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Ancilla-free scheme of deterministic topological quantum gates for Majorana qubits
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The realization of quantum gates in topological quantum computation still confronts significant challenges
in both fundamental and practical aspects. Here, we propose an ancilla-free, deterministic, and topologically
protected measurement-based scheme to realize the implementation of Clifford quantum gates on the Majorana
qubits. Our scheme is based on a rigorous proof that the single-qubit gate can be performed by leveraging the
neighboring Majorana qubit but not disturbing its carried quantum information, enabling an ancilla-free scheme
for the topological quantum computing with Majorana qubits. Benefiting from the ancilla-free construction, we
show the minimum measurement sequences with four steps to achieve two-qubit Clifford gates by constructing
their geometric visualization. The uncertainty of the current strategy can be avoided by manipulating the
Majorana modes in their parameter space, as shown in a concrete Majorana platform, correcting the undesired
measurement outcomes while maintaining topological protection. Our scheme identifies the minimal operations
of measurement-based topological and deterministic Clifford gates and offers an ancilla-free design of topologi-
cal quantum computation.
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I. INTRODUCTION

Majorana zero modes (MZMs) obey exotic non-Abelian
braiding statistics, making them of great interest in funda-
mental physics and the potential application to topological
quantum computation (TQC) [1–5]. Braiding two MZMs
physically by moving one around the other in real space
is theoretically straightforward [6–13] but challenging to
experimental implementation [14–40]. Measurement-based
schemes provide an alternative method to realize the braiding
transformations without physically moving Majorana modes
[41–44]. However, a comprehensive understanding of realiz-
ing the Clifford gates in the measurement-based schemes is
still lacking. So far the measurement-based schemes necessi-
tate ancillary MZMs to implement the topological quantum
gates. In comparison, an ancilla-free scheme can potentially
have great advantages in saving resources, simplifying the
design of quantum gates, and providing more theoretical in-
sights. However, whether such a scheme exists was unknown.

In this paper, we prove the sufficiency and efficiency of
using two Majorana qubits, without the need for ancillary
MZMs or qubits, to implement single- and two-qubit Clifford
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gates through a measurement-based scheme in a deterministic
manner. Firstly, we show a key result that the implementation
of a single-qubit gate can be achieved by using a neighboring
Majorana qubit but not disturbing its carried quantum infor-
mation, eliminating the requirement for ancillary MZMs in
Majorana-based TQC design. By leveraging the benefits of
the ancilla-free construction, we propose the minimal scheme
of implementing two-qubit Clifford gates and show rigorously
the minimum measurement sequences involve only four steps
through a geometric visualization. Further, through a diagram-
matic formalism, we demonstrate that Pauli gate [45–47] can
be applied to our scheme to correct undesired outcomes by
manipulating the MZMs in their parameter space, yielding
the deterministic Clifford gates with topological protection.
Finally, we showcase the experimental accessibility of our
proposal by demonstrating its applicability in a concrete
Majorana platform.

II. SINGLE-QUBIT GATE IMPLEMENTATION WITH TWO
TOPOLOGICAL QUBITS

To perform quantum gate operation with Majorana
qubits, the essential task is to exchange two MZMs. The
measurement-only method provides a means to braid MZMs
without physical movement, but it requires a larger Hilbert
space to facilitate the teleportation, rather than the collapse, of
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FIG. 1. Braiding γ3 and γ4 within two qubits. (a) The time di-
rection is vertical from bottom to top in our representation and Ni

is the normalization factor. γi=1−8 is the ith MZM from left to right.
The dashed line with the circle j marks the jth measurement. (b)
The locality principle is detailed in (a) for qubit2. The letters a − g
are the labels of anyons, da is the quantum dimension of a, and so
forth.

quantum information [41,43,44]. Starting with two Majorana
qubits provides an advantage as the eight MZMs offer suf-
ficient redundancy to teleport quantum information initially
stored on the computational basis. In contrast, when beginning
with only one Majorana qubit, a pair of ancillary MZMs is
required to introduce the necessary redundancy. This suggests
that we may braid two MZMs in one qubit with the help of
the MZMs in the neighbor qubit. However, when attempting
to braid two MZMs in one qubit with the help of the neigh-
boring qubit, a crucial question arises: Is it fundamentally
allowed without changing the stored quantum information,
even if the neighboring qubit can possess arbitrary quantum
information and may be entangled with additional qubits?
Fortunately, the answer is affirmative, and it can be rigorously
proven using the isotopy invariant diagrammatic formalism
[41,48–51].

