
PHYSICAL REVIEW B 109, 165204 (2024)

Role of localized electronic states in high-order harmonic generation from doped semiconductors
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We investigate high-order harmonic generation (HHG) in sparsely doped semiconductors. The doping in
semiconductors breaks the periodic translation invariance in space and introduces localized electronic states
(LESs), which leads to two additional electron transition channels, namely, the nonvertical transitions and
transitions from LESs. By involving these channels, one can intuitively understand the enhancement of the
harmonic yield and the extension of the cutoff energy found in previous works. Moreover, the transition
from LESs is space localized and shows self-probed behavior under strong laser fields, encoding the structure
information into the HHG. To demonstrate this, we analyze the HHG process in a doped semiconductor with a
pair of impurities, where the recombination process of the electron from LESs can be interpreted as a two-center
interference. This imprints the internuclear separation between the impurities into the minima of the harmonic
spectra. Our work reveals the underlying physical mechanisms in HHG from doped semiconductors and suggests
all-optical metrology for structural and dynamic information of LESs.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a fascinating
strong-field phenomenon in laser-matter interaction which can
be used to generate coherent extreme-ultraviolet light sources
[1,2] and builds the foundation of attosecond science [3–6].
In recent years, the observation of HHG from solids [7] has
opened up new avenues for probing the ultrafast dynamics
in condensed matter. By studying the mechanism of HHG
[8–15], it is now possible to detect the optoelectronic prop-
erties of semiconductors, such as the band structure [16–18],
transition dipole moment [19–22], and spatial arrangement of
atoms [23–25].

Doped semiconductors form the basis of most modern
semiconductor devices and are of particular interest since
impurities and defects are inevitable in actual crystals [26].
Recently, HHG from a doped semiconductor was also in-
vestigated, and an enhanced harmonic yield by 1–3 orders
of magnitude was shown with a periodic doped semicon-
ductor [27]. Subsequent research focused on the harmonic
yields [28–30], revealing the effect of doping on the har-
monic enhancement and cutoff extension [31–36]. Besides the
control of HHG, it is promising to extend well-established
techniques from strong-field physics in gases to doped semi-
conductors [37,38]. This allows us to investigate the doping
effect at the electron scale and thus contribute to the devel-
opment of the next generation of optoelectronic devices. To
this end, one needs to accurately understand the effect of

*liangl@hust.edu.cn
†pengfeilan@hust.edu.cn

doping on semiconductor properties and their role in HHG
processes. According to the standard description of doped
semiconductors [26], a trace amount of doping can signifi-
cantly modulate the properties of semiconductors. The doping
breaks the period translation invariance in space, leading to
the emergence of localized electronic states (LESs). Interac-
tion between the LESs and Bloch electrons determines the
properties of the doped semiconductors and thus is crucial
for understanding the HHG process. However, previous stud-
ies mainly focused on the influence of doping on the band
structure and electron population. An analytical theoretical
framework for understanding the underlying physical mech-
anisms in HHG from doped semiconductors remains to be
elucidated.

In this work, we provide an analytical theoretical frame-
work for HHG in sparsely doped semiconductors. Our theory
indicates that doping introduces the LESs and perturbs the
Bloch states in intrinsic semiconductors, which affects the
transition process among these states. Beyond the vertical
transitions (VTs) in the present three-step model [39,40], tran-
sitions to states with various crystal momenta are introduced,
i.e., the nonvertical transition (NT) and the transition from
LESs. These additional transition mechanisms allow more
electrons to excite into the conduction bands (CBs) and par-
ticipate in the HHG process. This leads to the enhancement of
the harmonics.

Furthermore, the LES is distributed at the location of the
impurities, and the transition from LESs can directly link
to the spatial arrangement of the impurities. To demonstrate
this, we further investigate the HHG process in a donor-doped
semiconductor with a pair of impurities. We connect the har-
monic spectra and the LES by analyzing the transition dipole

2469-9950/2024/109(16)/165204(10) 165204-1 ©2024 American Physical Society

https://orcid.org/0000-0002-0463-0961
https://orcid.org/0000-0001-6993-8986
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.165204&domain=pdf&date_stamp=2024-04-15
https://doi.org/10.1103/PhysRevB.109.165204


ZHANG, HE, LI, CUI, QIAO, LAN, AND LU PHYSICAL REVIEW B 109, 165204 (2024)

moment (TDM). Our analysis indicates a two-center inter-
ference phenomenon stemming from the transition from the
LES. This two-center interference has the potential to extract
the internuclear separation between the impurities from the
positions of the minima in harmonic spectra. Our work paves
the way for studying impurities in materials using the avail-
able techniques from strong-field physics and offers insight
into the HHG process in doped semiconductors.

