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Effects of correlations on triplet loss processes in organic phosphorescent
emission layers: Accurate and fast master equation modeling
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Loss of triplet excitons by triplet-triplet annihilation (TTA) and triplet-polaron quenching (TPQ) is a major
problem in modern organic light-emitting diodes with phosphorescent host-guest emission layers. Modeling
of TTA and TPQ in these emission layers is therefore important. However, this modeling is complicated by
positional correlations among the triplets and polarons. Kinetic Monte Carlo (KMC) simulations can account
for these correlations, but are computationally expensive. In a previous paper [Taherpour et al., Phys. Rev. B
105, 085202 (2022)] we developed a master equation approach to modeling of TTA that accurately accounts for
correlations, and is at the same time fast. In the present work, we extend the approach to include modeling
of TPQ. We calculate the influence of TTA and TPQ on transient photoluminescence experiments and on
steady-state emission efficiency, using KMC simulations as benchmark. We show that our extended master
equation modeling is an accurate and fast alternative to KMC simulations.
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I. INTRODUCTION

Excitonic processes are central to the functioning of or-
ganic optoelectronic devices, including organic light-emitting
diodes (OLEDs). These processes involve a complex interplay
of exciton radiative and nonradiative decay, diffusion, dissoci-
ation, and exciton quenching at high excitation densities due
to exciton-exciton and exciton-charge interactions. In mod-
ern phosphorescent OLEDs, the loss of triplet excitons by
triplet-triplet annihilation (TTA) and triplet-polaron quench-
ing (TPQ) is the main reason for the efficiency roll-off with
increasing current [1–6]. Efficient operation of phosphores-
cent OLEDs therefore relies on understanding and mitigating
TTA and TPQ. We will in this work consider Förster-type
TTA and TPQ processes. In the case of TTA, this means that
the energy of a triplet exciton on a phosphorescent molecule
is transferred by a virtual photon to a second phosphorescent
molecule carrying a triplet exciton, bringing that molecule to
an excited triplet state. The second molecule thermally relaxes
back to the original unexcited triplet state, so that effectively
the energy of the first triplet exciton is lost [7,8]. In the case of
Förster-type TPQ, the virtual photon brings a second molecule
carrying a polaron in an excited polaron state [9]. The excited
polaron state relaxes thermally back to the original unexcited
polaron state, after which the energy of the triplet is lost
[10,11]. Charge imbalances in the emissive layer (EML), the
presence of charge traps in the material, different electron and
hole mobilities in the charge transport layers and the EML,
and charge accumulation at the interfaces of the layers may
substantially influence the quenching processes [12–15]. Due
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to the complex interplay of the various processes, it has been
difficult to link the results of individual experiments to actual
device performance. Modeling and simulating experimental
roll-off curves to analyze the cause of the roll-off is therefore
important [4,5].

Various efforts have been made using different modeling
and simulation methods to describe TTA and TPQ and their
effect on OLED performance. In time-resolved photolumi-
nescence (TRPL) experiments, where triplet excitons in a
phosphorescent emission layer are generated at time t = 0
by a short light flash, the decay of the time-dependent triplet
volume density T (t ) is usually described by the phenomeno-
logical equation

dT

dt
= −T/τ − 1

2
kTTAT 2 − kTPQT P, (1)

where τ is the triplet lifetime, kTTA and kTPQ are TTA and
TPQ rate coefficients, and P is the polaron volume density (we
assume for simplicity no difference in quenching for electron
and hole polarons). The problem with Eq. (1) is that it ignores
spatial correlations in between the locations of triplets and
between the locations of triplets and polarons. Taking into
account such correlations is crucial for an accurate description
of TRPL experiments [8,11,16]. Mechanistic kinetic Monte
Carlo (KMC) simulations of TTA and TPQ automatically take
into account correlations, but they come with high computa-
tional expenses [10]. For the case of TTA, we recently showed
that a master equation (ME) approach, in which a hierarchical
set of equations for triplet correlation functions of increasing
order is approximately solved, provides an accurate and com-
putationally competitive alternative to KMC simulations [17].

In this paper, we will extend the ME modeling approach
of Ref. [17] to include also TPQ. Our approach, described in
Sec. II B, starts by formulating the ME for the probabilities
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that the system of triplets and polarons is in a particular
state. We then derive from this ME a Bogoliubov-Born-
Green-Kirkwood-Yvon (BBGKY) hierarchy of equations for
triplet-polaron distribution functions of increasing order. Fol-
lowing our previous work [17], we consider closures for
the hierarchy by either neglecting correlations altogether,
i.e., by making the mean-field approximation, or by taking
into account correlations in the superposition approximation
[18–21]. For TTA, the (SA) was found by us to be ex-
cellent at low and even at quite high triplet densities [17].
We will consider a phosphorescent emission layer consisting
of molecules of a phosphorescent guest dispersed in a host
molecular semiconductor. As a reference, we will also con-
sider a pure phosphorescent layer. For definiteness, we will
assume that both TTA and TPQ are long-range Förster-type
processes. Triplet diffusion among the emitter molecules will
also assumed to be a Förster-type process. We will describe
polaron hopping by a Miller-Abrahams rate [22]. Extending
our theory to other types of TTA, TPQ, triplet diffusion, and
polaron hopping processes would be straightforward. We will
take a constant polaron density and assume that triplets can
only be generated on molecular sites that are not occupied by
triplets or polarons.

The paper is structured as follows. In Sec. II, we explain
the used methods. In Secs. II A and II B we explain the de-
tails of the KMC and ME methods, respectively. Some useful
analytical expressions derived from the ME in limiting cases
are given in the Appendix. Readers primarily interested in the
results of the work can immediately go to Sec. III, where we
present the results of our ME modeling using the mean-field
(MF) approximation and the SA introduced in Sec. II B. The
results are compared to KMC results, which serve as valida-
tion and benchmark. We consider both the transient case as oc-
curring in a TRPL experiment and the steady-state case, where
triplets are continuously generated, as occurring in a photolu-
minescence (PL) experiment with continuous illumination or
in OLEDs under stationary operating conditions. We will not
compare with actual experiments, but rather focus on the ac-
curacy of the methods for a range of relevant cases. In Sec. IV,
we consider the computational efficiency of our ME calcula-
tions using the SA as compared to KMC simulations. Finally,
Sec. V contains a summary, conclusions, and an outlook.