We start from eight Majorana zero modes, the minimal
requirement to constructing two Majorana qubits with sparse
encoding [52]. The first and last four modes form the first and
second Majorana qubits, respectively [Fig. 1(a)]. Through-
out our paper, the total fermion parity of the eight MZMs
remains even. Initially, the quantum information is stored in
the computational space where each qubit shares even par-
ity, denoted as P̂1234(5678) = −γ1(5)γ2(6)γ3(7)γ4(8) = +1. This
even parity is guaranteed by the four MZMs measurement,
�+

1234(5678) = (1 + P̂1234(5678))/2 [Fig. 1(a)]. Here and after,
we define the fermion parity and measurement operators
as P̂i1...in and �±

i1...in
= (1 ± P̂i1...in )/2 of the n MZMs. With-

out loss of generality, we first attempt to braid MZMs γ3

and γ4 in the first qubit with the assistance of the second
qubit. The scheme comprises three successive nondestructive
topological charge projective measurements (�+

45, �+
35, and

�+
5678), as shown in the left-hand side of the diagrammatic

representation of Fig. 1(a). Note that although the the mea-

surement operations �+
45 and �+

35 result in the teleportation
of quantum states to P̂1234 = −1 subspace, we require the
degeneracy of P̂1234 = ±1 subspaces to ensure the topologi-
cal protection. After the quantum gate operation, we lift the
degeneracy. Tuning the degeneracy between even and odd
Hilbert spaces can be achieved by tuning the Josephson cou-
pling between two Majorana qubits, which is demonstrated in
our setup discussion. Remarkably, the strands in qubit-2 can
be simplified through the locality principle [Fig. 1(b)] into
one strand. Meanwhile, the isotopy invariance allows us to
freely stretch or slide around a strand so long as its topology
remains fixed. After stretching the lines in Fig. 1(a), it is
clear that the three successive measurements are equivalent
to exchange γ3 and γ4 in qubit-1 and perform identity opera-
tion in qubit-2. Thus, we rigorously prove that the exchange
of two MZMs in one qubit can be achieved with the assis-
tance of the neighboring qubit but not affecting its quantum
information.

III. MINIMAL MEASUREMENT-BASED SCHEME OF
CONTROLLED-Z GATE

Without loss of generality, we first consider the controlled-
Z (CZ) gate with the first and second qubits as control and
target, respectively. Unlike the π/4-gate, the CZ gate lacks
a standard diagrammatic representation, making it difficult
to visualize. For example, we have found that the sequence
of four times measurements �+

5678�
+
35�

+
34�

+
46 can implement

the CZ gate in our ancilla-free Majorana qubits through direct
calculations. We can make a hindsight demonstration through
the continuous deformation of its diagrammatic representation
into the celebrated proposal [52], which involves two mea-
surements and three exchange operations in an eight MZMs
system [Fig. 2(a)]. But this deformation is case by case and
lacks a general rule to follow. Recent studies have discovered
many measurement sequences to implement the same CZ gate
for two Majorana qubits with one or two pairs of ancillary
MZMs. It has been shown by brute force that four measure-
ments are the minimum required to realize the CZ gate, but
the principles behind these sequences are still unclear [53].
Furthermore, these measurement sequences involve teleport-
ing quantum states in ten or twelve MZMs Hilbert spaces,
which cannot be applied to ancillary-free two Majorana qubits
with only eight MZMs. As a result, there is currently no
general measurement-based construction method for CZ gates
of topological qubits.

To address these issues, we propose a solution based
on the ancillary-free two Majorana qubits system. By pre-
serving the even total fermion parity, the measurements
teleport the quantum states in eight-dimensional (8D) Hilbert
space, which can be decomposed into the direct sum of
the four-dimensional computational and noncomputational
spaces [upper gray plane and lower blue plane in Fig. 2(b)]
stabilized by the stabilizers {P̂+

1−8,±P̂+
5678} respectively. We

define the qubit basis in computational basis as

� = {ψ1, ψ2, ψ3, ψ4} = {|0000〉, |0011〉, |1100〉, |1111〉}.
To avoid collapsing the quantum information, the first mea-
surement �+

I must teleport the states in a redundant Hilbert
space. Therefore, we choose the parity operator P̂I for the
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FIG. 2. CZ gate. (a) Diagrammatic representation of measurement-based CZ gate. (b) Geometric visualization of measurement-based CZ
gate in Bloch spheres, with consistent measurement sequences in (a). The upper gray (and lower blue) planes correspond to computational and
noncomputational spaces, respectively. The colored paths indicate the equivalent measurements.

first measurement to anticommute with P̂5678. WLoG, we
take P̂I = P̂46. The states P̂46� = �+

46{ψ1, ψ2, ψ3, ψ4} expand
the noncomputational spaces. To visualize the computational
and noncomputational Hilbert space, we define the states �

and P̂46� as the north and south poles of the four Bloch
spheres in which the states �+