II. SOLVING THE TIME-DEPENDENT
SCHRÖDINGER EQUATION

In this work, we numerically simulate the HHG in doped
semiconductors by solving the time-dependent Schrödinger
equation (TDSE). In the length gauge, the time-dependent
Hamiltonian is

Ĥ (t ) = Ĥ0 + r̂ · F(t ). (1)

Unless otherwise indicated, atomic units are used throughout.
Here F(t ) is the electric field of the laser, Ĥ0 = p̂2/2 + U (r)
is the field-free Hamiltonian, and p̂ is the momentum operator.
The potential U (r) in doped semiconductors is

U (r) = U0(r) + U ′(r). (2)

Here U0(r) is the periodic potential of the perfect crystal, and
U ′(r) is the additional potential introduced by doped impuri-
ties. We solve the eigenvalue equation of Ĥ0,

Ĥ0|φ j〉 = Ej |φ j〉, (3)

to obtain the eigenstates |φ j〉 and the eigenenergies Ej . |φ0〉
stands for the LES, and E0 is the energy of the LES. The finite-
difference method is used in real space; the nonzero matrix
elements Hl,l ′ of the operator Ĥ0 are

Hl,l = 1

(dx)2
+ 1

(dy)2
+ Ul ,

Hl,l−Ny = Hl,l+Ny = − 1

2(dx)2
,

Hl,l−1 = Hl,l+1 = − 1

2(dy)2
. (4)

Here dx and dy are the grid spacings, l = (nx − 1)Ny + ny
is the number of two-dimensional grid points, and nx (ny) is
the number of grid points in the x (y) direction. Ny is the total
number of grid points in the y direction. With the eigenstates
|φ j〉 being the initial states, the TDSE

Ĥ (t )|�(t )〉 = i
∂

∂t
|�(t )〉 (5)

is solved using the split-operator method [41] to obtain the
time evolution of the system. To avoid unphysical reflections
of the wave function at the edges of the grid, an absorbing
boundary is used. The laser-induced current can be calculated
as

J(t ) = − d

dt
〈�(t )|r̂|�(t )〉. (6)

The harmonic spectrum is obtained by calculating the Fourier
transform of the laser-induced current

I (ω) ∝ |FT [J(t )]|2. (7)

III. ROLE OF LOCALIZED ELECTRONIC STATES

According to the Noether theorems [42], an invari-
ance corresponds to a conservation law. Especially, periodic
translation invariance corresponds to the conservation of mo-
mentum. For that reason, in a perfect crystal with periodic
translation invariance, the transition of the electrons can occur
only between states with the same crystal momentum. But
in a doped semiconductor, the doped impurities break the
periodic translation invariance, and the crystal momentum is
no longer conserved in the transition process. The goal of this
section is to establish an analytical theoretical framework and
demonstrate the underlying physical mechanisms for the HHG
process in doped semiconductors.

We start with Eqs. (1), (2), and (5). In an intrinsic semicon-
ductor, the additional potential U ′(r) = 0, and the eigenstates
of Ĥ0 satisfy the Bloch theorem and Born–von Kármán peri-
odic boundary conditions [43], so �(t ) can be written as

|�(t )〉 =
∑
n,k

an,k(t )|φn,k〉, (8)

〈r|φn,k〉 = un,k(r) eik·r. (9)

Here |φn,k〉 are the Bloch states and eigenstates of Ĥ0. un,k(r)
are the periodic part of the Bloch states, an,k(t ) are the prob-
ability amplitude, n is the band index, and k is the crystal
momentum.

In a doped semiconductor, the additional potential U ′(r) is
introduced. Consider the case of sparsely doped semiconduc-
tors; the additional potential is localized and distributes only
near the impurities. So U ′(r) can be treated as a perturbation.
By using perturbation theory, the eigenstates of Ĥ0 can be
written as

|φ′
n,k〉 = |φn,k〉 + |�φn,k〉, (10)

|�φn,k〉 =
∑
n1,k1

Cn,k
n1,k1

|φn1,k1〉. (11)

Here Cn,k
n1,k1

can be obtained using the time-independent degen-
erate perturbation theory [44]. Note that the normalization is
performed so that 〈φ′

n,k|φ′
n,k〉 = 1. In addition, the LES |φ0〉

is introduced in the doped semiconductor. So �(t ) can be
written as

|�(t )〉 = a0(t )|φ0〉 +
∑
n,k

an,k(t )|φ′
n,k〉. (12)

We defined an,k0 (t ) = bn,k0 (t )e−i
∫ t

t0
En(k(τ ))dτ and a0(t ) =

b0(t )e−i
∫ t

t0
E0dτ . The transformation k = k0 + A(t ) is used,

k0 is the crystal momentum at initial time t0, and A(t ) =
− ∫ t

t0
F(τ )dτ is the vector potential of the laser field. We insert

Eq. (12) into the TDSE [Eq. (5)], 〈φ′
m,k′ | is multiplied by the

equation, and the orthonormality relationship is used; then we
obtain
∂bm,k0

′ (t )

∂t
= −i

∑
n,k

bn,k0 (t )F(t ) · d ′
mn(k′, k)ei

∫ t
t0

Em (k′ )−En(k)dτ

− ib0(t )F(t ) · dm0(k′) ei
∫ t

t0
Em (k′ )−E0dτ

. (13)

Here En(k) is the band structure, and the integration in the
exponentiation is the dynamical phase accumulated during the
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evolution. Equation (13) elucidates the transition process of
the electrons among the states in the energy bands and the
LES.