II. METHODS

The system that we study represents an emission layer of a
phosphorescent OLED. We model the layer as a cubic lattice
of sites, representing molecules, with a lattice constant a = 1
nm, the typical intermolecular distance in molecular semicon-
ductors. There is a fraction cg of randomly positioned guest
molecules. We assume that the energy difference between
triplet excitons, triplets for short, on the host and the phos-
phorescent guest molecules is such that the triplets are only
present on the guest molecules. TPQ can be classified into
two categories based on whether the transport of (electron or
hole) polarons is confined to the host or guest. For simplicity,
we will ignore this confinement issue and assume that the
polarons can be on the host as well as on the guest. For actual
OLEDs, the guest concentration cg is small (typically 10%).
For the case of confinement of the polarons to the host, the

(a) (b)

FIG. 1. Schematic overview of the main processes involved in
(a) triplet-triplet annihilation (TTA) and (b) triplet-polaron quench-
ing (TPQ) in a system of a phosphorescent guest emitter in a host
molecular semiconductor. The dashed circles indicate the region
within a Förster radius around triplets undergoing TTA or TPQ (wig-
gly lines). Both triplet diffusion and polaron hopping will enhance
TTA and TPQ.

influence of the presence of the guest on the polaron trans-
port is then experimentally found to be small [23], justifying
our assumption. For the case of a pure phosphorescent layer
(cg = 100%), this confinement issue of course plays no role.

We neglect energetic disorder for triplets, so that there is
no energy difference between triplets on different guest sites.
Calculations for Ir-cored phosphorescent emitters yield an ap-
proximately Gaussian triplet energy disorder with a standard
deviation of about 0.05 eV [24], which can be considered, at
room temperature, as a weak disorder. We will not consider
Coulomb interactions between the polarons. Coulomb inter-
actions can become important at high polaron concentrations
of about 10−2 per site [25,26] that we will not consider here.
In the absence of Coulomb interactions, correlations in the
positions of polarons play a very minor role [27,28] and these
can therefore be neglected. Future extensions of the theory
presented here could include Coulomb interactions giving rise
to polaron-polaron correlations.

As shown in Fig. 1, the efficiency loss due to TTA and TPQ
can be enhanced by triplet diffusion and polaron hopping. We
will consider the following processes:

(1) Radiative decay of triplets on the guest sites with a rate
kr = 1/τ . A typical value for the triplet lifetime of a phospho-
rescent emitter is τ = 1 µs. We assume here for simplicity that
the nonradiative decay rate is zero, so that kr is the radiative
decay rate. It is straightforward to extend the presented results
to a nonzero nonradiative decay rate.

(2) Förster-type TTA, governed by a Förster radius RF,TTA.
The rate for TTA involving two triplets at sites i and j at
a mutual distance ri j , where the triplet at i is annihilated, is
given by

Si j = S(ri j ) = kr

(
RF,TTA

ri j

)6

. (2)

We note that Si j = S ji, so that the rate that quenching of one
of the two triplets takes place is 2Si j .

(3) Förster-type TPQ, governed by a Förster radius RF,TPQ.
The rate for TPQ between a triplet at site i and a polaron at site
j is given by

Qi j = Q(ri j ) = kr

(
RF,TPQ

ri j

)6

. (3)
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(4) Diffusion of triplets in between guest sites by Förster
transfer with a Förster radius RF,diff. The rate for Förster trans-
fer of a triplet at site i to an empty site j is given by

Di j = D(ri j ) = kr

(
RF,diff

ri j

)6

. (4)

In modeling of the roll-off curve of a phosphorescent white
OLED with KMC simulations we found good agreement for
RF,TTA = RF,TPQ = 3 nm, and RF,diff = 1.5 nm [4], which we
consider as typical values.

(5) Polaron transport among host and guest sites by a
hopping mechanism governed by the Miller-Abrahams (MA)
hopping rate of a polaron between site i and an empty site j
[22],

Wi j = ν1 exp[−2(ri j − a)/λ] ×
{

exp
(−�Ei j

kBT

)
, Ej > Ei

1, Ej � Ei

,

(5)

where �Ei j is the energy difference between sites i and j,
ri j is the intersite distance, ν1 is the nearest-neighbor hop-
ping prefactor, kB is the Boltzmann constant, and T is the
temperature. For the wave-function decay length we take λ =
0.3 nm, which was found to yield an excellent description
of hole transport in the typical molecular semiconductor m-
MTDATA used in an experimental study of TPQ by our group
[23]. For this value, it is sufficient to consider hops up to a
maximum distance ri j = 3 nm. We take ν1 = 3.34 × 104/τ ,
which yields for a phosphorescent lifetime τ = 1 µs a nearest-
neighbor hopping frequency ν1 = 3.34 × 1010 s−1. This rate
is typical for molecular semiconductors [29] and comparable
to the value ν1 = 4.6 × 1010 s−1 used in Ref. [23].

(6) Generation of triplets with a generation rate G at ran-
dom emitter sites that are not already occupied by a triplet or a
polaron. This generation can take place by illumination, such
as in a PL experiment, or by recombination of electrons and
holes.

We will consider two different situations, corresponding to
two types of experiments. In the first situation, we start with a
randomly generated configuration of triplets on guest sites and
a thermal distribution of polarons on host or guest sites. We
then study the density of triplets T (t ) as a function of time t .
This situation is representative of a TRPL experiment, where
a phosphorescent emission layer is illuminated by a short light
pulse, after which the luminescence is measured as a function
of time. We will assume that the polaron density is constant,
so that the TRPL experiment corresponds to exciting a phos-
phorescent layer where a constant density of hole polarons
is maintained by a current flow [23]. In the second situation,
there is a constant generation rate G of triplets, and the steady-
state density of triplets T as a function of G is studied. This
would correspond to a phosphorescent emission layer of an
OLED under constant operation conditions, where excitons
are generated by a constant illumination or by electron-hole
recombination. In both situations, we will assume that the
electric field in the emission layer is small, so that we can
neglect its effect on the polaron motion.

A. KMC simulations

Our benchmark results are obtained with KMC simula-
tions [10], performed with the software tool BUMBLEBEE [30].
Simulation boxes of 100 × 100 × 100 sites of a simple cubic
lattice are used with periodic boundary conditions. We use
cutoff distances of 2RF,TTA, 2RF,TPQ, and 2RF,diff for the TTA,
TPQ, and triplet diffusion processes. We checked that taking
larger cutoffs does not have a significant effect on the results.
Since energy disorder is not taken into account for triplets, the
TTA, TPQ, and triplet diffusion rates are symmetric: Si j = S ji,
Qi j = Qji, and Di j = Dji. We calculated the presented results
from 100–300 simulation runs, depending on the required
accuracy, for nominally equal systems with different disor-
der configurations. Error bars are shown on the data when
relevant.

