≡ ∫
dτ τ 2P̃(τ ) while

satisfying the constraints:
∂

∂E

〈E + E |χ̃ |E − E〉
〈E + E |ρ|E − E〉 = 0, (7)

Im [〈E |χ̃ |E ′〉〈E ′|ρ|E〉] = 0, (8)

〈E |χ̃ |E〉 = 〈E |ρ|E〉. (9)

P̃(τ ) � 0. (10)

Problem 1 is equivalent to extracting the timing noise max-
imally from ρ. See Appendix A for the detailed derivation and
numerical method to solve the problem. The solution of χ̃ and
corresponding P̃(τ ) [determined by Eqs. (5) and (6)] are χ

and P(τ ), respectively.
Here we show an example using Problem 1 for detecting

the timing noise in high-energy SES with timing and shape
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FIG. 2. Detecting timing noise for high-energy SES with timing and shape noise. (a) Wigner function of ρ given by Eqs. (1) and (11), and
Gaussian timing noise. (b) Wigner function of the numerical solution of Problem 1 applied to ρ. (c) The timing noise distribution numerically
obtained from (a), (b), and Eq. (6) (dots), and Gaussian fit (line) of standard deviation of 0.33 ps. Parameters for ρ: w0 = 0.33 ps, σw = 0.3w0,
σP = 0.33 ps, and the energy E is measured from E0.

noise, i.e., where the emitted wave packet at each emission is
not only shifted with a random timing but also distorted with a
random shape change. We consider a simple type of the shape
noise, where only the width of the emitted wave packet at each
emission is randomly changed, see Fig. 1. Namely, the density
matrix for the electron in the absence of the timing noise is
described as

χ =
∫

dw Q(w)|ψw〉〈ψw|, (11)

〈E |ψw〉 =
(

2w2

π h̄2

)1/4

exp

[
−w2(E − E0)2

h̄2

]
, (12)

Q(w) = 1√
2πσ 2

w

exp

[
− (w − w0)2

2σ 2
w

]
. (13)

Here |ψw〉 is the Gaussian packet with mean energy E0 and
time uncertainty w. Q(w) is the probability distribution for
emitting the packet |ψw〉, which is assumed to be Gaussian
with mean value w0 and variance σ 2

w. In the presence of the
timing noise, the density matrix of the electron is described
by Eqs. (1) and (11).

Figure 2 shows the result of solving Problem 1 for an input
state ρ given by Eqs. (1) and (11) with a Gaussian P(τ ). To
numerically solve the problem, we used CVX, a package for
specifying and solving convex programs [45,46]. The solution
correctly detects Eq. (11) within trace distance of 10−5. The
numerically obtained timing noise distribution also correctly
detects the Gaussian timing noise. Note that in this result, the
purities are Tr χ2 = 0.91, Tr ρ2 = 0.65.

Note that our theory of the timing noise and the iden-
tification method also apply to low-energy SESs, although
the effect of timing noise may be weak compared to other
decoherence effects. Historically, low-energy SESs are char-
acterized by the excess first-order coherence [47] rather than
by a density matrix. Then the effect of timing noise is taken
into account by Eq. (1), where the single-electron density
matrices ρ and χ are substituted by the corresponding coher-
ences, see Eq. (B1) and Appendix B.

B. Timing noise as the only source of decoherence

We show a simpler method which can identify the timing
noise as the only source of the decoherence. For simplicity, we

assume that the density matrix 〈E |ρ|E ′〉 does not have zeros;
see Appendix C for the contrary case. The method is based on
the following theorem.

Theorem 1. A mixed state ρ satisfies Eq. (1) with pure
state χ if and only if (i) the function |〈E |ρ|E ′〉|/√〈ρ〉E 〈ρ〉E ′

only depends on energy difference E − E ′ and (ii) its Fourier
transform with respect to E − E ′ is a positive function, and
(iii) ei arg〈E |ρ|E ′〉 is a rank-1 matrix. We refer the reader to
Appendix C 1 for the proof. When these conditions hold, the
noise distribution P(τ ) and the wave packet χ = |ψ〉〈ψ | are
uniquely determined in terms of the density matrix as

P(τ ) = 1

h

∫
dE

∣∣〈Ē + E
2

∣∣ρ∣∣Ē − E
2

〉∣∣√
〈ρ〉Ē+ E

2
〈ρ〉Ē− E

2

e−iEτ/h̄, (14)

〈E |ψ〉〈ψ |E ′〉 =
√

〈ρ〉E 〈ρ〉E ′ei arg〈E |ρ|E ′〉, (15)

where Ē ≡ ∫
dE E〈ρ〉E is the mean energy. Note that the

noise distribution in Eq. (14) is the Fourier transform of the
function used in condition (i).

