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Impact of coordinate frames on mode formation in twisted waveguides
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Off-axis twisted waveguides possess unique optical properties such as circular and orbital angular momentum
(OAM) birefringence, setting them apart from their straight counterparts. Analyzing mode formation in such
helical waveguides relies on the use of specific coordinate frames that follow the twist of the structure. In this
paper, the differences between modes forming in high-contrast off-axis twisted waveguides defined in the three
most important coordinate systems—the Frenet-Serret, the helicoidal, or the Overfelt frame—are investigated
through numerical simulations. We explore modal characteristics up to high twist rates (pitch: 50 µm) and clarify
a transformation allowing us to map the modal fields and the effective index back to the laboratory frame. In
case the waveguide is single-mode, the fundamental modes of the three types of waveguides show significant
differences in terms of birefringence, propagation loss, and polarization. Conversely, the modal characteristics
of the investigated waveguides are comparable in the multimode domain. Furthermore, our paper examines the
impact of twisting on spatial mode properties. At high twist rates, a separation of modes with different spins
is observed, suggesting a potential influence of the photonic spin Hall effect. Additionally, twisting induces
OAM-dependent changes in the intensity distribution, indicating the presence of the photonic orbital Hall effect.
Lastly, modes of single-mode helical waveguides were found to exhibit superchiral fields on their surfaces. These
findings provide a comprehensive basis for further research into the physics of twisted off-axis waveguides.
Implementation approaches such as 3D nanoprinting or fiber-preform twisting open the doors to potential
applications of such highly twisted waveguides, including chip-integrated devices for broadband spin- and
OAM-preserving optical signal transport, as well as applications in chiral spectroscopy or nonlinear frequency
conversion.

DOI: 10.1103/PhysRevB.109.165301

I. INTRODUCTION

The interest in off-axis twisted waveguides started emerg-
ing in the 1980s due to the observation that single-mode fibers
helically coiled around a cylinder exhibit circular birefrin-
gence, manifested by the rotation of the polarization state of
linearly polarized light as it propagates along the waveguide
[1–4]. The rotation can be understood based on the transver-
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sality of light [1], which means that the polarization vector is
constrained to the surface of the k sphere. As the wave vector
k changes directions when light propagates along the helix,
the polarization vector is parallel transported on the surface
of the sphere [5]—a concept well-known from differential
geometry [6]. Due to the curvature of this surface, it was
found that the polarization vector does not necessarily return
to its original state after the light completes a closed loop
on the k sphere. More specifically, the polarization vector
rotates relative to the laboratory frame whenever the light’s
trajectory features a nonzero torsion (which refers to a purely
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geometrical quantity and is not related to any torsional stress
in the material). This conceptual framework initially served
well in explaining the observed circular birefringence in heli-
cal fibers.

The theory evolved further in the years thereafter, in
particular, it was realized that light traveling along curved tra-
jectories experiences a spin-orbit and an orbit-orbit interaction
coupling the spin or orbital angular momentum (OAM) of a
beam of light to its orbital motion [5,7–9]. The emergence
of circular and OAM birefringence in helically coiled fibers
could now be explained as a direct consequence of these
couplings. Conversely, spin-orbit and orbit-orbit interactions
were found to act back on the trajectory of light splitting the
beam depending on its spin and OAM. These effects are now
known as the photonic spin Hall [9,10] and orbital Hall effects
[8,11].

From an applied perspective, helical waveguides were
mostly used for their circular birefringence, which prevents
linearly polarized light from becoming elliptically polarized
in the presence of mechanical stress. This robustness against
environmental fluctuations is employed in applications such
as fiber optic current and magnetic field sensors based on the
Faraday effect [12–14] or optical twist and tension sensors [1].

In all of these early works, the cross-sectional shape of
the helical waveguides is assumed to be circular in the plane
perpendicular to the helical path, which can be well described
in the Frenet-Serret coordinate system. On the other hand,
more recent experimental works often use the helicoidal coor-
dinate system to investigate fibers containing off-axis twisted
cladding elements [15–19]. However, little attention has been
paid to the fact that the geometry of helical waveguides de-
fined in these two coordinate systems is, in general, different,
which can impact their optical properties.

In this paper, we present an in-depth analysis of the differ-
ences between the two coordinate frames in defining helical
waveguides and show that the resulting geometries only agree
at low twist rates. Furthermore, we compare the results to
helical waveguides defined in a third coordinate frame, the
Overfelt frame [20], which is derived from a toroidal geom-
etry. Note that we always use the term “helical waveguide”
to refer to an off-axis twisted waveguide, in distinction to on-
axis twisted waveguides [21–24] or two-dimensional spiraling
waveguides [25–27].

Another aspect frequently lacking in previous works is
a comprehensive description of the transformation of fields
from the helicoidal frame back to the laboratory frame. In this
paper, we describe this process in detail and explain under
which conditions it is possible to define an effective refractive
index for modes of on- and off-axis twisted waveguides in the
laboratory frame. Such an effective index is needed, for exam-
ple, when analyzing coupling to modes in straight waveguides
or for comparison to experimental results.

We conducted simulations for both single-mode and multi-
mode variants of the three off-axis twisted waveguide types
and compared the results to an analytical model for the
effective index [28] and loss [29] of modes in helical
waveguides. The paper investigates twist rates of up to 20
turns per mm, which are, to our knowledge, the highest in-
vestigated so far for off-axis twisted waveguides (an overview
of such works can be found in Table SI of the Supplemen-

tal Material [30]). Spin- and OAM-dependent splittings in
the spatial properties of the modes were analyzed, as well
as the emergence of superchiral fields on the surface of the
waveguides (i.e., fields with a larger chiral asymmetry than
circularly polarized plane waves [31,32]).