B. General theory

In Ref. [17] we developed a ME modeling approach for
TTA with inclusion of triplet diffusion. To include TPQ, we
need to extend that approach, because of the presence of two
distinct species: triplets and polarons. We have N molecular
lattice sites in the system, of which a fraction cg are guest sites.
At each site k we define a tuple nk = (nT

k , nP
k ), with nT,P

k ∈
{0, 1}. The tuple specifies if there is a triplet (nk = (1, 0)) or a
polaron (nk = (0, 1)) on the site, or if the site is empty (nk =
(0, 0)). A particular state of the system is indicated as ξ =
(n1, . . . , nN ). The probability that the system is in this state
at time t is Pξ (t ) = P(n1, . . . , nN ; t ). We can incorporate the
above six processes into the ME,

dP(n1, . . . , nN ; t )

dt

=
∑

i, j,i �= j

[−Si jn
T
i nT

j P(n1, . . . , nN ; t )

+ Si jn
T
i

(
1 − nT

j

)
P
(
n1, . . . , nT

i , . . . , nT
j + 1, . . . , nN ; t

)]
+

∑
i, j,i �= j

[−Qi jn
P
i nT

j P
(
n1, . . . , nP

i , nT
j , . . . , nN

)
+ Qi j

(
1 − nT

j

)
nP

i P
(
n1, . . . , nP

i , . . . , nT
j + 1, . . . , nN

)]
+

∑
i, j,i �= j

[−Di jn
T
i

(
1 − nT

j

)(
1 − nP

i

)(
1 − nP

j

)
× P(n1, . . . , nN ; t ) + Di jn

T
j

(
1 − nT

i

)(
1 − nP

j

)(
1 − nP

i

)
× P

(
n1, . . . , nT

i + 1, nT
j − 1, nN ; t

)]
+

∑
i, j,i �= j

[−Wi jn
P
i

(
1 − nP

j

)(
1 − nT

j

)(
1 − nT

i

)
× P(n1, . . . , nN ; t ) + Wi jn

P
j

(
1 − nP

i

)(
1 − nT

j

)(
1 − nT

i

)
× P

(
n1, . . . , nP

i + 1, nP
j − 1, nN ; t

)]
+

∑
i

[−krn
T
i P(n1, . . . , nN ; t )

+ kr
(
1 − nT

i

)
P
(
n1, . . . , nT

i + 1, . . . , nN ; t
)]

+
∑

i

[−G
(
1 − nT

i

)(
1 − nP

i

)
P(n1, . . . , nN ; t )

+ G
(
1 − nP

i

)
nT

i P
(
n1, . . . , nT

i − 1, . . . , nN ; t
)]

, (6)
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where the terms with Si j , Qi j , Di j , Wi j , kr, and G de-
scribe TTA, TPQ, triplet diffusion, polaron diffusion, triplet
radiative decay, and triplet generation, respectively. In or-
der to simplify the notation, we only indicate the elements
of the tuples that are involved in the process. For exam-
ple, we write P(n1, . . . , nP

i , . . . , nT
j + 1, . . . , nN ) instead of

P(n1, . . . , (nT
i , nP

i ), . . . , (nT
j + 1, nP

j ), . . . , nN ).
We define the one-site distribution function for polarons,

PP
k =

∑
ξ

nP
k,ξ Pξ (t ), (7)

and for triplets,

PT
k =

∑
ξ

nT
k,ξ Pξ (t ), (8)

where nP
k,ξ is the polaron occupation number of site k (0 or 1)

and nT
k,ξ is the triplet occupation number of site k (0 or 1)

in state ξ . From Eq. (6) in conjunction with Eqs. (7) and
(8), we obtain the following equation for the one-site polaron
distribution function:

dPP
k

dt
=

∑
l �=k

[−Wkl
(
PP

k − PPP
kl − PPT

kl

)
+ Wlk

(
PP

l − PPP
kl − PPT

kl

)]
, (9)

and for the one-site triplet distribution function,

dPT
k

dt
= −krPT

k + G
(
1 − PT

k − PP
k

)
+

∑
l �=k

[
Dkl

(
PT

l − PT
k

) − QklP
TP
kl − Skl P

TT
kl

]
, (10)

where PPP
kl is the two-site polaron-polaron distribution

function, PTT
kl the two-site triplet-triplet distribution function,

and PTP
kl the two-site triplet-polaron distribution function. For

the triplet-polaron distribution function

PTP
kl =

∑
ξ

nT
k,ξ nP

l,ξ Pξ (t ), (11)

we obtain from Eq. (6)

dPTP
kl

dt
= −krP

TP
kl − QklP

TP
kl + G

(
PP

k + PP
l − 2PPP

kl − 2PTP
kl

)
−

∑
m �=k,l

[
(Skm + Slm)PTPT

klm − (Qkm + Qlm)PTPP
klm

]

+
∑

m �=k,l

[
Dkm

(
PPT

lm − PTP
kl

) + Dkm
(
PTPP

klm − PPPT
klm

)
+ Dlm

(
PPT

km − PPT
kl

) + Dlm
(
PPTP

klm − PPPT
klm

)]
+

∑
m �=k,l

[
Wkm

(
PTP

km − PTP
kl

) + Wkm
(
PPTT

klm − PTTP
klm

)
+ Wlm

(
PTP

km − PTP
kl

) + Wlm
(
PTPT

klm − PTTP
klm

)]
. (12)

Similarly, for the triplet-triplet distribution function

PTT
kl =

∑
ξ

nT
k,ξ nT

l,ξ Pξ (t ), (13)

we obtain

dPTT
kl

dt
= −2krP

TT
kl − 2Skl P

TT
kl + G

(
PT

k + PT
l − 2PTT

kl − 2PPT
kl

)
−

∑
m �=k,l

[
(Skm + Slm)PTTT

klm − (Qkm + Qlm)PTTP
klm

]

+
∑

m �=k,l

[
Dkm

(
PTT

lm − PTT
kl

) + Dkm
(
PTTP

klm − PPTT
klm

)
+ Dlm

(
PTT

km − PTT
kl

) + Dlm
(
PTTP

klm − PTPT
klm

)]
, (14)

and, lastly, for the polaron-polaron distribution function

PPP
kl =

∑
ξ

nP
k,ξ nP

l,ξ Pξ (t ), (15)

we obtain

dPPP
kl

dt
=

∑
m �=k,l

[
Wmk

(
PPP

ml − PTPP
klm − PPPP

klm

)
− Wkm

(
PPP

kl − PPPT
klm − PPPP

klm

)
+ Wml

(
PPP

km − PPTP
klm − PPPP

klm

)
− Wlm

(
PPP

kl − PPPT
klm − PPPP

klm

)]
. (16)

The above procedure could be continued in a straightforward
way to distribution functions of increasingly higher order,
generating a BBGKY hierarchy of equations [31–33]. How-
ever, higher-order distribution functions are not required for
the purpose of this work, because of the specific closure that
we will introduce.