Using the identification method, we find that a mixed state
whose Wigner distribution is bivariate Gaussian, experimen-
tally detected in quantum-dot SESs [38], is consistent with
timing noise. The Wigner distribution is written as

W (E , t ) =
exp

[
− 1

2(1−r)2

(
E2

�2
E

− 2r E
�E

t
�t

+ t2

�2
t

)]
2π�E�t

√
1 − r2

, (16)

where �E , �t , and r are the energy, time uncertainties, and
the energy-time correlation, respectively. These states are ob-
served in Ref. [38] in the regime of fast pumping. One can
easily verify the conditions (i)–(iii). Using Eqs. (14) and (15),
we obtain both the noise distribution and the wave packet:

P(τ ) = 1√
2πσP

e−τ 2/(2σ 2
P ), (17)

σP =
√

(1 − r2)�2
t −

(
h̄

2�E

)2

, (18)

〈E |ψ〉 = 1√√
2π�E

exp

[
− E2

4�2
E

+ i
r�t E2

2h̄�E

]
. (19)

Note σP in Eq. (18) is manifestly real due to the fact that the
purity is bounded by 1, h̄/[2

√
1 − r2�t�E ] � 1.
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FIG. 3. Identification of the timing noise as the only source of
decoherence. (a), (b) The density matrix in energy basis for the state
detected in Ref. [38]. Its Wigner distribution is bivariate Gaussian
with �E = 1.61 meV, �t = 6.44 ps, and r = 0.47. This state is the
result of noisy SES emitting a pure-state wave packet ψ , (c), (d), with
Gaussian timing noise of uncertainty σP = 5.7 ps.

Figure 3 shows the density matrix of ρ and its wave-packet
component. It shows that the mixed state, being squeezed
along the diagonal in the energy basis [see panels (a) and (b)],
is significantly different from the wave-packet component,
which exhibits a high degree of symmetry [see panels (c) and
(d)].

It is worth mentioning a peculiarity of bivariate Gaussian
Wigner distribution. On one hand, it is consistent with tim-
ing noise. On the other hand, because the energy and time
appear in equal footing in such a distribution, it can also be
interpreted by another description of an energy noise. We
find that a bivariate Gaussian can be written as W (E , t ) =∫

dE P̃(E )W̃0(E − E, t ), where P̃(E ) is a Gaussian noise dis-
tribution for random energy shifts applied to a pure-state
bivariate Gaussian W̃0(E , t ), see Appendix D. Note that such
an alternative interpretation is generally impossible for non-
Gaussian states; e.g., a state generated by a (zero-temperature)
Leviton source with a timing noise cannot be explained by
another source with the energy noise. Furthermore, the fact
that a bivariate Gaussian state is consistent with timing noise
allows for a simple and intuitive purification procedure as
follows.

IV. CANCELLING TIMING NOISE

Luckily, the coherence loss due to timing noise can be
recovered. The purity reduction is determined by the com-
petition of noise time uncertainty σP and the quantum time
uncertainty σt . Consider a dynamic mapping which changes
the packet ψ to another pure state ψ ′ which is elongated in
time, so that the new time uncertainty σ ′

t is larger than the
original value σt . If the dynamic mapping commutes with
the time-translation operator T̂(τ ), the mapping changes the
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FIG. 4. (a) Scheme for the timing noise cancellation using a
resonance level. A mixed state generated by temporally noisy SES is
energy filtered by a resonance level with broadening � and becomes
elongated in time, reducing the effect of the timing noise. (b) Purity
after the filtering γ ′ and the packet transmission probability T0.
Dotted line: purity before the filtering γ . (c), (d) Wigner distribution
before and after the filtering at � = 0.1�E . The purity is increased
from 0.036 to 0.22 with 12% probability. (e), (f) Wigner distribution
of the pure-state components, ψ and ψ ′, corresponding to (c) and
(d). Note that here we show the Wigner distribution instead of the
density matrix for a compact visualization, but they are equivalent;
panels (c) and (e) are equivalent to Fig. 3. Parameters: the state of
Fig. 3 is used for the state before the filtering.

mixed state ρ to

ρ ′ =
∫

dτ P(τ )T̂(τ )|ψ ′〉〈ψ ′|T̂†(τ ). (20)

Then the new purity γ ′ = Tr(ρ ′)2 becomes larger than the
original purity γ = Trρ2 since the relative strength of the
timing noise is weaker, namely, σP/σ ′

t < σP/σt . Note that σ ′
t

should be smaller than the SES period to ensure the interpe-
riod independence.