All simulations were performed for high-index contrast
waveguides based on the general motivation that helical
waveguides can be fabricated with such parameters using 3D
nanoprinting (two-photon polymerization) [33].

II. RESULTS

A. Coordinate systems for helical waveguides

First, we present three common coordinate systems that
can be used to define waveguides that are invariant along a
helical path. Throughout this paper, all investigated helices are
left-handed, i.e., the waveguides are attached to the following
path c(z):

c(z) =
⎛
⎝ ρ cos(αz)

−ρ sin(αz)
z

⎞
⎠, (1)

where α = 2π/P is the angular twist rate, P is the pitch
of the helix, and ρ its radius. We refer to 1/P as the twist
rate (number of turns per unit length). Such a helical path is
characterized by a constant curvature κ̄ = ρ/(ρ2 + α−2) > 0
and torsion τ = −α−1/(ρ2 + α−2) explained in more detail
in Sec. SIII A 1 of the Supplemental Material [30]. For a
left-handed helix, α > 0 and τ < 0. To define a helical waveg-
uide, this one-dimensional curve needs to be extended to three
dimensions. To achieve this, the first step is to establish a
suitable coordinate system.

1. Frenet-Serret frame

The most natural choice for a coordinate system given any
curve c(z) is the Frenet-Serret frame, a local orthonormal
right-handed coordinate system that is attached to the curve.
Its unit vectors are the tangent vector T̂ of the curve, the
normal vector N̂ pointing along the derivative of the tangent,
and the binormal vector B̂ which is orthogonal to T̂ and N̂
[34]. For the left-handed helix above, these unit vectors are

T̂ = 1√
1 + (αρ)2

⎛
⎝−αρ sin(αz)

−αρ cos(αz)
1

⎞
⎠, N̂ =

⎛
⎝− cos(αz)

sin(αz)
0

⎞
⎠,

B̂ = 1√
1 + (αρ)2

⎛
⎝− sin(αz)

− cos(αz)
−αρ

⎞
⎠. (2)

In this form, z is the only coordinate, while extensions of the
Frenet-Serret frame for a ring of helical waveguides with an
additional azimuthal coordinate exist [35]. The Frenet-Serret
frame will prove to be the best choice to describe off-axis
twisted waveguides since the wavefronts of the modes lie
within the NB plane (spanned by N̂ and B̂), as revealed later
in Sec. II E 2 ff. The simplest helical waveguide that can be
defined in this coordinate system has a circular cross sec-
tion of radius rc in the NB plane and is extended infinitely
along the T direction. We refer to such a waveguide as a
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Frenet-Serret waveguide, with related content being depicted
in green throughout the paper.

2. Helicoidal frame

The helicoidal frame is another coordinate system widely
used to describe twisted waveguides. Helicoidal coordinates
(ξ1, ξ2, ξ3) are related to the Cartesian coordinates (x, y, z) via
[36]

r = (x, y, z) = (ξ1 cos(αξ3) + ξ2 sin(αξ3),

− ξ1 sin(αξ3) + ξ2 cos(αξ3), ξ3). (3)

For fixed values ξ1 and ξ2, the curve r(ξ3) is a left-handed
helix for α > 0. The basis vectors ξ1 and ξ2 of the helicoidal
frame lie in the xy plane while ξ3 points along the tangent of
the helix:

ξ1 = ∂r
∂ξ1

=
⎛
⎝ cos(αξ3)

− sin(αξ3)
0

⎞
⎠, ξ2 = ∂r

∂ξ2
=

⎛
⎝sin(αξ3)

cos(αξ3)
0

⎞
⎠,

ξ3 = ∂r
∂ξ3

=
⎛
⎝−ξ1α sin(αξ3) + ξ2α cos(αξ3)

−ξ1α cos(αξ3) − ξ2α sin(αξ3)
1

⎞
⎠. (4)

Therefore, the helicoidal coordinate system is not orthogonal.
Similar to before, we define a helicoidal waveguide as having
a circular cross section of radius rc in the ξ1ξ2 plane and
extending infinitely along ξ3. Results relating to helicoidal
waveguides are depicted in purple. Note that the helicoidal

coordinate system is especially useful if the wavefronts are
perpendicular to the z axis, which usually applies to on-axis
twisted waveguides [16,19].

3. Overfelt frame

A third coordinate system in which a helical structure is
translationally invariant along one axis is the coordinate frame
(ρ, φ, ζ ) used by Overfelt, here referred to as the Overfelt
frame [20]. It is an extension of the toroidal coordinate system
along the z axis with its coordinates being defined as

r = (x, y, z) = (ρ cos(φ), ρ sin(φ), ζ + φ/α). (5)

When fixing a particular value of ρ and ζ , r(φ) describes a
left-handed helix for α < 0. To construct a helical waveguide,
a refractive index profile n is defined in the ρζ plane (which is
identical to the ρz plane of a cylindrical coordinate system)
and extended infinitely along the φ coordinate. When this
profile is a circle of radius rc, we refer to the resulting structure
as an Overfelt waveguide, depicted in blue throughout this
paper. Note that the Overfelt system is not orthogonal:

eρ = ∂r
∂ρ

=
⎛
⎝cos(φ)

sin(φ)
0

⎞
⎠, eφ = ∂r

∂φ
= 1

α

⎛
⎝−αρ sin(φ)