(1) F(t ) · d ′
mn(k′, k) in the first row of Eq. (13) stands for

the transition between bands m and n. The TDM d ′
mn(k′, k) is

defined as

d ′
mn(k′, k) = 〈φ′

m,k′ |r|φ′
n,k〉 + iδk′kδmn∇k

= 〈φm,k′ |r|φn,k〉 + iδk′kδmn∇k

+ 〈�φm,k′ |r|φn,k〉 + 〈φm,k′ |r|�φn,k〉
+ 〈�φm,k′ |r|�φn,k〉. (14)

Using Eqs. (9) and (11) and the relation

〈φm,k′ |r|φn,k〉 = −iδk′kδmn∇k + iδk′k

∫
cell

u∗
mk′ (r)∇kunk(r)dr,

(15)

Eq. (14) becomes

d ′
mn(k′, k) = δk′kdmn(k′) + �dmn(k′, k). (16)

Here dmn(k′) = i
∫

cell u∗
mk′ (r)∇kunk(r)dr is the common TDM.

δk′k tells us the transition can happen only between the states
with the same crystal momentum. So we call F(t ) · dmn(k′)
the VT term.

(2) Using Eq. (11) and the definition of the common TDM
dmn(k′), �dmn(k′, k) can be written as the linear combination
of dmn(k′),

�dmn(k′, k) =
∑

n1

(
Cm,k′

n1,k

)∗
dn1n(k)

+
∑

n2

Cn,k
n2,k

′dmn2 (k′)

+
∑

n1n2k1

(
Cm,k′

n1,k1

)∗
Cn,k

n2,k1
dn1n2 (k1), (17)

which is the result of the lack of periodic translation in-
variance. Equation (17) indicates the additional transition
channels between various k and k′. So we call F(t ) ·
�dmn(k′, k) the NT term.

(3) F(t ) · dm0(k′) in the second row of Eq. (13) stands for
the transition between band m and the LES. The TDM dm0(k′)
is defined as

dm0(k′) = 〈φ′
m,k′ |r|φ0〉 ≈ 〈φm,k′ |r|φ0〉. (18)

The assumption |φ′
m,k′ 〉 ≈ |φm,k′ 〉 is used. dm0(k′) indicates the

additional transition channels introduced by the LES. Equa-
tion (18) means that the transition can take place between |φ0〉
and all the other states with various crystal momenta k′ in
band m. So we call F(t ) · dm0(k′) the localized electronic state
transition (LEST) term. Note that the gauge transformation is
performed to deal with the random phase of the TDM in this
work [45].

The contributions of the VT, NT, and LEST channels
can be separated by classifying the laser-induced current.
The laser-induced current can be calculated as J(t ) =
−〈�(t )| p̂|�(t )〉. By using Eq. (12), the current J(t ) can be

separated into the contributions of the VT, NT, and LEST:

JVT(t ) = −
∑

m �=n,k=k′
b∗

mk′
0
(t )bnk0 (t )ei

∫ t
t0

Em(k′)−En (k)dτ
,

× 〈φ′
mk′ |̂p|φ′

nk〉
JNT(t ) = −

∑
m �=n,k �=k′

b∗
mk′

0
(t )bnk0 (t )ei

∫ t
t0

Em(k′)−En(k)dτ
,

× 〈φ′
mk′ |̂p|φ′

nk〉
JLEST(t ) = −

∑
m,k′

b∗
mk′

0
(t )b0(t )ei

∫ t
t0

Em(k′)−E0dτ

× 〈φ′
mk′ |̂p|φ0〉 + c.c. (19)

The summations run over all k = k′ for the VT and k �= k′
for the NT. Here 〈φ′

mk′ |̂p|φ′
nk〉 = i[Em(k′) − En(k)]d ′

mn(k′, k),
and 〈φ′

mk′ |̂p|φ0〉 = i[Em(k′) − E0]dm0(k′). The corresponding
harmonic intensity can be obtained by calculating the Fourier
transform of the currents

IVT(ω) ∝ |FT [JVT(t )]|2,
INT(ω) ∝ |FT [JNT(t )]|2,

ILEST(ω) ∝ |FT [JLEST(t )]|2. (20)

The above method provides an analytical theoretical frame-
work for understanding the HHG process in sparsely doped
semiconductors. The theoretical framework can be widely
used for different kinds of imperfect crystals, including, but
not limited to, the cases of vacancy defect, shallow impuri-
ties, deep impurities, acceptor doping, and donor doping. To
demonstrate the effect of the VT, NT, and LEST channels, we
consider the HHG process in a donor-doped semiconductor as
an example. Our model is based on a linear chain of N atoms
located with a separation a0. A widely used Mathieu-type
potential [46] is used as the periodic potential of the intrinsic
semiconductor, which is written as

U0(x) = −v0[1 + cos(2πx/a0)]. (21)

Here we choose v0 = 0.37 a.u., a0 = 8 a.u., and N = 200.
We consider the case in which the atom located at x = 0 is
replaced by the impurity atom. Therefore, the potential of the
doped semiconductor is written as

U (x) =
{ − v1[1 + cos(2πx/a0)] |x| � a0/2,

− v0[1 + cos(2πx/a0)] |x| > a0/2.
(22)

We use v1 = 0.62 a.u. to model the donor-doped
semiconductor.