As a first step towards defining the closure, we make
the transition from distribution functions to correlation func-
tions by introducing the two-site, or pair, correlation function
as

gαβ

kl = Pαβ

kl

Pα
k Pβ

l

, (17)

and the three-site correlation function as

gαβγ

klm = Pαβγ

klm

Pα
k Pβ

l Pγ
m

, (18)

and so on, where α, β, γ ∈ {T, P}. It is straightforward to
formulate the above BBGKY hierarchy of equations in terms
of correlation functions of increasing order. In this notation,
neglecting pair correlations corresponds to gαβ

kl = 1.
Secondly, we note that, as polarons are not lost nor gen-

erated, the total polaron density will stay constant. We will
from now on neglect correlations between polarons, setting
PPP

kl = PP
k PP

l , as this was shown to be a very good approxima-
tion in the absence of Coulomb interactions [27]. We then do
not need Eqs. (9) and (16) for calculating the polaron density
and the polaron-polaron distribution function.

We will further proceed along similar lines as in our earlier
work on TTA [17]. If there would be no triplet diffusion or
polaron hopping, all sites would be equivalent after perform-
ing an average over all possible distributions of the randomly
positioned guest and host sites. We would then have perfect
lattice symmetry. However, because diffusion of triplets can
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only occur among guest sites, diffusion is a percolative pro-
cess, where fast triplet diffusion can occur along percolating
pathways of guest sites that happen to be close to each other.
This percolative process cannot be fully addressed without
sacrificing the lattice symmetry. Instead, we use the approach
followed in Ref. [17] and replace the typical minimal distance
over which triplet transfer can occur by c−1/3

g a instead of a.
This approach was shown to lead to very accurate results in
the case of TTA [17]. In the presence of energy disorder,
also polaron transport becomes a percolative process [34].
We address this percolation problem by replacing the MA
hopping rate Eq. (5) by

Wi j = W (ri j ) = ceffν1 exp[−2(ri j − a)/λ], (19)

where ceff < 1 is a parameter that takes into account in an ef-
fective way the influence of disorder on the polaron transport.
With these adaptations, the lattice symmetry is preserved.
Following Ref. [17], we also make an approximation where
the lattice is replaced by a continuum with a cutoff distance
r0 = 0.7929 a. This cutoff distance is determined such that the
lattice sum of the Förster-type distance dependence r−6, with
the origin excluded, becomes equal to the volume integral,
with a spherical region of radius r0 around the origin excluded
[17].

These approximations allow us to simplify the above equa-
tions, where two-site correlation functions now only depend
on the distance r between the sites, and three-site correla-
tion functions only depend on the vector r′ from the first to
second site and on the vector r′ from the first to the third
site. Furthermore, T ≡ PT

k /a3 and P ≡ PP
k /a3 become the

site-independent triplet and polaron volume densities. Equa-
tion (10) then transforms into

dT

dt
= G

(
1

a3
− T − P

)
− krT

− 4π

∫ ∞

r0

[S(r)T 2gTT(r, t ) + Q(r)T PgTP(r, t )]r2 dr.

(20)

Equation (14) transforms into

dgTT(r, t )

dt

= −2S(r)gTT(r, t )

+ 2G

Ta3
(1 − gTT(r, t )) + 2GP

T
(gTT(r, t ) − gTP(r, t ))

−
∫

V \δV0\δVr

dr′{PgTTP(r, r′, t )[Q(r′) + Q(|r′ − r|)]

− T gTTT(r, r′, t )[S(r′) + S(|r′ − r|)]} + 2gTT(r, t )

×
∫

V \δV0

dr′[T S(r′)gTT(r′, t ) + PQ(r′)gTP(r′, t )]

+ 2
cg

a3

∫
V \δṼ0\δVr

dr′D(r′)[gTT(|r′ − r|, t ) − gTT(r′, t )]

+ 2P
∫

V \δṼ0\δVr

dr′D(r′)[gTTP(r, r′, t ) − gPTT(r, r′, t )].

(21)

Finally, Eq. (12) transforms into

dgTP(r, t )

dt

= −Q(r)gTP(r, t ) + 2G

Ta3
(1 − Pa3)(1 − gTP(r, t ))

−
∫

V \δV0\δVr

dr′[T gTPT(r, r′, t )S(r′)

+ PgTPP(r, r′, t )Q(|r′ − r|, t )] + gTP(r, t )

×
∫

V \δV0\δVr

dr′[T gTT(r′, t )S(r′) + PgTP(r′, t )Q(r′)]

+ cg

a3

∫
V \δṼ0\δVr

dr′D(r′)[gTP(|r′ − r|, t ) − gTP(r, t )]

+ P
∫

V \δṼ0\δVr

dr′D(r′)[gTPP(r, r′, t ) − gPPT(r, r′, t )]

+ cg

a3

∫
V \δṼ0\δVr

dr′W (r′)[gTP(|r′ − r|, t ) − gTP(r, t )]

+ T
∫

V \δṼ0\δVr

dr′W (r′)[gPTT(r, r′, t ) − gTTP(r, r′, t )].

(22)

Here, δVr and δṼr are spherical regions with a radius r0 and
r̃0 ≡ c1/3

g r0, respectively, around the point r, and \δVr and
\δṼr indicate that these regions should be excluded from the
volume integral. δV0 and δṼ0 are spherical regions around the
origin.

We close the hierarchy of equations by using the SA
[18–21], as in our previous work on the application of the ME
approach to TTA [17]. The SA expresses three-site correlation
function as a product of two-site correlation functions, yield-
ing very accurate results in the case of TTA [17]. The use of
the SA in the present case implies

gαβγ (r, r′, t ) ≈ gαβ (r, t )gαγ (r′, t )gβγ (|r′ − r|, t ). (23)

As we will see in Sec. III, this also leads to very accurate
results when including TPQ. In general, Eqs. (20)–(22), using
Eq. (23) as closure, should be solved numerically. We do this
in a similar way as in Ref. [17]. We obtain transient results by
setting G = 0 and solving the resulting equations numerically,
where the integrals are evaluated using a spectral method.
Steady-state results are obtained by accounting for the terms
including G and solving the equations until no further change
in time is observed.