αρ cos(φ)
1

⎞
⎠,

eζ = ∂r
∂ζ

=
⎛
⎝0

0
1

⎞
⎠. (6)
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FIG. 1. Helical waveguide geometries. (a) Illustration of the three waveguide types investigated in this paper. (b) In these off-axis twisted
waveguides, the core is located at a distance ρ from the twist axis. (c) Orthographic side views of the Frenet-Serret waveguide (green), the
helicoidal waveguide (purple), and the Overfelt waveguide (blue). All helices are left-handed with a pitch distance P. (d) Basis vectors of the
corresponding coordinate systems. The waveguides are defined to have a circular cross section with radius rc in the plane spanned by the two
basis vectors which are not tangential to the helical path (black curve). Red lines in (c) denote the orientation of the circular cross section. Note
that only the Frenet-Serret system is orthogonal.
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FIG. 2. Cross sections of the helical waveguides in the xy plane. Cross sections were calculated numerically for four different twist rates
(noted on the top) using an off-axis distance of ρ = 14 µm and rc = 1.8 µm. The center of the twist axis is located below the shown coordinate
range at x = y = 0. The geometry of the Frenet-Serret waveguide (green) approaches that of the helicoidal waveguide (purple) for low twist
rates and that of the Overfelt waveguide (blue) for high twist rates. Gray dashed lines show an analytical approximation of the cross section,
which is valid in the limit of weak coiling (κ̄rc � 1) and if the extent of the ellipse in the x direction is much smaller than 2πρ. Waveguide
modes were simulated for twist rates up to 20/mm.

More detailed descriptions of the coordinate systems can be
found in Sec. SIII of the Supplemental Material [30]. Their
basis vectors and the corresponding waveguides are shown in
Fig. 1.

B. Waveguide cross sections in xy plane

To compare the optical properties of the three helical
waveguides, mode simulations are conducted using a com-
mercial finite element method (FEM) solver (Propagating-
Mode module of JCMwave). JCMwave offers built-in support
for the helicoidal coordinate system, along with appropriately
defined perfectly matched layers (PMLs). Application of the
helicoidal coordinate system requires knowledge of the cross
sections of the waveguides in the xy plane, which are shown
for different twist rates in Fig. 2. In the limit of weak coiling,
i.e., if the radius of curvature of the helix is much larger
than the radius of the core (κ̄rc � 1), the waveguide can
be unrolled onto a plane, allowing the cross sections to be
described as ellipses (gray dashed lines in Fig. 2). This process
is explained in more detail in Sec. SIV of the Supplemental
Material [30]. For the reader’s convenience, the formulas for
the semiaxes rx

c and ry
c of the resulting ellipses are shown in

Table I.

TABLE I. Semimajor and semiminor axes of the elliptical xy
cross sections of the three helical waveguides in the limit of weak
coiling (κ̄rc � 1) and 2rx

c � 2πρ.

Semiaxis Frenet-Serret Helicoidal Overfelt

rx
c

√
1 + (αρ )2 rc rc αρ rc

ry
c rc rc rc

With the parameters used in this paper, the weak coiling
approximation is valid for all investigated waveguides up to
arbitrary twist rates (κ̄rc < rc/ρ < 0.13 � 1). However, at
very high twist rates, the condition 2rx

c � 2πρ needs to be
fulfilled as well since the ellipses would otherwise need to
be curved, as shown for an extreme twist rate of 100/mm
in Fig. 2. The approximation therefore works best for small
core radii. In this paper, we simulated waveguides up to twist
rates of 20/mm, where 2rx

c < 7.3 µm � 2πρ ≈ 88.0 µm,
such that the approximation of the cross sections as ellipses
is justified.

C. Transformation of effective index to laboratory frame

The results returned by the solver are the modal fields in
the xy plane at z = 0 and the effective index nhelical

eff such that
the fields F̃ in the helicoidal coordinate system satisfy [37]

F̃(ξ1, ξ2, ξ3) = eikξ3 nhelical
eff F(ξ1, ξ2). (7)

We apply a coordinate transformation to evaluate the fields in
Cartesian coordinates at z �= 0, which subsequently allows us
to display all modal quantities within the NB plane. Step-by-
step instructions are available in Sec. SV of the Supplemental
Material [30].

When transforming the fields to Cartesian coordinates, the
fields develop an additional z-dependent phase factor which
we refer to as the transformation phase (cf. Sec. SV A
1 ff. of the Supplemental Material [30]). We show that the
transformation phase only increases linearly in z under spe-
cific conditions. Most importantly, the following conditions
have to be satisfied: (1) the electric field is circularly polarized
with spin s = ±1, and (2) its spatial phase profile is flat or has
an OAM profile with an eilφ phase dependence. In this case,
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it is possible to define an effective index nlab
eff , such that the

phase of the fields measured in the laboratory frame increases
as eikz nlab

eff with

nlab
eff = nhelical

eff + (s + l )
αλ

2π
. (8)

This equation holds both for off-axis twisted waveguides and
on-axis twisted waveguides and matches with earlier deriva-
tions valid for on-axis twisted waveguides [37] and off-axis
twisted waveguides [28] that were derived based on different
approaches. Compared to these earlier derivations, we can
also treat cases where the modes feature a noncircular polar-
ization state and find that the transformation phase does not
increase linearly in z in this case. More intuitively, these phase
changes are caused by the rotation of the polarization ellipse,
following the twist of the waveguide. For example, if the short
axis of the polarization ellipse points along the x direction at
z = 0, it will point along the y direction at z = P/4. This effect
is unique to modes in twisted waveguides as the polarization
state of an eigenmode in a straight waveguide does not change
during propagation. The definition of an effective index in the
laboratory frame for such elliptically polarized modes might
therefore give the wrong impression, that they could couple to
a mode in a straight waveguide with the same effective index.
Keeping these caveats in mind, we still apply Eq. (8) to all
results for better comparability.