46� lie along the +x axis
in each Bloch sphere [Fig. 2(b)]. In this case, the parity
operator P̂5678(46) in the four Bloch spheres take the form
diag{σz(x), σz(x), σz(x), σz(x)}. Since the CZ gate is diagonal in
the computational basis, its measurement sequences should
teleport within each Bloch sphere. Consequently, the quantum
teleportation through each projective measurement is equiva-
lent to the adiabatic evolution of the states along the 1/4 great
circle connecting the projective points at the Bloch sphere
[Fig. 2(b)]. Performing the measurement sequences on each
qubit basis is equivalent to a unitary evolution in the corre-
sponding Bloch sphere along a closed geodesic, accumulating
a geometric phase in each basis. To achieve the CZ gate, the
state |1111〉 must acquire a π phase [Fig. 2(b)(iv)], which
requires the last Bloch sphere’s state teleportation to follow a
great circle passing through the north and south poles. We can
choose �II = (1 + P̂34)/2 with P̂34 = diag{σz, σz,−σz,−σz}
and �III = (1 + P̂35)/2 with P̂III = diag{−σx, σx, σx,−σx}.
Apparently, the projective measurement �II(III) leads the states
in different Bloch spheres to undergo different paths, with
only the last Bloch sphere’s path being a great circle. There-
fore, the CZ gate implemented through the measurements
�+

5678�
+
35�

+
34�

+
46 without additional ancillary MZMs can

be visualized by the paths along the geodesics [Fig. 2(b)].
Furthermore, as each teleportation corresponds to the adi-
abatic evolution of 1/4 great circle [54], a minimum of
four teleportations are needed to implement the CZ gate.
We have identified 16 different four-times measurement se-
quences to implement the CZ gate by varying the choices
of P̂I. Additionally, we have also determined eight sequences
for the iCZ gate, diag{1, 1, i,−i}. These diverse sequences
offer flexibility in constructing two-qubit gates for vari-
ous experimental platforms (see the Supplemental Material,
SM [55]).

IV. DETERMINISTIC TOPOLOGICAL GATES
WITH CORRECTION

In the measurement-based scheme, undesired outcomes are
inevitable. Pauli tracking method [47,53] provides a practical

way to avoid physical corrections when performing Clifford
gates. However, the generic quantum circuits with Majorana
qubits inevitably have nontopologically protected gates. The
interplay between the generic quantum circuits and Pauli
tracking method may lead unforeseen error evolution and
propagation [56]. Therefore, it is worthwhile to propose a
scheme to implement physical corrections with topological
protection.

According to the fusion and braiding rules, the differ-
ent fusion channels can be connected using the following
equation:

j
i

d
abc

j
bc

kj

k
j

d
abc FRF )()()(

2

,

1
=

(1)

where (F d
abc)i

j and R j
ab are the fusion and exchange matrices

respectively and a(b, c, d ) represent the non-Abelian anyons
and i( j, k) their fusion channels. The full braiding of two
Z2m parafermions, according to the spin-statistics theorem
[57,58], follows R2 ∝ eisn2π/m with s ∈ Z, n corresponds to
the topological charge and 2m the number of fusion chan-
nels. For Ising anyons (s = 1 and m = 1) with two fusion
channels (vacuum and fermion), denoted by n = 0 and n =
1 respectively, the pentagon and hexagon identities yield∑

j (F
d

abc
−1)k

j (R
j
ab)2(F d

abc) j
i = e−iπ/4σ x

ik , where σ x acts on the
fusion space of γa and γb. Simplifying Eq. (1), we have

, ,(2)

with v and f the fusion channels of vacuum and fermion. Note
that each diagram in the above is a quantum state. Thus the
corresponding projector operator satisfies

, (3a)
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FIG. 3. (a) A demonstration of propagating undesired outcome in
the sequence �

(+1)
5678�

(+1)
35 �

(+1)
34 �

(−1)
46 �

(+1)
5678 through the full braiding

transformation. The small solid-green squares mark the measure-
ments as nonvacuum, and dashed-gray and blue circles mark the
deformations. (b) Two Majorana qubits from the SC/2DTI/FI hybrid
system. (c) The relations among the Majorana spin in FI region
(yellow arrow), magnetization (red arrow) and SOC field direction
(ez). The polar and azimuth angles of FI magnetization are θ and α,
respectively. The Majorana spin lies in the x-y plane with azimuth
angle φ. (d) The equivalence between braiding two MZMs and
twisting each Majorana spin by 2π . The arrows indicate the MZM
spin.