In the MF approximation, correlations in between triplets
and between triplets and polarons are ignored, so that

gTT(r, t ) = gTP(r, t ) = 1. (24)

Equation (20) then becomes

dT

dt
= G

(
1

a3
− T − P

)
− krT − 1

2
kTTAT 2 − kTPQT P,

(25)

with kTTA = 8πkrR6
F,TTA/3r3

0 and kTPQ = 4πkrR6
F,TPQ/3r3

0 .
Apart from the first term, this equation is identical to Eq. (1),
with kr = 1/τ . Equation (25) can be solved analytically,
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FIG. 2. Transient triplet density T (t ) in a simulation of a TRPL
experiment in the absence of triplet diffusion and TTA with an initial
triplet density T0 = 5 × 10−3 nm−3, polaron density P = 10−3 nm−3,
and TPQ Förster radius RF,TPQ = 3 nm. ME transients within the
superposition approximation (SA) and mean-field (MF) approxima-
tion are given and compared to KMC results, for various values of
σ̂ ≡ σ/kBT . The transient for the case of no TPQ is also given. In
(a) a linear and in (b) a logarithmic time axis is used. The pink area
around the KMC results indicates the numerical uncertainty.

yielding

T (t ) = 1

kTTA

{
k2 tanh

(
tanh−1

(
k1 + kTTAT0

k2

)
+ 1

2
k2t

)
− k1

}
,

(26)

where T0 is the initial triplet density at t = 0, and
where we have introduced k1 ≡ G + kr + kTPQP and k2 ≡√

(k1)2 + 2GkTTA(1/a3 − P). The steady-state case is ob-
tained in the limit t → ∞ as T = (k2 − k1)/kTTA, which gives
T as a function of G.

As shown in the Appendix, in the limit of strong polaron
diffusion and no triplet diffusion, and the limit of no triplet
nor polaron diffusion, useful analytical results can be derived
in the low triplet and low polaron-density approximation that
go beyond the MF approximation.

III. RESULTS

A. Time-resolved photoluminescence—no triplet diffusion

In this subsection, we study how taking into account corre-
lations affects the TRPL in the case of TPQ without and with
TTA, assuming that there is no triplet diffusion. In a TRPL
experiment, the triplets are initially distributed randomly. In
the absence of triplet diffusion, the guest concentration be-
comes irrelevant, as the positions of the phosphorescent guest
molecules are assumed to be random. This means that the
results are applicable to host-guest systems with an arbitrary
guest concentration. We compare ME results within the SA
and the MF approximation to KMC results, which are our
benchmark. The TRPL transients are given by the triplet den-
sity T as a function of time t , because the amount of triplets
present at time t is proportional to the measured PL at that
time. All our calculations and simulations are done at room
temperature (T = 295 K).

Figure 2 shows TRPL transients T (t ) for an initial triplet
density T0 = 5 × 10−3 nm−3 and a polaron density P =
10−3 nm−3, without TTA, for RF,TPQ = 3.0 nm and different

values of σ̂ ≡ σ/kBT , which is the dimensionless energy dis-
order strength for a Gaussian energy disorder with standard
deviation σ at temperature T . As a reference, we include
the result T (t ) = T0 exp(−krt ) for the case that there is no
TPQ. Fig. 2(b) shows the same results as Fig. 2(a), but with
a logarithmic time axis. For a typical phosphorescent guest
concentration of 10%, the chosen value T0 = 5 × 10−3 nm−3

corresponds to 5% initial occupation of the guest molecules
by a triplet. We see in the figure that the effect of TPQ be-
comes stronger when σ̂ decreases, because the polarons then
diffuse faster. For σ̂ = 0 polaron diffusion is so strong that
correlations are washed out. As a consequence, the MF result
Eq. (26), with RF,TTA = 0, agrees excellently with the KMC
result. The case σ̂ = 0 might not be realistic for the organic
semiconductors used in OLEDs, but we remark that the strong
polaron diffusion case can also occur for a nonzero σ̂ when
the nearest-neighbor hopping prefactor ν1 in Eq. (5) is much
larger than the value we assumed.

When polaron diffusion is not strong, the spatial correla-
tion between triplets and polarons becomes important and the
MF approximation breaks down. The neglect of correlations
in the MF approximation leads to an overestimation of TPQ
and, therefore, to an underestimated triplet density T (t ). For
σ̂ → ∞ there is no polaron diffusion, because all the polarons
are trapped at energetically low-lying sites. We see that in that
case the SA excellently describes the transient. The analytical
result Eq. (A9) for RF,TTA = 0 essentially coincides with the
SA in this case (not shown). For intermediate values of σ̂ ,
ceff in Eq. (19) has been adjusted to fit the KMC data. The
fitted values of ceff are given in Table I for RF,TPQ = 3 nm and
P = 10−3 nm−3. We also give in this table the corresponding
polaron mobilities μ, as calculated from KMC simulations at
vanishing electric field, and the polaron diffusion coefficient
D, as obtained from μ via the generalized Einstein relation
[35]. We note that the values of ceff are not simply related
to the polaron mobility or diffusion coefficient, because these
are bulk properties that are only valid beyond a characteristic
length scale L0 of several nanometers, because of percolation
effects [36]. By contrast, the parameter ceff takes into account
the effect on TPQ of the diffusion of polarons on a nanometer
length scale relevant to the TPQ process. Thus, different val-
ues for ceff are obtained for different RF,TPQ. Table II shows
in addition the values of ceff for RF,TPQ = 2 and 4 nm. For
the highest disorder strength σ̂ = 6, ceff is the same for the
three different RF,TPQ, which we attribute to the fact that the
characteristic length scale is for σ̂ = 6 from Ref. [36] found to
be L0 ≈ 4.8 nm. We then have RF,TPQ < L0 for all three values
of RF,TPQ and can expect that for all three values of RF,TPQ

the character of the TPQ process is the same. The ceff values
in Table I will be used in the remainder of this work, where
we take RF,TPQ = 3 nm. A dimensionless disorder strength
σ̂ = 4, corresponding to σ = 0.1 eV at room temperature, is
typical [23].

Figure 3 shows transients for RF,TPQ = 3.0 nm, an initial
triplet density T0 = 5 × 10−3 nm−3 and different polaron den-
sities P from 10−4 to 5 × 10−3 nm−3, in the absence of triplet
diffusion, polaron diffusion, and TTA. With increasing po-
laron density, the decay in T (t ) due to TPQ increases, leading
to a nonexponential decay caused by the build-up of corre-
lations between polarons and triplets, with a depletion zone
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TABLE I. Values of ceff in Eq. (19) used in the transients of Fig. 2 for RF,TPQ = 3 nm, P = 10−3 nm−3, and various values of σ̂ . Also the
corresponding polaron mobilities μ and diffusion coefficients D at vanishing electric field are given.