D. Analytical description of the effective
index of Frenet-Serret waveguides

Helical waveguides of the Frenet-Serret type have been
studied since the 1980s and a thorough theoretical model has
been developed by Alexeyev and Yavorsky based on pertur-
bation theory in 2008 [28]. The model is valid under four
conditions: (1) the waveguide is weakly coiled (rcκ̄ � 1),
(2) the fields are transverse in the Frenet-Serret frame (scalar
wave approximation), (3) the torsion τ of the helix can be
treated as the small parameter in perturbation theory, and (4)
the fields are circularly polarized and possess an OAM phase
profile with topological charge l . In this case, the propagation
constant of modes calculated within the Frenet-Serret coordi-
nate frame is changed from that of the straight waveguide by
�βFrenet = (s + l ) τ [28]. In the laboratory frame, the effec-
tive mode index can then be approximated as (see derivation
in Sec. SVI of the Supplemental Material [30])

nlab
eff = n0

√
1 + α2ρ2︸ ︷︷ ︸

Geometric increase
in path length

+ (s + l )
α

k0

(
1 − 1√

1 + α2ρ2

)
︸ ︷︷ ︸

Spin-orbit (s) and
orbit-orbit (l ) interaction

. (9)

For small twist rates αρ � 1 the result can be simplified,
showing that the splitting of modes with different total angular
momentum (TAM) increases strongly with twist rate and helix
radius:

nlab
eff = n0

√
1 + α2ρ2 + (s + l )

ρ2α3λ

4π
for αρ � 1. (10)

Their result shows that twisting a waveguide lifts the de-
generacy between modes with the same magnitude of TAM
but different signs. In straight step-index fibers, these modes

are degenerate and therefore the spin and OAM state is not
conserved during propagation (minor imperfections in any
real-world waveguide lead to a coupling of the degenerate
modes).

The birefringence caused by the helical path can also be
derived on a more fundamental basis, using the semigeometri-
cal optics approximation [5,7]. Using this approximation, the
motion of a wave packet on scales much larger than the wave-
length is influenced by spin-orbit and orbit-orbit interactions
of light [8,11] (for more details see Secs. SVI A and SIX of
the Supplemental Material [30]). These interactions result in
the modes of helical waveguides acquiring a spin- and OAM-
dependent Berry phase [5,8,38], given by the observation that
light traces out a closed loop in k space as it propagates
through one turn of the helix. The solid angle � that this
loop encloses determines the Berry phase as �B = (s + l )�
and results in the same birefringence term stated in Eq. (9)
for the laboratory frame. Notably, the observation of circular
birefringence in helically coiled fibers constitutes the first
experimental confirmation of Michael Berry’s theoretically
predicted geometrical phase factor [38–40].

E. Simulation results for optical properties
of helical waveguide geometries

1. Parameters of multimode waveguides

With these preparations, we start analyzing the twist-
rate-dependent optical properties of multimode variants of
the three waveguides. Based on a recent realization of 3D-
nanoprinted helical waveguides [33] and related work on
3D-nanoprinted hollow-core waveguides [41–43], realistic
parameters for this fabrication technique were chosen. In par-
ticular, rc = 1.8 µm, λ = 770 nm, and a refractive index of
the core of nco = 1.5423 with a cladding made out of air
(V number: 17.25, number of guided modes: V 2/2 ≈ 149).
These values correspond to a commonly used photoresist at
this wavelength (IP-Dip, Nanoscribe GmbH).

2. Fundamental modes in multimode waveguides

The optical properties of the twisted multimode waveg-
uides are very similar across a large range of investigated
twist rates (5/mm–20/mm) since the cross sections of the
waveguides are so wide that the specific shape plays a minor
role. The two fundamental modes are circularly polarized with
the wavefronts lying in the NB plane as shown in Figs. S13
and S14 of the Supplemental Material [30].

The real part of the effective index and the circular bire-
fringence (difference in the real part of the effective index
between the LCP and RCP mode, evaluated in the laboratory
frame) match very well with the analytical model of Eq. (9)
for all waveguide types. Off-axis twisting has two immediate
consequences: (1) the effective index of the mode increases
due to the longer path that the light is traveling along the helix
to reach a certain distance z [first term in Eq. (9) and Fig. 3(a)]
and (2) a splitting occurs between modes with different TAM
[second term in Eq. (9) and Fig. 3(b)]. Compared to typi-
cal values of birefringence found in polarization-maintaining
fibers (10−3-10−4), much higher birefringence on the order of
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FIG. 3. Optical properties of multimode helical waveguides (rc = 1.8 µm). (a) Twist rate dependence of the real part of the effective mode
index of the two fundamental modes calculated in the laboratory frame. A darker color shade denotes the LCP mode, a lighter shade the RCP
mode. (b) Circular birefringence BC (i.e., difference between the effective index of the two lowest-order modes). Note that for low twist rates
(< 5/mm) the modes of the Overfelt waveguide become elliptically polarized. Red dashed lines in (a) and (b) represent an analytical prediction
for the Frenet-Serret waveguide [Eq. (9)].

10−2 can be reached at the highest investigated twist rate of
20/mm (αρ = 1.8).

Since the cross section of the Overfelt waveguide be-
comes infinitely narrow along the B direction for α → 0
(see Fig. S14 of the Supplemental Material [30]), its optical
properties deviate from those of the other two waveguides
for twist rates below 5/mm. Due to the narrowing of the
cross section, the two fundamental modes change from being
circularly polarized to linearly polarized at low twist rates,
resulting in a larger (linear) birefringence. As the modes are
more and more localized in air, the effective index approaches
1 for α → 0.