The band structure of the semiconductors is shown in
Fig. 1, where we show only the valence band (VB), the first
CB (CB1), and the second CB (CB2). We can see that the
band structure of the donor-doped semiconductor in Fig. 1(b)
is almost the same as that of the intrinsic semiconductor in
Fig. 1(a), except for the energy levels of the LES that appear
in the band gap between CB1 and the VB. We analyze the
transition process by using Eq. (13). The VT, NT, and LEST
channels are indicated by the arrows in Fig. 1. As we can see,
there are only VT channels between the states with the same
k (blue arrows) in the intrinsic semiconductor. The doping

165204-3



ZHANG, HE, LI, CUI, QIAO, LAN, AND LU PHYSICAL REVIEW B 109, 165204 (2024)

FIG. 1. The band structure of (a) the intrinsic semiconductor and
(b) donor-doped semiconductor. The horizontal line in (b) indicates
the energy of the LES. The VT, NT, and LEST channels are indicated
by the blue, red, and green arrows, respectively. The VT channels be-
tween VB and CB1 (CB2) are labeled VT1 (VT2). The VT channels
between CB1 and CB2 are labeled VT3. The LEST channels between
the LES and CB1 (CB2) are labeled LEST1 (LEST2).

breaks the periodic translation invariance, and the NT chan-
nels between the states with various k (red arrows) appear. The
LES in the donor-doped semiconductor is initially occupied,
and the electrons can be excited from the LES through the
LEST channels (green arrows). We analyze the transition
to CB1 by examining the TDM of the VT1, LEST1, and
NT channels. In the intrinsic semiconductor, d ′

vc1 (k′, k) =
δk′kdvc1 (k). The blue curve in Fig. 2(a) shows the magnitude of
dvc1 (k), which corresponds to the common VT1 channels. In
the donor-doped semiconductor, the NT channels enable the
transition between VB states with k′ and CB1 states with k.
The red curve in Fig. 2(a) shows the magnitude of d ′

vc1 (0, k).
d ′

vc1 (0, k) is not equal to zero in a wide range of k, which in-
dicates the electron at the top of the VB (k′ = 0) can transition

FIG. 2. (a) The TDM for VT1, the NT, and LEST1. The blue
curve shows the magnitude of dvc1 (k) for VT1 in the intrinsic semi-
conductor. In the donor-doped semiconductor, the red curve shows
the magnitude of d ′

vc1 (k′, k) from the top of the VB (k′ = 0) to CB1
states, the green curve shows the magnitude of dc10(k) for LEST1.
(b) The logarithm of the magnitude of the TDM d ′

vc1 (k′, k), i.e.,
log10[|d ′

vc1 (k′, k)|], in the donor-doped semiconductor.

to a large area in CB1. Figure 2(b) shows the logarithm of the
magnitude of d ′

vc1 (k′, k). The nonzero antidiagonal line indi-
cates the transition from k to −k. This phenomenon is called
the backscattering of electrons [30]. The TDM between the
LES and CB1 states is shown by the green curve in Fig. 2(a),
corresponding to the LEST1 channels. dc10(k) �= 0 for all k
indicate the transition from the LES can reach all the states in
CB1. The two maxima of |dc10(k)| are not at the position of the
minimum band gap (k = 0). So through the LEST1 channels,
the electrons can directly transition to the high-energy states
in CB1. The transition process between the other states in the
band structure has similar results.

By using Eqs. (13), (19), and (20), we perform a numerical
calculation to simulate the HHG process in doped semicon-
ductors. In the calculation, the LES and all the states in the
VB are initially occupied. The results are shown in Fig. 3. We
compare the contributions of the VT, NT, and LEST. As we
can see in Fig. 3, the contribution of the LEST is much bigger
than the contributions of the VT and NT. The cutoff energies
of the harmonic spectrum contributed by the LEST are 4.8
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FIG. 3. The harmonic intensity contributed by the VT (blue
curve), NT (red curve), and LEST (green curve). The black dotted
curve and the gray shaded area indicate the total harmonic intensity.
The arrows indicate the cutoff energies at 4.8 and 18.8 eV.

and 18.8 eV, which are consistent with the total harmonic
spectrum. Therefore, the LEST dominates the HHG process
in the doped semiconductor. In terms of the NT and VT, the
NT and VT contribute comparably in the low-energy region,
while the contribution of the NT is greater than that of the VT
in the high-energy region.