σ̂ ≡ σ/kBT ceff Mobility, μ [m2/Vs] Diffusion coefficient, D [m2/s]

0 1 1.27 × 10−6 3.29 × 10−8

2 1.7 × 10−2 8.47 × 10−8 2.08 × 10−9

4 1.1 × 10−3 1.39 × 10−9 2.52 × 10−11

6 1.9 × 10−4 1.95 × 10−11 2.53 × 10−13

∞ 0 0 0

of triplets in the neighborhood of polarons. The figure shows
thus clearly that in the case of weak or no polaron diffusion,
a rate equation description of the efficiency loss due to TPQ
[Eq. (1)] is not applicable. The magnification in Fig. 3(b)
shows that for all polaron densities the SA transients perfectly
follow the KMC transients, demonstrating that correlation
effects are adequately taken into account. The transients are in
this case also excellently described by Eq. (A9) for RF,TTA = 0
(not shown).

B. Steady state—no triplet diffusion

We now consider the steady-state situation in which triplets
are generated at a rate G at positions where there is no polaron
or other triplet. This corresponds to a continuous illumination
experiment or a situation in which triplets are generated at
random positions by electron-hole recombination.

In Fig. 4, we show the steady-state triplet density T as
a function of the generation rate G for (a) σ̂ = 4 and (b)
σ̂ → ∞ (no polaron diffusion), for the SA and MF approx-
imations in comparison to KMC results. For σ̂ = 4 the value
of ceff from Table I was taken. Results are shown for the
TPQ-only case with RF, TPQ = 3.0 nm and the case of TPQ
and TTA with RF, TPQ = RF, TTA = 3.0 nm. The boxes indicate
three regimes. In regime I, TTA is insignificant, and almost
all triplet loss is caused by TPQ and radiative decay. In the
middle regime II, both TTA and TPQ contribute to the triplet
loss. In regime III, TTA dominates over TPQ, and both SA and
KMC results start to approach the TTA-only case indicated by
the green line. As can be seen in Fig. 4(b) in comparison to
Fig. 4(a), by increasing σ̂ from 4 to σ̂ → ∞ (when polarons
do not diffuse anymore), regime II shifts to smaller G. This
is because TPQ decreases with decreasing polaron diffusion
and, therefore, TTA starts to dominate TPQ at lower gener-
ation rates. In contrast to the case of only TTA (green line),
the results with TPQ do not approach the no-loss processes
limit T = Gτa−3/(1 + Gτ ) (dotted line) for low G. This is

TABLE II. Values of ceff for different RF,TPQ at polaron density
P = 10−3 nm−3.

σ̂ ≡ σ/kBT RF,TPQ = 2 nm RF,TPQ = 3 nm RF,TPQ = 4 nm

0 1 1 1
2 3.1 × 10−3 1.7 × 10−2 4.5 × 10−2

4 3.1 × 10−4 1.1 × 10−3 2.3 × 10−3

6 1.9 × 10−4 1.9 × 10−4 1.9 × 10−4

∞ 0 0 0

because for very low generation rates TPQ is still significant.
The MF results underestimate the triplet density by almost an
order of magnitude, and in none of the three regimes the MF
approximation is accurate. As can be seen in both Figs. 4(a)
and 4(b) , the SA results are in excellent agreement with
the benchmark KMC results. For the case σ̂ → ∞ the T -G
curves are also excellently described by the analytical result
Eq. (A12) (not shown).

In Fig. 5 we show for RF,TPQ = RF,TTA = 3.0 nm and σ̂ →
∞, σ̂ = 4, and σ̂ = 0 the steady-state triplet density T as
a function of the generation rate G for polaron densities of
(a) P = 10−3 nm−3 and (b) P = 5 × 10−3 nm−3. For the
cases σ̂ → ∞ and σ̂ = 4, the SA results accurately follow
the KMC results. For the case σ̂ = 0, polaron hopping events
occur so frequently in the KMC simulations as compared to
other events that obtaining converged KMC results would take
an unreasonable amount of CPU time. Therefore, no results
are shown for this case. Nevertheless, also for this case we
expect accurate agreement. In the case of P = 10−3 nm−3

[Fig. 5(a)], TPQ is weak for σ̂ → ∞ and σ̂ = 4, as can be
seen from the approach to the no-loss processes limit (dotted
line) at low G. For σ̂ = 0 polaron diffusion is strong enough
to make TPQ significant. In the case of P = 5 × 10−3 nm−3

[Fig. 5(b)], TPQ is significant for all three values of σ̂ . At very
high G, all results converge to the same curve, because TTA
then dominates over TPQ, so that the polaron density and the
diffusion speed of polarons become irrelevant. The SA results
for σ̂ = 0 and σ̂ → ∞ essentially coincide with the analytical
results Eqs. (A6) and (A12), respectively, both for P = 10−3

and 5 × 10−3 nm−3 (not shown).

FIG. 3. Transient triplet density for RF,TPQ = 3 nm, initial triplet
density T0 = 5 × 10−3 nm−3, and different polaron densities P, in the
absence of triplet diffusion, TTA, and polaron diffusion (σ̂ → ∞).
In (a) a linear and in (b) a logarithmic time axis is used. The inset in
(b) is a magnification of the indicated region.
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FIG. 4. Dependence of the steady-state triplet density T on the
triplet generation rate G, for the TPQ-only case with RF, TPQ = 3
nm and the case of TPQ and TTA with RF, TPQ = RF, TTA = 3 nm, in
the absence of triplet diffusion, for (a) σ̂ = 4 and (b) σ̂ → ∞. The
polaron density is P = 5 × 10−3 nm−3. In regime I, TPQ dominates.
In regime II, both TPQ and TTA are important. In regime III, TTA
dominates. The green lines show the SA TTA-only results from our
previous work [17]. The dotted lines show the no-loss processes
limit.

Figure 6(a) shows for RF,TPQ = RF,TTA = 3.0 nm, Gτ =
5 × 10−4, and no polaron nor triplet diffusion SA and
KMC results for the triplet-polaron pair correlation functions
gTP(r) for polaron densities P → 0, P = 10−3, and P = 5 ×
10−3 nm−3. For P → 0 we only show the SA result. The
SA yields a very good description of the pair correlation
function as compared to KMC for P = 10−3 nm−3. For P =
5 × 10−3 nm−3 the SA slightly underestimates the correlation,
resulting in a small underestimation of the steady-state triplet
density, as seen in Fig. 5(b). The analytical result Eq. (A10)
for gTP(r) (not shown) essentially coincides with the SA re-
sults, because the triplet density and the polaron density are
sufficiently small to make the low density-limit valid for both.