3. OAM modes in multimode waveguides

Next, we investigated the four OAM modes with |l| = 6
in the multimode Frenet-Serret waveguide. The modes are
organized in two groups, one originating from the EH5,1 mode
pair of the untwisted waveguide with a TAM of ±5 and the
other one from the HE7,1 mode pair with a TAM of ±7 [44].
As the twist rate rises, the effective index of the modes overall
increases with the same geometrical factor as the fundamental
modes [first term in Eq. (9) and Fig. 4(a)]. On the other hand,
the birefringence within each mode pair is 5 or 7 times larger
than for the fundamental modes, respectively, as expected
from the second term in Eq. (9). This larger splitting for OAM
modes is a consequence of the photonic orbit-orbit interac-
tion term being l times as large as the spin-orbit interaction
term. Off-axis twisting therefore lifts the degeneracy of OAM
modes with the same TAM, resulting in OAM birefringence.
This effect can be used to create OAM-maintaining fibers.
Furthermore, twisting can induce coupling between modes,
which enables twist-based mode converters [28]. While not
explored further in this paper, such a coupling can be observed
for the mode pair with a TAM of ±5 at a twist rate of 2.7/mm,
explaining the discontinuity in the green curves in Figs. 4(a)
and 4(b).

4. Fundamental modes in single-mode waveguides

To study single-mode variants of the three waveguide
types, the core radius was reduced to rc = 0.2 µm, resulting in

a V number of V = 1.92. Contrary to the multimode case, the
optical properties of these waveguides differ strongly between
each other. As the cross section is much narrower, any change
in the cross section from a circular profile affects the polar-
ization of the mode as shown in Fig. 5(d). The resulting mix
of linear and circular birefringence in the fundamental modes
of the helicoidal and Overfelt waveguide can be much larger
and of opposite sign than that of the Frenet-Serret waveguide
[Fig. 5(b)]. As the cross section of the Frenet-Serret waveg-
uide is circular in the NB plane at all twist rates, its modes
remain circularly polarized and their effective indices are
accurately described by Eq. (9). Another aspect to consider
is that the fraction of power located in air is also dependent
on the shape of the cross section. For example, the fraction
of power in air is increased at small twist rates (αρ � 1) for
the Overfelt waveguide and at large twist rates (αρ > 1) for
the helicoidal waveguide, which results in a reduction of the
effective index (Fig. 5(a) and Fig. S11 of the Supplemental
Material [30]). As expected from the analytical formula for
the cross sections of the waveguides (Table I), the properties
of the Frenet-Serret waveguide converge with those of the
helicoidal waveguide for low twist rates and with those of the
Overfelt waveguide for high twist rates. The propagation loss
of the waveguides will be discussed below in Sec. II G.

F. Effects of bending on modes in helical waveguides

1. Fundamental modes in multimode waveguides

Next, we studied the spatial properties of the modes in
more detail with an overview of all modes available in Sec. SX
of the Supplemental Material [30]. Regarding the intensity
distributions of the fundamental modes in the multimode
waveguides, twisting has two effects: (1) the mode profile
becomes narrower and (2) it shifts away from the twist axis.
These effects are shown in Fig. 6(b) for the Frenet-Serret
waveguide and in Fig. S14 for the helicoidal and Overfelt
waveguides.

Both effects are well-known from fiber bends in a two-
dimensional plane as the radius of curvature decreases [45].
If the bent waveguide is approximated as a circle with a
radius of curvature R, it can be mapped to a straight waveg-

165301-6



IMPACT OF COORDINATE FRAMES ON MODE FORMATION … PHYSICAL REVIEW B 109, 165301 (2024)

φ

0 2 4 6
1.40

1.45

1.50

1.55
R

e(
nla

b )
ef

f

Lab frame

nPolymer

EH5,1

HE7,1

l=+6 (RCP)
l=-6 (LCP)

l=+6 (LCP)
l=-6 (RCP)

(c)
0 2 4 6

0

4

8

B O
AM

 [1
0-3

]

Twist rate [#/mm]

ΔTAM = 14
ΔTAM = 10
Analytical model

Twist rate [#/mm]
0 π/2 π 3π/2 2π

0.8

0.9

1.0

<S
T>

φ

(a) (b)

l=+6 (LCP)
l=-6 (RCP)

(d)

1

0

<S
T>

π

-π

Ph
as

e

l=
+6

 (L
C

P)

1 μm

l=
-6

 (R
C

P)B
N

FIG. 4. OAM modes in Frenet-Serret waveguide geometry (rc = 1.8 µm). (a) Twist-rate dependence of the real part of the effective mode
index in the laboratory frame for the four modes with |l| = 6. The two modes with total angular momentum (TAM) of ±5 (green) stem from the
even and odd EH5,1 modes of the untwisted waveguide, while the two modes with TAM of ±7 (orange) originate in the HE7,1 modes. (b) OAM
birefringence between these mode pairs. Note, that the other pairings (+5/ − 7 and −7/ + 5) are already nondegenerate in the untwisted case.
The simulated splitting matches well with the analytical prediction [red dashed line, Eq. (9)]. (c), (d) Longitudinal component of the Poynting
vector of the modes with TAM of ±7 for a twist rate of 5/mm. Evaluating the azimuthal distribution of the Poynting vector along a selected
circle shows an increase in the intensity at the side of the waveguide that points towards the central twist axis. This asymmetry is different for
the two modes, which might be a result of the photonic orbit-orbit interaction. (d) additionally displays the phase of the B component of the
electric field with the cross section of the waveguides shown as gray line.

uide using a conformal transformation [46]. This mapping
results in a modified refractive index profile that increases
approximately linear (for R � rc) across the waveguide
and cladding: n ≈ n0 (1 + x/R), where x = 0 corresponds
to the center of the waveguide and n0 is the refractive in-
dex profile of the waveguide before bending [47]. More
intuitively, as the mode has to propagate a larger dis-
tance on the outside of the bend than on the inside, the
mapped refractive index increases away from the center of
curvature. The reason for the observed shift of the modal
patterns towards the region of higher index can be seen when
noting that the scalar wave equation is equivalent to the
time-independent Schrödinger equation [48] for a potential
equal to −n2. Consequently, the mode moves to larger radii
to minimize its energy. For helical waveguides, the radius of
curvature of the bend is given by R = 1/κ̄ , which decreases
with increasing twist rate.