Such dynamic mapping should be nonunitary, because
a unitary operation conserves the purity. Additionally, ψ ′
should have smaller energy uncertainty than ψ in order to
have larger time uncertainty. Therefore, a natural option for
the dynamic mapping is energy filtering. This energy filtering
can be realized by postselecting a state transmitted through a
single-resonance level with a large lifetime (i.e., small reso-
nance width �), see Fig. 4(a). The state postselected by the
energy filtering is described by Eq. (20), with

|ψ ′〉 = 1√
T0

∫
dE |E〉〈E |ψ〉t(E ), (21)

where t(E ) is the transmission amplitude, T(E ) ≡ |t(E )|2
is the corresponding transmission probability, and
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FIG. 5. (a) Energy filtering using potential barriers without
backscattering between them. The state which has transmitted
through the first barrier and reflected at the second one is posts-
elected. (b) Enhanced purity and the postselection probability for
various barrier height differences ε2 − ε1. Dashed line: purity be-
fore the filtering γ . (c, d) Wigner distribution after the filtering
and its pure-state component at ε2 − ε1 = 0.2�E , where the purity
is enhanced from 0.036 to 0.41 with 8% probability. Parameter:

b = 0.03�E , and the state of Fig. 3 is used for the state before the
filtering.

T0 = ∫
dE |〈E |ψ〉|2T(E ) is the transmission probability

for the packet.
In Fig. 4 we show the result of calculations using the trans-

mission probability T(E ) = 1/[1 + E2/�2], where energy is
measured from the resonance level. For simplicity, we focus
on the case that the mean energy of ρ is aligned with the reso-
nance level (see Appendix E for different cases). Panel (b) in
Fig. 4 shows the purity γ ′ after filtering a bivariate-Gaussian
Wigner distribution as observed in Ref. [38]. The purity ap-
proaches 1 as the level broadening � is reduced. However,
a sharp filtering accompanies the weaker signal, manifested
in the trade-off relation shown in the transmission probability
and the state deformation. One should select the value of �

with a compromise. For example, when � = 0.1�E , the purity
is significantly enhanced from ∼0.04 to ∼0.2 with 10% prob-
ability, without completely deforming the state [see Figs. 4(c)
and 4(d)]. Note that the situation of single-resonance level
can be implemented using a Fabry-Pérot interferometer (or a
quantum dot) with a resonance-level spacing much larger than
the energy uncertainty of the state before filtering.

The Fabry-Pérot interferometer often involves complica-
tions from Coulomb interactions [48–51]. Instead, energy
filtering can also be realized by a three-lead junction with
two potential barriers without backscattering between them,
readily implementable in the experiments, see Fig. 5(a). Here
the state after the transmission and subsequent reflection is
postselected. The transmission probability of the first [second]
barrier is 1/(1 + exp{−(E − ε1[2])/
b}) [52]. εn=1,2 is the
height of the nth barrier, and 
b is the energy scale char-
acterizing sharpness of the barriers. We assume 
b 	 �E

to have sufficient filtering effect and ignore the small phase
variation [53] in the tunneling amplitude over the energy
window E ∈ [εn − 
b, εn + 
b]. Figures 5(b)–5(d) show the

result, focusing on the case that 
b = 0.03�E and (ε1 +
ε2)/2 = 〈E〉ρ ; see Appendix E for other cases. Similarly to
the result of Fig. 4, we obtain a significant purity enhance-
ment with sufficient probability, e.g., the purity is enhanced
from ∼0.04 to ∼0.4 with 8% probability at 
b = 0.03�E

and ε2 − ε1 = 0.2�E . The detailed form of the postselected
packet |ψ ′〉 shown in Fig. 5(d) differs from that of Fig. 4(f)
due to the different forms of the transmission amplitude t(E )
(rectangular function for the former and simple pole for the
latter).

V. CONCLUSION

We have developed a theory for timing noise present in
single-electron sources. Timing noise induces a pure de-
phasing in energy basis. This fact provides a method for
identifying SES with such noise, extracting information about
the noise, and allows for a simple and experimentally ac-
cessible purification procedure based on energy filtering. In
general, timing noise can be expected to become increasingly
relevant as the voltage pulse durations approach the intrin-
sic time scale of the source. Thus, our theory appears to be
relevant not only to single-electron sources of type used in
Ref. [38], but also to the emerging fields of research requiring
ultrafast voltage pulses [54,55].
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APPENDIX A: OPTIMIZATION PROBLEM
FOR IDENTIFYING TIMING NOISE

Here we show the proof that solving Problem 1 is equiv-
alent to identifying the timing noise, i.e., finding χ and P(τ )
for given ρ. We also explain how the problem can be solved
numerically.