To test our theoretical method and show the effect of
the additional transition channels, the harmonic spectra for
both intrinsic and donor-doped semiconductors are obtained
by solving the TDSE. Since we have proved that the LEST
dominates the HHG process, in the rest of this work, the
simulations of the HHG process in doped semiconductors are
performed with the highest occupied LES being the initial
state. For the intrinsic semiconductor, the state at the top
of the VB is chosen to be the initial state for comparison.
In our calculation, the grid spacing �x is 0.1 a.u., and the
time step �t is 0.08 a.u. The intensity of the laser pulse
is 1 × 1011 W/cm2, and the wavelength is 3.2 μm. We use
a trapezoidal envelope with a total duration of eight optical
cycles, including two rising and two falling circles, for all
laser pulses in this work. Figure 4 shows the harmonic spectra.
We can see the significant enhancement of the harmonics
for the donor-doped semiconductor between 7.3 and 23.6 eV
compared to the intrinsic case. The harmonic spectrum of the
intrinsic semiconductor has a cutoff energy of about 6.5 eV,
while the harmonic spectrum of the donor-doped semiconduc-
tor has cutoff energies at 4.8 and 18.8 eV, which are indicated
by the arrows in Fig. 4.

For further insight into the HHG process, the time-
dependent population-imaging (TDPI) method [47] is used.
Figure 5 shows the TDPI pictures for both intrinsic and donor-
doped semiconductors. In Fig. 5(a), the electron populations
of the intrinsic semiconductor oscillate in the VB and CBs,
which correspond to the laser-driving Bloch oscillations of
electrons in reciprocal space. Because of the VT channels
in the intrinsic semiconductor, only a single trajectory can
be seen in CB1 and CB2. The red and black dashed lines

FIG. 4. The harmonic spectra obtained by solving the TDSE. The
harmonic spectra for the donor-doped and intrinsic semiconductors
are shown. The red and blue arrows indicate the cutoffs of donor-
doped and intrinsic harmonic spectra, respectively.

indicate the maximum energy and the minimum energy that
the electrons can reach in CB1 and the VB, respectively. The
maximum energy difference is 6.5 eV, which is consistent with
the cutoff of the harmonic spectra for the intrinsic semicon-
ductor in Fig 4. As shown in Fig. 5(b), there are multiple
electron trajectories in CB1 and CB2 for the donor-doped
semiconductors. This phenomenon corresponds to the NT and
LEST channels in the doped semiconductor. It can be seen that
the additional transition channels enable more electrons pro-
moted to the CBs and participate in the HHG process, which
causes the enhancement of the harmonics. The black dashed
line indicates the maximum energy of the main trajectories in
CB1. The electron population in the main trajectories is 1–2
orders of magnitude larger than that of the other trajectories
in CB1. The energy difference between the black dashed line
and the LES is 4.8 eV. This energy difference matches the
LEST1 channels in Fig. 1(b) and agrees with the first cutoff
of the harmonic spectra for the donor-doped semiconductor
in Fig. 4. The red dashed line indicates the maximum energy
of the trajectories in CB2. The energy difference between the
line and the LES is 18.8 eV, corresponding to the LEST2
channels and the second cutoff of the harmonic spectra for
the donor-doped semiconductor. Therefore, the LEST chan-
nels are responsible for the enhancement of the harmonic
and cutoff change of the harmonic spectra. Similar results
can be found in the acceptor-doped semiconductors (see the
Appendix).

IV. TWO-CENTER INTERFERENCE

In this section, we focus on the effect of the LEST. The
LEST carries information about the spatial distribution of
LESs and connects the positions of impurities to the HHG
process. To demonstrate this, we consider the HHG process
in a donor-doped semiconductor with a pair of impurities. The
potential of this semiconductor U (r) is the sum of the periodic
potential for the perfect crystal

U0(r) = V0

2

[
cos

(
π

a0
x

)]2

+ V0

2

[
cos

(
π

a0
y

)]2

(23)
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FIG. 5. The TDPI pictures for (a) the intrinsic semiconductor and (b) donor-doped semiconductor. The colors indicate the populations of
electrons in the VB, LES, CB1, and CB2. The isolated line between the VB and CB1 in (b) corresponds to the LES. Tc is the optical cycle. For
clarity, the electron population in CB2 for the intrinsic semiconductor is multiplied by 100.

and the additional potential introduced by doped impurity

U ′(r) = −
∑

l

1√
(r − rl )2 + a2

exp

(−|r − rl | ln 2

σ

)
. (24)

Here V0 = −0.9 a.u., a0 = 9 a.u., a = 2 a.u., and σ = a0/4.
rl is the position of the impurities, l = 1, 2. In Eq. (24),
the soft-core potential is used, and the exponential attenua-
tion factor represents the Coulomb shielding effect in solids.
The potential U (r) is shown in Fig. 6(a). Equations (3) and
(4) are solved to obtain the LES |φ0〉 and its energy E0.

U(r)

-5 0 5
x/a0

-5

0

5

y/
a 0

-1

-0.5

0
log10(| 0(r)|2)

-5 0 5
x/a0

-5

0

5

y/
a 0

-8

-6

-4

X M
-5

0

5

E
  (

eV
)

En(k)

-0.5 0 0.5
kx/K0

0

0.5

1

k y/K
0

dc0(k)
(c) (d)

(b)(a)

FIG. 6. (a) The potential of the donor-doped semiconductor with
a pair of impurities. (b) The logarithm of the electron density
distribution in the LES. (c) The band structure of the doped semi-
conductor. The horizontal dashed line in the band gap indicates the
energy of |φ0〉. (d) The TDM for the LEST between |φ0〉 and CB
states. The length of the arrows indicates the amplitude of the TDM,
and the direction of the arrows indicates the direction of the TDM.