2. OAM modes in multimode waveguides

While twisting strongly impacts the effective index of
OAM modes, its impact on the mode profile is much weaker
than for the fundamental mode. Contrary to the fundamental
modes, the center of the modes with |l| = 6 does not shift
away from the twist axis as shown in Fig. 4(d). This is to
be expected since the effect of bending on the mode profile
is known to decline as the mode order increases [45,49].

What is typically observed for OAM modes in bent fibers is
that the angular intensity distribution is slightly nonuniform
with a peak on the side facing away from the center of cur-
vature [45,49,50]. However, the OAM modes in the twisted
Frenet-Serret waveguide peak on the side facing towards the
twist axis as shown in Fig. 4(c). This asymmetry must, there-
fore, be purely related to the twist.

3. Fundamental modes in single-mode waveguides

The intensity distribution of the modes in the single-
mode Frenet-Serret waveguide remains virtually unaffected
by twisting due to the confinement provided by the high index
contrast as shown in Fig. 7(a) and Fig. S16 of the Supplemen-
tal Material [30]. For systems with a lower index contrast, a
shift of the center of the mode would be expected [45], similar
to what has been discussed above for the multimode system.

G. Loss in helical waveguides

Propagation loss in off-axis twisted waveguides is different
from the loss of the corresponding untwisted waveguide for
two reasons: (1) the geometric path length to reach a certain
axial distance z is increased because the light is traveling
along a helical trajectory and (2) additional loss arises from
bending. The geometric factor effectively increases the intrin-
sic loss γ0 of the untwisted waveguide, which might be present
due to surface roughness or material absorption. We denote
the associated attenuation coefficient for the twisted waveg-
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color shade denotes the LCP mode, a lighter shade the RCP mode.
Red dashed lines in (a)–(c) represent an analytical prediction for the
Frenet-Serret waveguide [Eqs. (9) and (12)]. (d) Spatial distribution
of the transverse (NB) component of the electric field of the LCP
mode at three different twist rates. Polarization ellipses show that the
field of the Frenet-Serret waveguide (green box) remains circularly
polarized at all twist rates. Helicoidal waveguide (purple box) and
Overfelt waveguide (blue box) feature elliptically polarized eigen-
modes at high or low twist rates, respectively. The cross section of
the waveguides is highlighted as yellow line. Note that the modes of
the Overfelt waveguide could not be calculated for twist rates below
5/mm due to very high loss and low confinement in the core [blue
dots in (a)–(c) and blank field in (d)].

uide as γgeo [the attenuation coefficient is generally defined via
the relation I (z) = I (0) exp(−γ z), where I denotes the optical
power]:

γgeo = γ0

√
P2 + (2πρ)2

P
= γ0

√
1 + α2ρ2. (11)

Bend loss of optical fibers has been studied extensively for
situations where the weak guidance approximation is satisfied
(� � 1), the modal field inside the twisted core is the same as
in the straight fiber, and the radius of curvature is much larger
than the radius of the core (R � rc) [51,52]. More advanced
models exist if one or more of these assumptions are not
satisfied [45,53,54]. Here, we use the model from Ref. [51]
that is valid when all three assumptions are met and include a
correction factor taking into account that the bends do not lie
within a flat plane but occur along a helical path. In this case,
the attenuation coefficient γbend is given by [29]

γbend =
√

π

2rc

V 2
√

W

U 2

√
rc

R
e− 4

3
R
rc

W 3�

V 2

×
(

1 − 1

2
(αρ)2 + 3

32
(αρ)4

)
︸ ︷︷ ︸

correction for helical bend

, (12)

where V = 2π (n2
co − n2

cl )rc/λ is the V number, � = (n2
co −

n2
cl )/(2n2

co) = 0.29 is the refractive index contrast, and R =
1/κ̄ is the radius of curvature of the helix. U (V ) and W (V )
are numerical solutions to a transcendental equation charac-
terizing the mode and can be obtained from Ref. [51]. For the
single-mode Frenet-Serret waveguide, one has V = 1.92, U =
1.50, and W = 1.20 and for its multimode version V = 17.25,
U = 2.27, and W = 17.10. Note that the mode profile of the
multimode waveguide changes as the twist rate increases, and
thus Eq. (12) is only approximately valid.

The resulting bend loss γbend is shown for the Frenet-Serret
waveguide in Fig. 5(c), matching well with the simulated
data. Interestingly, bending strongly affects the loss of the
single-mode waveguide as the twist rate increases while it
remains negligibly low for the multimode variant (below
2 × 10−24dB/mm at the highest investigated twist rate). As
the simulated loss of the multimode waveguides is below the
noise level of the solver, it is not shown. This difference in
bend loss can be understood based on the conformal transfor-
mation method described above. Since the mapped refractive
index profile increases away from the center of curvature, at
some distance from the waveguide—the caustic boundary—
the mapped index of the cladding is higher than that of the
core mode and the field becomes radiative due to the absence
of total internal reflection [47]. As the field of the multimode
waveguide remains well confined within the core, its ampli-
tude at the caustic boundary is very low. In the single-mode
waveguide on the other hand, a much larger fraction of the
field is present inside the cladding, thus explaining the large
difference in bend loss.

The geometric contribution to the loss γgeo was not ana-
lyzed in this paper because the material of the waveguide was
assumed to be lossless (γ0 = 0). Preliminary simulations with
lossy materials showed that the total loss is well described as
the sum γgeo + γbend in this case.