We recall that a state affected by the timing noise is de-
scribed by Eq. (1):

ρ =
∫

dτ P(τ )T̂(τ )χ T̂†(τ ). (A1)

In the energy basis, Eq. (A1) is equivalently written as

〈E |ρ|E ′〉 = 〈E |χ |E ′〉g(E − E ′), (A2)

where g(E ) ≡ ∫
dτ P(τ )eiEτ/h̄ is the Fourier transform of the

timing noise distribution.
The constraint (7) of Problem 1 is equivalent to 〈E |ρ|E ′〉 =

〈E |χ̃ |E ′〉g̃(E − E ′), and hence equivalent to

ρ =
∫

dτ P̃(τ )T̂(τ )χ̃T̂†(τ ). (A3)

The constraint (8) is equivalent to that g̃(E ) is a real and even
function, hence P̃(τ ) is a real and even function. The
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FIG. 6. Detecting timing noise for low-energy SES with timing noise. (a) Wigner function of C given by Eqs. (B1), (B2), and Gaussian
timing noise. (b) Wigner function of the numerical solution of Problem 1 applied to C. (c) The timing noise distribution numerically obtained
from (a), (b), and Eq. (6) (dots), and Gaussian fit (line) of standard deviation of 10 ps. Parameters for C: w = 42 ps, p1 = 0.8, p2 = 0.2
(corresponding to Leviton with temperature of 50 mK [58]), and σP = 10 ps.

constraint (9) is equivalent to that g̃(0) = 1, hence∫
dτ P̃(τ ) = 1. Hence, the constraints (8)–(10) ensure

that P̃(τ ) is a physical timing noise distribution. There exist
various χ̃ and P̃ depending on the level of the timing noise
extraction, from the minimal extraction, χ̃ = ρ, P̃(τ ) = δ(τ ),
to the maximal extraction χ̃ = χ , P̃(τ ) = P(τ ). Finding
χ̃ with maximum σ 2

P̃
corresponds to extract the timing

noise maximally. Note that when ρ does not involve the
timing noise, the trivial solution is obtained, i.e., χ̃ = ρ and
P̃(τ ) = δ(τ ).

One can simplify the optimization target of Problem 1
which is beneficial for numerical optimization. Maximizing
σ 2

P̃
is equivalent to minimizing the arrival-time variance of

the extracted state, namely, Tr(t̂2χ̃ ) − (Tr t̂ χ̃ )2, where t̂ is
the observable for the arrival time. This is because the sum
of the two variances is the arrival-time variance of ρ, which
is constant during the optimization. The second term in the
minimization target, −(Tr t̂ χ̃ )2, is also a constant because
Tr t̂ χ̃ = Tr t̂ρ. The equality holds because of the symme-
try of the timing noise,

∫
dτ τ P̃(τ ) = 0. One can easily

check Tr t̂ρ = ∫
dτ dt t P̃(τ )〈t − τ |χ̃ |t − τ 〉 = ∫

dτ dt ′ (t ′ +
τ )P̃(τ )〈t ′|χ̃ |t ′〉 = ∫

dτ dt ′ t ′P̃(τ )〈t ′|χ̃ |t ′〉 = Tr t̂ χ̃ , where |t〉
is the eigenstate of arrival time (or equivalently, position
due to the linear dispersion relation between the energy and
momentum), the change of variable t ′ ≡ t − τ is used in
the second equality, and

∫
dτ τ P̃(τ ) = 0 is used in the third

equality. Hence, the optimization target of Problem 1 is sim-
plified to minimizing Tr(t̂2χ̃ ).

Problem 1 can be solved numerically and efficiently us-
ing a semidefinite programming [56,57]. First, ρ and χ̃ are
described by the density matrix in energy basis, discretized
with small spacing 
. As explained above, the optimization
target is simply minimizing Tr(t̂2χ̃ ). Hence the optimiza-
tion target is a linear function in the optimization object χ̃ .
The observable t̂2 is numerically described as 〈E |t̂2|E ′〉 =
−(h̄/
)2(δE ,E ′+
 + δE ,E ′−
 − 2δE ,E ′ ). The constraints (7)–
(9) are also linear in χ̃ . Hence, Problem 1 without the
constraint (10) is a semidefinite programming problem which
can be solved numerically and efficiently. When the solution
of this problem gives unphysical timing noise distribution,
namely, P̃(τ ) with some negative values, one can solve the
original problem with all the constraints. However, we find
that the simplified problem with only the constraints (7)–(9)
always gives a physical solution in realistic situations relevant
to the single-electron sources such as those of Figs. 2 and 6.