. (3b)

We find that the transformation of undesired outcomes to
desired outcomes using Eqs. (3a) and (3b) within the frame-
work of full isotopy formalism can be achieved in different
ways: The former adds the additional braiding operations as
the payment; the latter transports the exchange operations oc-
curring before the measurement to after the measurement. By
combining these two equations and the full isotopy formalism,
we can convert all the fermion measurement results to the
vacuum while transferring the additional braiding operations
after the final measurement. In Fig. 3(a), we demonstrate
how to propagate undesired outcomes, taking the example
of an undesired outcome at the first measurement of the CZ
gate (i.e., �+

5678�
+
35�

+
34�

−
46�

+
5678, detailed deformation ver-

sion available in the SM [55]). Taking Eqs. (3a) and (3b)
(dashed-gray and blue circles) in succession, the undesired

outcome shifts along the time axis from the first to the third
measurement [the third diagram in Fig. 3(a)]. Repeating the
similar procedure with Eq. (3a), the consequences with un-
desired measurement outcome are transformed to the desired
one with additional full braiding operations, which ends up
with a full braiding of γ3 and γ4. Therefore, we only need to
eliminate the full braiding by imposing an opposite braiding.
Such a full braiding for correction can be achieved by param-
eter control or measurements, as discussed below.

V. A CONCRETE EXAMPLE

We demonstrate our ancilla-free scheme and correc-
tion through a concrete Majorana platform, consisting of a
superconductor (SC), a two-dimensional topological insula-
tor (2DTI), and a ferromagnetic insulator (FI) [Fig. 3(b)].
The low energy BdG Hamiltonian in spinor basis ĉ(r) =
[c↑(r), c↓(r), c†

↓(r),−c†
↑(r)]

T
takes

Ĥ =
(

h( p̂) + m(r) · σ �SC(r)e−iϕ(r)

�SC(r)eiϕ(r) −h( p̂) + m(r) · σ

)
, (4)

where σx,y,z are Pauli matrices in spin space, h( p̂) = vf p̂σz −
μ, with vf the Fermi velocity of edge states, and μ the
chemical potential, �(r) is the proximity induced s-wave SC
gap amplitude with SC phase ϕ(r) and m(r) is the proximity
induced exchange field. Here ϕ(r) gives the superconducting
phase of each SC island. Each SC/FI interface supports one
MZM.

We construct the Majorana qubits by connecting SC1
(SC3) and SC2 (SC4) via a Josephson junction JJ-1(JJ-2).
Owing to the substantial Josephson coupling energy, they es-
sentially function as a unified superconducting island, denoted
as SC12 (SC34). The islands SC12 and SC34 are isolated
when JJ-3 is off, so they form two independent Majorana
qubits [44,59]. The fermion parity even states (|e〉12, |e〉34)
on each island are the qubit states, which are gapped from
odd subspace (|o〉12, |o〉34) by the charging energy(see the
SM [55]). During single- or two-qubit gate operations, prior
to measurement, we activate the JJ-3, amalgamating SC12
and SC34 into a larger superconducting island. This action
induces the requisite degeneracy between |e〉12 ⊗ |e〉34 and
|o〉12 ⊗ |o〉34. We turn off the coupling of JJ-3 after gate op-
erations. The two-MZMs fermion parities can be measured
by observing supercurrent direction in the lead linking two
MZMs (see the SM [55]) [the blue bridge in Fig. 3(b)]. The
four-MZMs measurement is performed through the dispersive
readout (see the SM [55]).

The Majorana evolution in parameter space is equivalent
to a full braiding, which provides the basis for experimental
implementation of corrections. In particular, as the direction
of magnetization m completes a closed trajectory enclosing
the spin-orbit (z) axis, the Majorana wave functions span 2π

solid angle in the Bloch sphere [Fig. 3(c)]. This results in a π

monodromy phase, corresponding to a full braiding operation
of exp(−πγ1γ2/2) [60] as depicted in Fig. 3(d). The quanti-
zation of the monodromy phase is homotopy to the winding
number of the magnetization around the SOC axis. Thus
this operation is topologically protected. Similarly, wind-
ing the superconducting phase also introduces the quantized
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monodromy phase nπ into the MZM (see the SM [55]).
Therefore, the correction through braiding of MZMs can be
achieved by manipulating them in either spin or phase param-
eter space with full topological protection.

VI. CONCLUSIONS

We have proposed an ancilla-free measurement-based
scheme to implement Clifford quantum gates with full topo-
logical protection. This design enables us to identify the
minimal measurement sequences and allows the systematic
construction of Clifford gates. Additionally, the deterministic
quantum gates can be achieved through fully braiding Majo-
rana modes in parameter space with topological protection.

Our study provides valuable insight into the optimal design
for topological quantum computation.
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