H. Twist-induced effects on spatial mode properties

1. Spin- and OAM-dependent effects

Apart from the large shift of the center of the modes
induced by bending, we also observe several spin- and OAM-
dependent splittings in the spatial properties of the modes,
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of the LCP mode at four different twist rates. At increasing twist
rate, the waveguide becomes bent such that the center of the mode
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potentially a consequence of the photonic spin Hall effect. (c) At a
high twist rate of 20/mm, the Poynting vector develops a transverse
component pointing in the negative B direction for both LCP and
RCP modes. The spin vector of the electric field sE also develops a
transverse component which points in opposite directions for the two
polarizations. The magnitude of sE is equal to the third component
of the Stokes vector S3.

summarized here for the Frenet-Serret waveguide: (1) For
the multimode waveguide, the center of the LCP and RCP
modes (evaluated on the T component of the Poynting vector)
are split along the N direction as shown in Fig. 6(b). The
splitting increases with twist rate and reaches 30 nm (about
1% of the core diameter) for a twist rate of 20/mm. (2) In the
single-mode case, such a splitting occurs for the transverse
component of the Poynting vector SNB while no splitting
can be observed in its longitudinal component. The splitting
reaches 50 nm (12.5% of the core diameter) for a twist rate of
20/mm as shown in Fig. 7(a). (3) For the OAM modes in the
multimode variant, we observe that the difference between the
intensity on the top and bottom sides of the vortex depends on
the sign of the total angular momentum. The bottom and top

refer to the side facing towards and away from the twist axis,
respectively, as shown in Fig. 4(c) and 4(d).

As a result, we hypothesize that these spin- and OAM-
dependent splittings arise due to an interplay between the
confinement provided by the waveguiding structure, and the
photonic spin Hall [7,9] and photonic orbital Hall [8,11] ef-
fects. When light propagates along a curved trajectory which
changes on length scales much larger than the wavelength, its
movement can be characterized by equations of motion for
the center of gravity of the mode. These equations contain
a spin-orbit [5,7] and an orbit-orbit [8] interaction term that
results in spatial splittings between modes with distinct total
angular momenta as described in more detail in Sec. SIX of
the Supplemental Material [30]. In fact, these photonic spin
Hall and orbital Hall effects are just another consequence of
the spin-orbit and orbit-orbit interaction of light [5], which
so accurately describes the circular birefringence of the he-
lical waveguides (cf. Sec. II D). Therefore, it is likely that
these effects are at the origin of the observed spatial splitting,
although they do not apply directly to modes confined in
waveguides.

2. Tansverse components of the Poynting and spin vectors

At high twist rates (> 10/mm), the fundamental modes
of all investigated waveguide types (single-mode and multi-
mode) develop an increasingly large transverse component of
the Poynting vector SNB, shown exemplarily for the Frenet-
Serret waveguide in Figs. 6(c) and 7(a). The direction of this
additional component is along the negative B direction regard-
less of polarization. Similarly, the spin vector sE of the electric
field contains a transverse component along the B direction
for high twist rates, pointing in opposite directions for the two
spin states. The evolution of these properties at different twist
rates can be found for all waveguide types in Sec. SX of the
Supplemental Material [30]. Transverse spin is well-known to
occur in evanescent waves where its direction is independent
of polarization and led to applications involving spin-
momentum locking [55–57]. The origin of transverse spin and
momentum in helical waveguides remains to be studied.

3. Elliptically polarized eigenmodes and superchiral
fields in helicoidal waveguides

Lastly, we want to point out an effect that becomes ap-
parent when the cross section of the twisted single-mode
waveguide is elliptical in the NB plane as is the case for the
helicoidal waveguide. As discussed, the interplay of the linear
birefringence of the core and the circular birefringence caused
by the twist results in elliptically polarized eigenmodes. Simi-
lar to a linearly polarized mode, the modal fields are enhanced
in the direction of the long axis of the polarization ellipse.
These locations differ for the electric and magnetic field as
shown in Fig. 7(b). In this example, the magnetic field is
enhanced at the top and bottom surface of the core, while
the electric field is reduced. Combined with the fact that the
fields are still circularly polarized to a sufficient degree, such a
configuration is ideal for creating superchiral fields. We quan-
tify the superchirality in terms of the factor gfield (defined and
explained in Sec. SVIII of the Supplemental Material [30]),
with |gfield| > n indicating a superchiral field. In brief, gfield
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is the enhancement factor of the molecular g-factor, which
is typically measured in chiral sensing experiments. Here,
we found an enhancement factor of ≈1.4 on the surface of
the waveguide. Values of gfield for other twist rates can be
found in Fig. S12 of the Supplemental Material [30]. We note
that this value is lower than in the pioneering experiment
for superchiral fields, where an enhancement of around 11

was measured [31,32]. However, our enhancement occurs in
a region of space where the field has an appreciable intensity
while the pioneering experiment was carried out in the node of
a standing wave where the intensity is low. Further research is
required to optimize the superchirality in helical waveguides
(e.g., by increasing both the twist rate and the linear birefrin-
gence), and to find a method to place molecules precisely in
the regions of superchiral field.

III. DISCUSSION

The numerical results for the effective index of all three
multimode helical waveguides are in high agreement with the
analytical prediction, underpinning the fact that the cause of
the circular birefringence and OAM birefringence is a purely
geometrical effect inherent to the helical path. As such, the
phase difference between modes with different TAM δnlab

eff k0z
does not depend on wavelength, material, and core size [cf.
Eq. (9)]. Helical waveguides can therefore find applications
as broadband spin- and OAM-preserving waveguides. More
generally, any waveguide with nonzero torsion at each point of
its trajectory will be able to preserve the angular momentum
state of the light.