APPENDIX B: LOW-ENERGY SES WITH TIMING NOISE

Here we show that our theory about the timing noise,
Sec. II, and the identification protocol, Sec. III A, are appli-
cable to the low-energy SESs.

In the case of low-energy electron sources, the timing noise
effect is the same when substituting the single-electron den-
sity matrices to the excess first-order coherences [47]:

C(t, t ′) =
∫

dτ P(τ ) c(t − τ, t ′ − τ ). (B1)

Here C and c are the excess first-order coherences in the
electronic subspace (i.e., the energy subspace above the Fermi
level), which corresponds to ρ and χ , respectively. The only
difference from the single-electron density matrix is that
the first-order coherences are not necessarily normalized;∫

dt C(t, t ) and
∫

dt c(t, t ) are the numbers of electron excita-
tions generated by the SES and can be deviated from 1 due to
experimental imperfections. Problem 1, formulated in terms
of C and c, works also in the case of a multiparticle emission.
Note that when treating C and c as operators [59], e.g., defin-
ing Ĉ = ∫

dt dt ′ C(t, t ′)|t〉〈t ′|, they are positive-semidefinite.
The low-energy SESs generate the electron excitations near

the Fermi level; hence the interaction between the excitation
and surrounding electrons/phonons becomes important. Here
we consider a finite-temperature Leviton with timing noise.
First, we assume that there is not any timing noise. We con-
sider the excitations generated by the Lorentzian voltage pulse
with unit flux over the Fermi sea with subkelvin temperature.
As it was demonstrated in Ref. [58], these excitations are well
described by the set of the two wave functions, ϕ1 and ϕ2. The
corresponding excess first-order coherence in the electronic
subspace is the following:

c(t, t ′) = p1ϕ1(t )ϕ∗
1 (t ′) + p2ϕ2(t )ϕ∗

2 (t ′), (B2)

〈E |ϕ1〉 =
√

2w

h̄
e−Ew/h̄ θ (E ), (B3)

〈E |ϕ2〉 =
√

2w

h̄
e−Ew/h̄

(
1 − 2

Ew

h̄

)
θ (E ). (B4)

θ (E ) is the Heaviside step function, and the energies are mea-
sured with respect to the Fermi level. ϕn=1,2 is the wave packet
for the two dominant electron excitations, which occurs with
probability pn, and w is the half-width at half maximum of the
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Lorentzian voltage pulse. In the ideal situation p1 + p2 = 1,
but in experiments the equality can be slightly deviated due
to the imperfections in the control of the voltage pulses. In
the presence of the timing noise, the excess coherence is
described by Eqs. (B1) and (B2). Our protocol using Problem
1 works even when the equality is violated.

Figure 6 shows the result of solving Problem 1 for a co-
herence C given by Eqs. (B1) and (B2), and Gaussian timing
noise. Again CVX package is used [45]. The solution correctly
detects Eq. (B2) within trace distance of 10−10. The numeri-
cally obtained timing noise distribution also correctly detects
the Gaussian timing noise. The similarity between the Wigner
functions of (a) and (b) demonstrates that our timing-noise de-
tection method is useful, even for the regimes of weak timing
noise. Note that the quantum purity is 0.6811 and 0.6683 in
the absence and presence of the timing noise, respectively.

APPENDIX C: THEOREM FOR IDENTIFYING TIMING
NOISE AS THE ONLY SOURCE OF DECOHERENCE

We present the proof of the theorem in Sec. III B, used
for the identification of the timing noise as the only source
of decoherence.

1. In the absence of zero of 〈E|ρ|E ′〉
As assumed in the main text, we first consider the simple

case that the density matrix 〈E |ρ|E ′〉 does not have any zero.
Theorem 2. If there is no zero of 〈E |ρ|E ′〉, Eq. (1)

with pure state χ holds if and only if (i) the function
|〈E |ρ|E ′〉|/√〈ρ〉E 〈ρ〉E ′ only depends on the energy difference
E − E ′ and (ii) its dependence has a positive Fourier trans-
form, and (iii) eiarg〈E |ρ|E ′〉 is a rank-1 matrix.