The two-dimensional calculation is performed in the region
where x ∈ [−15a0, 15a0) and y ∈ [−15a0, 15a0) with Nx ×
Ny points, Ny = Nx = 3510, and dx = dy = 1/13 a.u. The
two-dimensional grids are mapped to one-dimensional grids
with (Nx × Ny) points, so j ∈ [1, Nx × Ny] in Eq. (4). The
distribution of the LESs is shown in Fig. 6(b). As we can see,
|φ0(r)|2 is localized and mainly distributes near the position
of the impurities. So φ0(r) can be written as

φ0(r) = φ1
0 (r) + φ2

0 (r). (25)

φ1
0 (r) and φ2

0 (r) correspond to the part of φ0(r) localized at
each impurity. The energy of φ0(r) is indicated with a hori-
zontal line in the band gap in Fig. 6(c). The band structure
in Fig. 6(c) is calculated based on an empirical pseudopo-
tential Hamiltonian [48]. The TDM for the LEST between
the LES and the CB states can be calculated as dc0(k) =
〈φck|r̂|φ0〉; dc0(k) is shown in Fig. 6(d). Using Eq. (25) and the
Bloch theorem φnk(r) = unk(r)eik·r, the TDM dc0(k) can be
written as

dc0(k) =
∫

u∗
ck(r)e−ik·rr

[
φ1

0 (r) + φ2
0 (r)

]
dr. (26)

Because φ0(r) is highly localized, we can assume φ1
0 (r) ≈

φ1
0 (r1)δ(r − r1) and φ2

0 (r) ≈ φ2
0 (r2)δ(r − r2). Equation (26)

becomes

dc0(k) ≈ u∗
ck(r1)e−ik·r1 r1φ

1
0 (r1)

+ u∗
ck(r2)e−ik·r2 r2φ

2
0 (r2). (27)

Due to the symmetry, one can obtain r1 = −r2, u∗
ck(r1) =

u∗
ck(r2), and φ1

0 (r1) = ±φ2
0 (r2). Equation (27) can be

written as

dc0(k) ≈ r1u∗
ck(r1)φ1

0 (r1)(e−ik·r1∓e−ik·r2 ). (28)

In this section, the highest occupied state in the doped
semiconductor is an even-parity LES. We choose the even-
parity LES as the initial state, so the interference factor in
Eq. (28) becomes e−ik·r1 − e−ik·r2 . The odd-parity LESs have
similar results (see the Appendix). This interference factor
indicates the two-center interference in the LEST process.
The two-center interference proposed here is in analogy with
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FIG. 7. (a)–(d) show the magnitudes of the TDM |dc0(k)| with different internuclear separations: (a) R = 2a0, (b) R = 3a0, (c) R = 4a0,
and (d) R = 5a0. (e)–(h) show the parts of harmonic spectra corresponding to the TDM. The arrows indicate the minimums of the harmonic
spectra and the corresponding minima of |dc0(k)|.

the two-center interference in HHG from molecular gases
[49–54]. For HHG from solids, a previous study proposed
the real-space interference in solids without impurities [15].
In the previous work, the real-space interference was used to
test the real-space recollision picture for the HHG process
in the intrinsic crystal. However, for doped semiconductors,
the two-center interference in the LEST process has not been
discussed.

Due to the two-center interference factor in Eq. (28),
dc0(kr ) ≈ 0 when kr · (r2 − r1) = 2mπ . m is an integer. The
electrons can hardly transition at these crystal momenta kr ,
and the yield of the harmonics decreases. Therefore, when

kr · R = mπ, (29)

there will be local minima in the harmonic spectra. The rela-
tion |r2 − r1| = 2R is used. The positions of the local minima
are at the positions of nth-order harmonics in the harmonic
spectra, where

nω0 = Ec(kr ) − E0. (30)

Here ω0 is the photon energy of the driven laser. Note that the
positions of the minima are determined in the energy ranges
corresponding to the plateau ranges of the harmonic spectra,
not in the cutoff ranges of the spectra.

The evolution of this system is simulated by solving the
TDSE. We set the initial state |�(t0)〉 = |φ0〉, and the time step
�t = 0.1722 a.u. A driven laser with a wavelength equal to
10 000 nm is used to match the bandwidth of the CB (2.55 eV)
and have enough harmonic orders. The intensity of the laser
I1 = 0.36 TW/cm2. The intensity of the laser is chosen so that
the maximum of A(t ) is equal to the width of the first Brillouin
zone K0, i.e., max[A(t )] = K0. The laser is linearly polarized
along the x direction.