A typical example of a Frenet-Serret waveguide is a piece
of fiber helically coiled around a cylinder, as it used in the
inital experiments on helical waveguides [1,3,14,39]. Heli-
cal waveguides can also be created by twisting a fiber with
an off-axis core [2,17]. Such fibers are fabricated by either
spinning the preform while drawing the fiber or in a thermal
post-processing step [36]. In this situation, it is conceivable
that both helicoidal or Frenet-Serret type waveguides can, in
principle, be created depending on the fabrication conditions.
Since both types converge to the same shape at low twist
rates, a difference would only be observable at high twist rates
(αρ � 1), which have not yet been experimentally realized
(see Table SI of the Supplemental Material [30]). Finally, the
Overfelt waveguide might be relevant for situations where a
helical waveguide is constructed by extending a toroidal shape
in the z direction or to describe Frenet-Serret waveguides at
large twist rates.

All waveguides created with planar fabrication techniques,
on the other hand, necessarily have zero torsion and can
therefore not exhibit circular or OAM birefringence based on
geometric effects. To realize complex 3D waveguides directly
on-chip, 3D nanoprinting via two-photon-polymerization has
emerged over the last decade as a promising alternative to
planar fabrication techniques [33,58,59]. This technique can
be used to realize all three helical waveguide types discussed
in this paper and provides the ability to freely choose the cross
section within the NB plane. While the twist rate achievable
in fibers is inherently limited by the properties of the glass,
3D nanoprinting can potentially realize higher twist rates with
pitch distances down to the core diameter. Here, we explored
waveguides with pitch distances as low as 14 times the core
diameter, but even lower pitch distances seem theoretically
feasible given the low bend loss in the multimode versions
of the waveguides. Preliminary experiments showed that twist
rates of 10/mm can be reached experimentally, corresponding
to αρ = 0.9 while a value of αρ ≈ 0.5 was reported for a
different design in Ref. [33]. Another technique that allows
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realizing helical waveguides on a chip is direct laser writing,
where a small refractive index modification is created in glass
by scanning of a focused femtosecond laser beam [60–62].
However, precise control over the cross section of the waveg-
uide proved to be challenging due to aberrations of the focal
spot inside the glass that need to be compensated [63,64].

The study of the polarization properties of modes in helical
waveguides revealed that the shape of the cross section in
the NB plane strongly impacts their optical properties if the
waveguides are single mode. Any deviation from a circular
cross section can induce linear birefringence, thus creating
elliptically polarized eigenmodes. The simple analytical for-
mula by Alexeyev and Yavorsky [28] is therefore not sufficient
to describe the effective index in this specific case. Instead,
a recently developed theoretical model for off-axis twisted
waveguides with elliptical cross sections in the Frenet-Serret
frame [35] could be applied to predict the birefringence and
polarization of the helicoidal and Overfelt waveguide. This
would require prior knowledge of the modes of an untwisted
waveguide with the same elliptical cross section. Additionally,
a recent perturbative model studied the evolution of polariza-
tion in a helical waveguide when excited by the fundamental
mode of a straight waveguide, which corresponds to the typi-
cal situation in experiments [65].

Elliptically polarized eigenmodes also occur in on-axis
twisted waveguides with an elliptical cross section and were
applied in creating ultranarrow (sub-megahertz) spectral dips
in stimulated Brillouin scattering [66]. The authors used that
the polarization state of elliptically polarized modes depends
on the wavelength, which is another intriguing effect that is
unique to twisted waveguides.

IV. CONCLUSION

Using comprehensive theoretical and numerical analysis,
we revealed the differences between three common helical
waveguide geometries, which naturally result from the use
of the Frenet-Serret, helicoidal, or Overfelt frame. While the
Frenet-Serret waveguide maintains a circular cross section in
the NB plane at all twist rates, the helicoidal and Overfelt
waveguides can exhibit elliptical cross sections, leading to
noncircular polarization if the core size is small. Such ellip-
tically polarized modes were found to generate superchiral
fields on the surface of the waveguides. Conversely, the ef-
fective index of all circularly polarized waveguide modes can
be accurately described by an analytical formula by Alexeyev
and Yavorsky [28] [Eq. (9)] even if (1) the index contrast is
large (n = 1.54 to air, � = 0.29), (2) the mode is not entirely
transversely polarized, (3) the mode profile is different from
that of the untwisted waveguide, and (4) the twist rate ap-

proaches relatively high values. Propagation loss was found
to consist of bend loss [29] and intrinsic loss.

Additionally, we derived a transformation of the effective
index from the helicoidal to the laboratory frame applicable
to both on- and off-axis twisted waveguides up to arbitrary
twist rates. We note that such a transformation should not
be performed if the modes are elliptically polarized. Lastly,
the study explored spin- and OAM-dependent splittings in the
spatial intensity distribution of the modes, suggesting links to
the photonic spin Hall and orbital Hall effects.

Traditionally, helical waveguides were realized by twisting
glass fibers, limiting the achievable twist rates and lack-
ing precise control over waveguide cross section. However,
emerging fabrication techniques such as 3D nanoprinting
[33,41,43] or direct laser writing hold promise for overcoming
these limitations and enabling further chip-integrated appli-
cations of helical waveguides, including chiral spectroscopy,
integrated Brillouin lasing for ultrahigh-resolution optical
sensing [66] and OAM-maintaining transport of optical sig-
nals. On a fundamental level, exploring ultrahigh twist rates
with pitch distances close to the diameter of the off-axis core
may offer insights into complex physical effects such as strong
spin-orbit and orbit-orbit interactions.
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APPENDIX: NUMERICAL SIMULATIONS

All waveguides were simulated in the helicoidal coordinate
system using a commercial FEM solver (PropagatingMode
module of JCMwave). The waveguide core is surrounded by
air, followed by a PML to absorb outgoing power resulting
from bending of the waveguide. The helicoidal coordinate
system is natively supported by the solver, including an ap-
propriate definition of the PML. Convergence of the solver in
terms of mesh size in core and air regions, and the distance
between the waveguide and PML has been checked.
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