Proof. We first show that the conditions (i)–(iii) are neces-
sary for Eq. (1) with pure state χ . Using T̂(τ )|E〉 = eiEτ/h̄|E〉,
Eq. (1) is equivalent to

〈E |ρ|E ′〉 = g(E − E ′)〈E |χ |E ′〉, (C1)

where g(E ) ≡ ∫
dτP(τ )eiEτ/h̄ is the Fourier transform of the

timing noise distribution P(τ ) and χ ≡ |ψ〉〈ψ | is the density
matrix describing the pure state |ψ〉 that appears in Eq. (1).
g(0) = 1 due to the normalization of P(τ ). Then, g(E ) should
be a continuous function, because 〈E |ρ|E ′〉 and 〈E |χ |E ′〉 are
continuous functions with respect to E and E ′. Furthermore,
g(E ) should be a positive function because otherwise it con-
tradicts the assumption that there is no zero of 〈E |ρ|E ′〉. Using
Eq. (C1), the positivity of g(E ), the property of the pure
state |〈E |χ |E ′〉| = √〈χ〉E 〈χ〉E ′ , and 〈χ〉E = 〈ρ〉E , we obtain
condition (i) because

|〈E |ρ|E ′〉|√〈ρ〉E 〈ρ〉E ′
= g(E − E ′). (C2)

Condition (ii) is also satisfied because the Fourier transform
of Eq. (C2) equals P(τ ), which is a positive function by
definition. Condition (iii) is also satisfied because ei arg〈E |ρ|E ′〉
can be written in a product form, ei arg〈E |ρ|E ′〉 = ei arg〈E |χ |E ′〉 =
ei arg〈E |ψ〉ei arg〈ψ |E ′〉.

Now we show that conditions (i)–(iii) are the sufficient for
Eq. (1) with pure state χ . We choose ansatzes for the pure state

χ and the Fourier transform of the timing noise distribution as

〈E |χa|E ′〉 ≡ √〈ρ〉E 〈ρ〉E ′ei arg〈E |ρ|E ′〉, (C3)

ga(E − E ′) ≡ |〈E |ρ|E ′〉|√〈ρ〉E 〈ρ〉E ′
, (C4)

respectively. Note that condition (i) is used to define ga(E −
E ′). The ansatz satisfies

〈E |ρ|E ′〉 = ga(E − E ′)〈E |χa|E ′〉. (C5)

In the same way that Eq. (C1) is equivalent to Eq. (1), Eq. (C5)
is equivalent to

ρ =
∫

dτ Pa(τ )T̂(τ )χaT̂†(τ ), (C6)

where Pa(τ ) ≡ ∫
dE ga(E )e−iEτ/h̄/h corresponds to the ansatz

for noise distribution P(τ ). Equation (C6) implies that the
ansatzes are correct if Pa(τ ) and χa describe a noise distri-
bution and a pure state, respectively. This is the case because
Pa(τ ) is a positive function due to condition (ii),

∫
Pa(τ )dτ =

1 due to ga(0) = 1 [see Eq. (C4)], and χa is a pure state due
to condition (iii). �

Note that Eqs. (C1) and (C2) imply that the pure state χ

and the timing noise distribution P(τ ) for a given mixed state
are unique and determined as

〈E |χ |E ′〉 =
√

〈ρ〉E 〈ρ〉E ′ei arg〈E |ρ|E ′〉, (C7)

P(τ ) = 1

h

∫
dE

∣∣〈Ē + E
2

∣∣ρ∣∣Ē − E
2

〉∣∣√
〈ρ〉Ē+ E

2
〈ρ〉Ē− E

2

e−iEτ/h̄, (C8)

where Ē ≡ ∫
dE E〈ρ〉E is the electron mean energy.

2. In the presence of zero of 〈E|ρ|E ′〉
When the density matrix 〈E |ρ|E ′〉 has any zero, the deriva-

tion in Sec. C 1 is not valid because g(E − E ′) in Eq. (C1) is
not guaranteed to be positive. We show how to generalize the
theorem.