Figures 7(a)–7(d) show the magnitudes of the
TDM |dc0(k)| with different internuclear separations,
R = 2a0, 3a0, 4a0, 5a0. We can see the clear minima of

|dc0(k)| indicated by the arrows. The positions of the minima
fit well with Eq. (29). The corresponding harmonic spectra
are shown in Figs. 7(e)–7(h). As we can see, there are local
minima at the positions predicted by Eqs. (29) and (30)
(indicated by the arrows). When R = ja0, the number of
minima is equal to j − 1. With the increase of R, the number
of electrons that can reach the other impurity and participate
in the two-center interference decreases, so the local minima
in the harmonic spectra gradually become indistinct. As the
minima in |dc0(k)| get closer, the minima in the harmonic
spectra may overlap with each other. We consider the case
in which the minima in the harmonic spectra can be clearly
observed and choose the internuclear separations around
R = 2a0. The harmonic spectra with R = 1.7a0, 1.9a0, 2.2a0

are shown in Fig. 8(a). By using Eqs. (29) and (30), we
can locate the minima in the harmonic spectra and track
the positions of the minima. As we can see in Fig. 8(a), the
positions of the minima change with R. Figure 8(b) shows R
obtained from the positions of the minima using Eqs. (29) and
(30). The blue circles indicate the results with laser intensity
I1 = 0.36 TW/cm2. We change the intensity of the driven
laser to I2, so that max[A(t )] = 2K0, and I2 = 1.42 TW/cm2.
The results with laser intensity I2 are indicated by the red
crosses. The obtained R fit the theoretical ones well. The
maximum deviation from the theoretical values is 2 Å.

The two-center interference establishes a simple relation
between the positions of the minima in the harmonic spectra
and the internuclear separation 2R of the impurities. This
relation may be useful to reconstruct R during the nuclear
vibrations of the impurities. In real experiments, only under
the condition that the contribution of the highest occupied
LES dominates the HHG process can the positions of the
minima in the harmonic spectra be determined. This condition
can be realized in the donor-doped semiconductors in which
the LESs are initially occupied. According to Eqs. (29) and
(30), the precision of this reconstruction method is determined
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FIG. 8. (a) The parts of the harmonic spectra corresponding to
the LEST between the LES and CB states. The results for R =
1.7a0, 1.9a0, and 2.2a0 are shown. The arrows indicate the minima
of the harmonic spectra. (b) The comparison of the theoretical R and
R obtained by the positions of the minima using Eqs. (29) and (30).
We choose 13 states with internuclear separations around R = 2a0.
These states are numbered in ascending order of the internuclear
separations. The horizontal coordinate in (b) is the number of states.
The black line indicates the theoretical values of R. The blue cir-
cles indicate the obtained R with laser intensity I1 = 0.36 TW/cm2,
and the red crosses indicate the results with laser intensity I2 =
1.42 TW/cm2. The gray shaded area indicates the maximum devi-
ation from the theoretical value is 2 Å.

by the photon energy of the driven laser and the structure
of the energy bands. The lower the photon energy is and
the wider the energy band is, the higher the precision is.
In real experience, an appropriate wavelength of the driven
laser should be selected to avoid the undesired laser-induced
vibration of atoms and meet the requirement for measurement
accuracy. On the one hand, a longer wavelength results in a
higher energy resolution and higher precision. On the other
hand, the wavelength should not be too long. The time of
an optical cycle should be much shorter than the vibrational
periods of atoms to make sure the atoms are nearly statical
during the HHG process. Additionally, to observe the two-
center interference and improve the measurement accuracy in
a real experiment, more complex laser fields may be needed.

V. SUMMARY AND CONCLUSIONS

In sparsely doped semiconductors, the breaking of periodic
translation invariance in space introduces the NT, and the pres-
ence of LESs introduces the LEST. The NT and LEST provide
additional transition channels to CB states with various crys-
tal momenta. Our results for a donor-doped semiconductor
indicate that considerable electrons can transition to the CB
through the additional NT and LEST channels. Therefore, all
the harmonics with photon energies greater than 7.3 eV are
enhanced. The TDPI pictures further prove that the cutoff
extension in the harmonic spectrum is due to the LEST.

We further analyzed the LEST process in a doped semi-
conductor with a pair of impurities. We found that the LEST
is determined by the TDM dc0(k), which contains the spa-
tial distribution of the LESs. Furthermore, by examining the
characteristics of the TDM dc0(k), the idea of two-center
interference in doped semiconductors was proposed. Our re-
sults indicate that the two-center interference is responsible
for the minima in the harmonic spectra. The positions of the
minima are related to the internuclear separation between the

impurities. This relation is promising for probing the internu-
clear separation during the nuclear vibrations on the angstrom
scale.

Our work sheds light on the physical mechanisms of the
HHG process in doped semiconductors and offers insight into
the two-center interference phenomenon. We believe that our
results will pave the way for the development of more high-
precision and ultrafast measurement methods in the future.

ACKNOWLEDGMENTS

This work was supported by the National Key Re-
search and Development Program of China (Grants No.
2023YFA1406800) and the National Natural Science Foun-
dation of China (Grants No. 12374317, No. 12225406, No.
12074136, and No. 12021004). The computation was com-
pleted on the HPC Platform of Huazhong University of
Science and Technology.

Y.Z. and W.H. contributed equally to this work.