Figure 6(b) shows the triplet-polaron and triplet-triplet pair
correlation functions gTP(r) and gTT(r), respectively, for P =
5 × 10−3 nm−3, and Gτ = 5 × 10−3 and 5 × 10−2. For these
cases the SA describes the KMC pair correlation functions
fairly well. The analytical results Eqs. (A10) and (A11) for
gTP(r) and gTT(r), respectively, are given by the dotted green
lines. In this case, deviations are seen from the SA results,
because for the chosen values of G the triplet density is no

FIG. 5. Dependence of the steady-state triplet density T on the
triplet generation rate G in the absence of triplet diffusion, for
RF, TPQ = RF, TTA = 3 nm, for polaron densities (a) P = 10−3 nm−3

and (b) P = 5 × 10−3 nm−3, and three values of σ̂ .

FIG. 6. Steady-state pair correlation functions g(r) for RF,TPQ =
RF,TTA = 3 nm and no polaron nor triplet diffusion. (a) Triplet-
polaron correlation functions gTP(r) for different polaron densities
P. (b) Triplet-polaron correlation functions gTP(r) and triplet-triplet
correlation functions gTT(r) for P = 5 × 10−3 nm−3 and two values
of Gτ . KMC data points have discrete values of r, which are the
distances from the origin in a cubic lattice with lattice constant
a = 1 nm. The analytical results for gTP(r) and gTT(r) in (b) are given
by Eqs. (A10) and (A11), respectively. The SA correlation functions
are only defined for r < r0 = 0.7929 nm (vertical dashed line). All
correlation functions approach 1 for large r (horizontal dashed line).

longer very small. For the chosen value of P, Eqs. (A10) and
(A11) almost give the same results, because P 	 1/a3, so
that gTP(r) and gTT(r) are indistinguishable. The SA correctly
predicts that gTT(r) is actually slightly larger than gTP(r).

C. Inclusion of triplet diffusion

In this subsection, we consider the effects of triplet dif-
fusion on transient and steady-state triplet densities in the
presence of TTA and TPQ. Because triplets can only diffuse
among phosphorescent guests, it is now important to distin-
guish between guest sites, on which the triplets can reside,
and host sites, which we assume to be inaccessible to triplets.
We apply the approach explained in Sec. II B to account for
the resulting percolative effects in an approximate way within
the SA.

Figure 7 shows, for RF,TPQ = 3.0 nm, RF,diff = 1.5 nm, an
initial triplet density T0 = 5 × 10−3 nm−3, guest concentra-
tion cg = 100%, and various values of σ̂ , the transient triplet
density T (t ) for the case without TTA [Figs. 7(a) and 7(b)]
and TTA with RF,TTA = 3.0 nm Figs. 7(c) and 7(d)]. The
insets in Figs. 7(b) and 7(d) show the excellent agreement
of the SA with the KMC results, despite the fact that the
energetic disorder is treated in an effective way by Eq. (19),
taking the ceff values from Table I. For the strong polaron
diffusion case without TTA in panel (a) (σ̂ = 0), the MF
approximation is again accurate because triplet-polaron cor-
relations are washed out (gTP(r) → 1). However, Fig. 7(c)
shows that in the presence of TTA, the MF approximation is
no longer accurate for strong polaron diffusion. The reason
is that the triplet-polaron correlations are washed out by the
strong polaron diffusion, but the triplet-triplet correlations not.
As a result, the MF approximation overestimates the TTA. In
Fig. 8 we show results for RF,TPQ = 3.0 nm, RF,diff = 1.5 nm,
T0 = 5 × 10−3 nm−3, and σ̂ → ∞ (no polaron diffusion). In
Fig. 8(a) we show the transient triplet density T (t ) for the case
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FIG. 7. Transient triplet density T (t ) for an initial triplet density
T0 = 5 × 10−3 nm−3, a polaron density P = 10−3 nm−3, RF,TPQ = 3
nm, in the presence of triplet diffusion with RF,diff = 1.5 nm, and
a guest concentration cg = 100%. (a) Transients without TTA for
different values of σ̂ . (b) Same as (a), but with a logarithmic time
axis. (c) and (d): same as (a) and (b), but including TTA with
RF,TTA = 3 nm. The insets in (b) and (d) are magnifications of the
indicated regions. Numerical uncertainties are indicated by pink ar-
eas surrounding the KMC results.

without TTA, for a guest concentration cg = 100% and vari-
ous polaron densities, and in Fig. 8(b) for a polaron density
P = 5 × 10−3 nm−3, and cg of 100% and 10%. Figures 8(c)

FIG. 8. Transient triplet density T (t ) for an initial triplet density
T0 = 5 × 10−3 nm−3, RF,TPQ = 3.0 nm, and no polaron diffusion
(σ̂ → ∞) in the presence of triplet diffusion with RF,diff = 1.5 nm.
(a) Transients for a guest concentration cg = 100% and different
polaron densities P, for the case without TTA. (b) Transients for
cg = 10% and 100%, and P = 5 × 10−3 nm−3. (c) and (d): same as
(a) and (b), but including TTA with RF,TTA = 3 nm.

FIG. 9. Dependence of the steady-state triplet density T on the
triplet generation rate G for RF,TPQ = RF,TTA = 3 nm in the presence
of triplet diffusion with RF,diff = 1.5 nm, and cg = 100%, for polaron
densities (a) P = 10−3 nm−3 and (b) P = 5 × 10−3 nm−3, and three
values of σ̂ . The dotted line shows the no-loss processes limit.