We first observe the property of the possible zeros of state
generated by the timing noise. Equation (C1), which is equiv-
alent to Eq. (1), implies that the zeros of 〈E |ρ|E ′〉 originate
from either g(E − E ′) or 〈E |χ |E ′〉. The former type of zeros is
determined by the character of the timing noise. For example,
when the timing noise distribution P(τ ) is rectangular func-
tion with width w, its Fourier transform g(E − E ′) has zeros
at |E − E ′| = nh/w for integer n. Note that g(E − E ′) has
zeros distributed symmetrically with respect to E − E ′ = 0,
because P(τ ) and g(E − E ′) are a real and even function. We
denote the nth zero of g(E − E ′) counted from |E − E ′| = 0
as zn, namely, g(E − E ′) = 0 for |E − E ′| = zn and z1 < z2 <

· · · . These zeros result in the zeros of the density matrix
〈E |ρ|E ′〉 spread over diagonals, i.e., 〈E |ρ|E ′〉 = 0 along the
lines satisfying |E − E ′| = zn.

The other type of zeros is determined by the zero of
〈E |χ |E ′〉. These zeros are determined by the character of
the pure state |ψ〉, for example, as a result of destructive
interference. We denote the mth zero of 〈E |ψ〉 as ζm, namely,
〈E |ψ〉 = 0 for E = ζm. These zeros result in the zeros of the
density matrix 〈E |ρ|E ′〉 spread over horizontal and vertical
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lines which cross at the main diagonal, i.e., 〈E |ρ|E ′〉 = 0 for
E = ζm or E ′ = ζm.

For the theorem below, we denote the sign g(E ) as λ(E ),
namely, λ(E ) ≡ 1 when g(E ) � 0 and −1 otherwise. Due to
the property of the zeros of ρ, the function λ(E ) can be deter-
mined by observing the density matrix 〈E |ρ|E ′〉 and using the
following procedure. Firstly, λ(0) = 1 because g(0) = 1 due
to the normalization of P(τ ). And one can locate the positions
of the change of signs of λ(E ), using the fact that a sign change
occurs across the diagonal-type zeros of 〈E |ρ|E ′〉, namely,
across E = ±zn, which accompany the π -phase shift in the
density matrix 〈E |ρ|E ′〉.

Now we present the theorem for identifying the timing
noise, expressed in terms of the density matrix 〈E |ρ|E ′〉, the
positions of its zeros zn, and the sign function λ, which can
be extracted from the density matrix, hence relying only on
the information of the density matrix. The theorem and its
derivation are slightly modified from those of Sec. C 1.

Theorem 3. Equation (1) with pure state χ holds if and only
if (i) the matrix

|〈E |ρ|E ′〉|√〈ρ〉E 〈ρ〉E ′
λ(E − E ′) (C9)

only depends on energy difference E − E ′, (ii) its dependence
has a positive Fourier transform, and (iii) eiarg〈E |ρ|E ′〉λ(E − E ′)
is a rank-1 matrix.

Proof. We first show that the conditions (i)–(iii) are
necessary for Eq. (1) with pure state χ . Using Eq. (C1),
λ(E ) = sgn[g(E )], the property of a pure state |〈E |χ |E ′〉| =√〈χ〉E 〈χ〉E ′ , and 〈χ〉E = 〈ρ〉E , we find that

|〈E |ρ|E ′〉|√〈ρ〉E 〈ρ〉E ′
λ(E − E ′) = g(E − E ′). (C10)

Hence the condition (i) is satisfied. The condition (ii) is also
satisfied because the Fourier transform of Eq. (C10) equals
P(τ ), which is a positive function by definition. The con-
dition (iii) is also satisfied because λ(E − E ′)ei arg〈E |ρ|E ′〉 =
ei arg〈E |χ |E ′〉, which is a rank-1 matrix.

Now we show that the conditions (i)–(iii) are sufficient for
Eq. (1) with pure state χ . We choose ansatzes for the pure state
χ and the Fourier transform of the timing noise distribution
as

〈E |χa|E ′〉 =
√

〈ρ〉E 〈ρ〉E ′ei arg〈E |ρ|E ′〉λ(E − E ′), (C11)

ga(E − E ′) = |〈E |ρ|E ′〉|√〈ρ〉E 〈ρ〉E ′
λ(E − E ′). (C12)

Note that the condition (i) is used to define ga(E − E ′). The
ansatzes satisfy

ga(E − E ′)〈E |χa|E ′〉 = 〈E |ρ|E ′〉. (C13)

Its Fourier transform gives

ρ =
∫

dτ Pa(τ )T̂(τ )χaT̂†(τ ). (C14)