APPENDIX: NUMERICAL DETAILS FOR HIGH-ORDER
HARMONIC GENERATION FROM DOPED

SEMICONDUCTORS

1. The result in the acceptor-doped semiconductor

The same method is used to investigate the HHG process
in the acceptor-doped semiconductors. In Eq. (22), we use

FIG. 9. (a) The TDM of the acceptor-doped semiconductor for
the VT, NT, and LEST. The blue curve shows the magnitude of
dvc1 (k) for VT1, the red curve shows the magnitude of d ′

vc1 (0, k)
for the NT, and the green curve shows the magnitude of dc10(k) for
LEST1. (b) The TDPI picture for the acceptor-doped semiconductor.
The colors indicate the populations of electrons in the VB, LES,
CB1, and CB2.
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FIG. 10. The harmonic spectra for the doped semiconductor with
a pair of impurities. The simulation is performed with all the occu-
pied states in the VB and the LES as the initial state. The intensity
and wavelength of the driven laser are shown in the plot. The arrows
and dashed lines indicate the minima in the harmonic spectra.

v1 = 0.21 a.u. to model the acceptor-doped semiconductor.
All the calculations are performed with the same param-
eters as described in Sec. III. The band structure for the

acceptor-doped semiconductors is the same as in Fig. 1(b),
except that the LES is not initially occupied. So the electrons
need to transition from the VB states to the LES and then
transition to CB states. Figure 9(a) shows the TDM from the
VB or LES to CB1, which determines the transitions through
the VT, NT, and LEST channels.

For further analysis, the TDPI picture for the acceptor-
doped semiconductor is shown in Fig. 9(b). As we can see,
there are various electron trajectories in CB1 and CB2, which
indicate that the additional NT and LEST channels help elec-
trons get promoted to the CB states with various k.

2. The full calculation for the two-center interference

To show the two-center interference from the odd-parity
LES and to address whether the interference can be observed
in the full calculation of HHG, we perform a simulation that
considers all the occupied states in the VB and the LES as the
initial state. The same one-dimensional model as in Sec. III is
used to save the time required for the full calculation of HHG.
In the model, a pair of impurities is placed at the position
x = ∓2a0. The highest occupied state in this donor-doped
semiconductor is an odd-parity LES. The different laser pa-
rameters are used to test the robustness of the two-center
interference. The other parameters are the same as in Sec. III.
The results are shown in Fig. 10; as we can see, the minima
caused by the two-center interference are at the positions of
2.9 and 13.3 eV, which are the contributions of the highest oc-
cupied odd-parity LES. Therefore, the two-center interference
can be observed in the full calculation, and the minima in the
harmonic spectra are determined by the highest occupied LES.
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Bandulet, D. Comtois, J. Kieffer, D. Villeneuve, J. Tisch et al.,
Dynamic two-center interference in high-order harmonic gen-
eration from molecules with attosecond nuclear motion, Phys.
Rev. Lett. 101, 053901 (2008).

[54] M. Lein, Attosecond probing of vibrational dynamics with
high-harmonic generation, Phys. Rev. Lett. 94, 053004 (2005).

165204-10

https://doi.org/10.1103/PhysRevLett.115.193603
https://doi.org/10.1364/OE.446432
https://doi.org/10.1103/PhysRevB.103.L161406
https://doi.org/10.1103/PhysRevA.105.063101
https://doi.org/10.1364/OE.27.034392
https://doi.org/10.1038/s41586-020-2429-z
https://doi.org/10.1038/nphys3955
https://doi.org/10.1088/1361-6455/aac11d
https://doi.org/10.1103/PhysRevA.96.043425
https://doi.org/10.1063/5.0047421
https://doi.org/10.1103/PhysRevA.99.013435
https://doi.org/10.1103/PhysRevA.106.013105
https://doi.org/10.1103/PhysRevResearch.2.013204
https://doi.org/10.1016/j.cplett.2020.137207
https://doi.org/10.1038/s41524-020-0275-z
https://doi.org/10.1103/PhysRevA.101.013404
https://doi.org/10.1103/PhysRevA.99.063408
https://doi.org/10.1103/PhysRevA.108.023105
https://doi.org/10.1103/PhysRevB.98.144307
https://doi.org/10.1103/PhysRevA.102.023112
https://doi.org/10.1103/PhysRevLett.68.3535
https://doi.org/10.1103/PhysRevLett.71.1994
https://doi.org/10.1016/0021-9991(82)90091-2
https://doi.org/10.1103/PhysRevB.33.5494
https://doi.org/10.1119/1.17781
https://doi.org/10.1103/PhysRevA.101.053411
https://doi.org/10.1103/PhysRev.87.807
https://doi.org/10.1103/PhysRevA.95.063419
https://doi.org/10.1103/PhysRev.112.685
https://doi.org/10.1103/PhysRevA.66.023805
https://doi.org/10.1103/PhysRevA.86.025401
https://doi.org/10.1103/PhysRevLett.95.153902
https://doi.org/10.1038/s41467-018-07882-8
https://doi.org/10.1103/PhysRevLett.101.053901
https://doi.org/10.1103/PhysRevLett.94.053004