Here Pa(τ ) ≡ ∫
dE ga(E )e−iEτ/h̄/h corresponds to the ansatz

for noise distribution P(τ ). Equation (C14) implies that the
ansatzes are correct if Pa(τ ) and χa describe a noise dis-
tribution and a pure state, respectively. This is the case

because Pa(τ ) is a positive function due to the condition (ii),∫
Pa(τ )dτ = 1 due to ga(0) = 1 [see Eq. (C12)], and χa is a

pure state due to the condition (iii). �
Note that Eqs. (C1) and (C10) imply that χ and P(τ ) for a

temporally noisy state are unique and determined as

〈E |χ |E ′〉 = √〈ρ〉E 〈ρ〉E ′ei arg〈E |ρ|E ′〉λ(E − E ′), (C15)

P(τ ) = 1

h

∫
dE

∣∣〈Ē + E
2

∣∣ρ∣∣Ē − E
2

〉∣∣√
〈ρ〉Ē+ E

2
〈ρ〉Ē− E

2

λ(E )e−iEτ/h̄, (C16)

where Ē ≡ ∫
dE E〈ρ〉E is the mean energy.

APPENDIX D: BIVARIATE GAUSSIAN
WIGNER FUNCTION

Here we show an alternative interpretation of bivariate
Gaussian Wigner function using the energy noise instead of
the timing noise.

We find that a mixed state whose Wigner function is bivari-
ate Gaussian, see Eq. (16), can be written as

W (E , t ) =
∫

dEP̃(E )W̃0(E − E, t ). (D1)

P̃(E ) is a Gaussian distribution describing a random energy
shift, instead of the timing shift, with uncertainty ξ given to
SES:

P̃(E ) = 1√
2πξ

e−E2/(2ξ 2 ), (D2)

ξ =
√

(1 − r2)�2
E −

(
h̄

2�t

)2

. (D3)

We recall that �E , �t , and r are energy uncertainty, time
uncertainty, and energy-time correlation of W (E , t ), respec-
tively. ξ in Eq. (D3) is manifestly real due to the fact that the
purity of W is bounded by 1, h̄/[2

√
1 − r2�t�E ] � 1. W̃0 is

a pure-state Wigner function determined as

W̃0(E , t ) = 2

h
exp

[
−

(
1

2�2
t

+ 2r2�2
E

h̄2

)
t2

+ 4r�E�t

h̄2 tE − 2
�2

t

h̄2 E2

]
. (D4)

One can check easily that the purity of Eq. (D4) is unity,
h

∫
dE dt W̃ 2

0 (E , t ) = 1. As mentioned in the main text, such
an alternative interpretation is a consequence of the fact that
a bivariate Gaussian Wigner function has energy and time
dependence in equal footing; Eqs. (D1)–(D4) are equivalent
to Eqs. (2) and (17)–(19) when exchanging the role of energy
and time.

APPENDIX E: EXTENDED RESULTS OF FIGS. 4 AND 5

Here we show how the results of Figs. 4 and 5 in the main
text extend for different parameters. Figure 7 shows how the
result of Fig. 4, where a resonance level is used for the timing
noise cancellation, extends when the energy of the resonance
level ε0 is not aligned with the packet mean energy Ē . In
this case the transmission probability through the resonance
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FIG. 7. Timing noise cancellation using a resonance level for
various mean energies Ē of the packet measured with respect to the
resonance level ε0. (a) Purity after the energy filtering through the
resonance level. (b) Packet transmission probability. The parameters
used for the result are the same as Fig. 4, except Ē − ε0. The lines
with Ē − ε0 = 0 (blue) correspond to the result of Fig. 4(b).

level is T(E ) = 1/[1 + (E − ε0)2/�2]. The result shows that
as the resonance level deviates from the packet mean energy,
both the filtered purity and the probability both decrease.
This indicates that it is best to align the resonance level with
the packet mean energy for the timing noise cancellation.
However, as long as the resonance level is near the mean
energy, ε0 ∈ [Ē − �E , Ē + �E ], the timing noise cancellation
is achieved with almost the same results.
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FIG. 8. Timing noise cancellation using the potential barriers for
various broadening 
b. (a) Purity after the energy filtering through
the barriers. (b) Postselection probability. The parameters used for
the results are the same as Fig. 5, except 
b. The lines with 
Eb =
0.03�E (blue) correspond to the result of Fig. 5(b).

Figure 8 shows how the result of Fig. 5, where potential
barriers are used for the timing noise cancellation, extends
when the broadening of the barrier, 
b, is varied. As 
b

increases, the purity decreases while the probability slightly
increases. This indicates that it is best to use the barriers
with small 
b, which corresponding to a thick barrier, for the
timing noise cancellation. And as long as 
b is much smaller
than the energy uncertainty �E , the timing noise cancellation
is achieved with similar results.
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