and 8(d) show similar results as (a) and (b), but including
TTA with RF,TTA = 3.0 nm. Figures 8(a) and 8(c) show that
the change in the transients with increasing polaron density is
excellently captured by the SA. Figures 8(b) and 8(d) show
that for a realistic guest concentration cg = 10% the change
in transient by the dilution is also very well captured, despite
the approximate approach of including percolation effects
in the triplet diffusion, as explained in Sec. II B. We attribute
the slight underestimation of triplet quenching by the SA for
cg = 10% to the slight underestimation of triplet diffusion by
our approximate approach. In Figs. 9(a) and 9(b), the steady-
state triplet density T is shown as a function of the generation
rate G for RF,TPQ = RF,TTA = 3.0 nm, in the presence of triplet
diffusion with RF,diff = 1.5 nm, and cg = 100%, for polaron
densities P = 10−3 and 5 × 10−3 nm−3, respectively, and for
three different values of σ̂ . For σ̂ → ∞ and σ̂ = 4, the SA re-
sults accurately follow the KMC results. For the same reasons
as explained in the previous subsection, no converged KMC
results could be obtained for σ̂ = 0. We see in Fig. 9(a) that
the results for σ̂ → ∞ and σ̂ = 4 almost coincide. We con-
clude from this that for a polaron density P � 10−3 nm−3 and
σ̂ = 4, typical for OLED materials, polaron diffusion does not
need to be included in evaluating the steady-state triplet den-
sity in the presence of triplet diffusion. By comparing Fig. 9(a)
to Fig. 9(b), we see that when increasing the polaron density
to P = 5 × 10−3 nm−3, polaron diffusion starts to become
important for σ̂ = 4. Like in Fig. 5 we see that at very high
G all results converge to the same curve, because TTA then
dominates over TPQ. A comparison of the steady-state triplet
density of the SA and the MF approximation with KMC re-
sults as a function of the generation rate for RF,TPQ = 3.0 nm,
P = 10−3 and 5 × 10−3 nm−3, cg = 100%, triplet diffusion
with RF,diff = 1.5 nm, and no polaron diffusion is shown in
Fig. 10. Results are displayed for the cases without TTA in
Figs. 10(a) and 10(b) and inclusion of TTA with RF,TTA =
3.0 nm in Figs. 10(c) and 10(d). We see that for low G, triplet
diffusion is not strong enough to wash out the correlations.
As a result, the MF result is very inaccurate. Increasing the
polaron density from P = 10−3 to 5 × 10−3 nm−3 shows a
noticeable decrease in the steady-state triplet density due to in-
creasing TPQ and the MF results at low G become even more
inaccurate. For increasing G, the MF results become gradually
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FIG. 10. Dependence of the steady-state triplet density T on the
triplet generation rate for RF,TPQ = 3 nm, cg = 100%, no polaron
diffusion (σ̂ → ∞), and RF,diff = 1.5 nm, for (a) P = 10−3 nm−3 and
no TTA, and (b) P = 5 × 10−3 nm−3 and no TTA. (c) and (d) same
as (a) and (b), but including TTA with RF,TTA = 3.0 nm.

more accurate because correlations are getting washed out by
the frequent generation of triplets at random positions. In all
cases, the SA results are very accurate.

Steady-state results for the triplet density T as a func-
tion of the generation rate G for σ̂ → ∞, RF,TPQ = RF,TTA =
3.0, RF,diff = 1.5, and for cg = 100% and 10% are shown
in Fig. 11(a), and corresponding triplet-polaron correlation
functions gTP(r) for Gτ = 5 × 10−3 in Fig. 11(b). The SA
results for the steady-state triplet density are in very good
agreement with the KMC results. For cg = 100% there is also
a good agreement for gTP(r), while the agreement is fair for
cg = 10%. Figure 11(a) shows for cg = 10% a small under-
estimation of the triplet density of the SA in comparison to
KMC, which we attribute to our approximate way of including
percolation effects in the triplet diffusion. This underestima-
tion is in line with the slightly higher gTP(r) of the SA for
r > 3 nm observed in Fig. 11(b).

FIG. 11. (a) Dependence of the steady-state triplet density T on
the triplet generation rate G, for RF,TPQ = RF,TTA = 3 nm, RF,diff =
1.5 nm, no polaron diffusion (σ̂ → ∞), and guest concentrations
cg = 100% and 10%. (b) Correlation functions corresponding to the
results shown in (a) for Gτ = 5 × 10−3.

IV. COMPUTATIONAL EFFICIENCY

In this section, we compare the computational efficiency of
ME calculations using the SA to that of KMC simulations. We
focus on a comparison of the transient calculations. In the case
of steady-state calculations, the comparison is not straightfor-
ward because of the different procedures used to reach the
steady state. The ME calculations and KMC simulations were
performed on comparable hardware (Intel Xeon Gold 6240 or
comparable processors) with comparable numerical precision.
The ME calculations were done with Python codes that can be
further optimized and possibly, to some extent, parallelized.
The KMC simulations were done with the highly optimized
commercial software tool BUMBLEBEE [30].

As a first example, we consider TPQ with a Förster radius
RF,TPQ = 3.0 nm, no TTA, and no triplet diffusion. For the SA
calculations, the CPU time is independent of the initial triplet
density T0 and the polaron density P, as is expected, whereas
the CPU time increases steeply with increasing T0 and P
for the KMC simulations. For a typical polaron density P =
10−3 nm−3, an initial triplet density T0 = 5 × 10−3 nm−3, and
a dimensionless disorder strength σ̂ = 4, the KMC simula-
tions take for a single run about a factor of 30 longer than
the SA calculations. The transient KMC results for this case,
presented in Sec. III A, were obtained by averaging over 100
runs. The SA calculations, which require only a single run,
were in this case at least three orders of magnitude more CPU
time-efficient than the KMC simulations.

As a second example, we consider the case P =
10−3 nm−3, T0 = 5 × 10−3 nm−3, RF,TPQ = RF,TTA = 3.0 nm,
including triplet diffusion with RF,diff = 1.5 nm, and different
guest concentrations cg. The CPU time for the SA calcula-
tions is almost independent of cg. For the KMC simulations,
the CPU time increases approximately linearly with cg. For
a guest concentration of cg = 100%, the KMC simulations
take for a single run about a factor 20 longer than the SA
calculations for σ̂ = 4. By decreasing the value of σ̂ to
2 and 0, the gain factor increases to 80 and 300, respectively.
The KMC simulations for this case, presented in Sec. III C, are
averaged over a typical number of 100 runs and take at least
three orders of magnitude longer than the SA calculations.

Parallel execution of KMC simulation runs for various dis-
order configurations can significantly reduce the wall time as
compared to the CPU time for examples mentioned above. For
example, in the case of 100 individual runs, the reduction in
wall time can be two orders of magnitude. However, the speed
of the ME code can also be further increased by optimization
and parallelization.

V. SUMMARY, CONCLUSIONS, AND OUTLOOK

We developed and applied a new master equation (ME)
modeling method to the description of Förster-type triplet-
triplet annihilation (TTA) and triplet-polaron quenching
(TPQ), including polaron hopping and Förster-type triplet dif-
fusion. The method is applicable to organic emission layers
consisting of a guest phosphorescent emitter embedded in a
host molecular semiconductor. From the ME, a hierarchical
chain of equations was derived that includes the correlations
in the positions of the triplets and polarons to increasing
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order. Following our previous work on TTA [17], we solved
this chain of equations by approximating three-site correla-
tion functions as products of two-site correlation function
using the superposition approximation (SA). We found that
the SA yields very accurate results for relevant quantities,
as benchmarked by kinetic Monte Carlo (KMC) simulations.
This holds both for transient situations corresponding to time-
resolved photoluminescence (TRPL) experiments as well as
for steady-state situations. The CPU time required for the SA
calculations is in some cases orders of magnitude less than
for the KMC simulations, which makes this type of modeling
an attractive alternative. In addition, this type of modeling
provides important insights into the role of correlations in the
TTA and TPQ processes.

Extensions of this work could involve other than Förster-
type TTA, TPQ, and diffusion, like their short-range Dexter-
type versions, and other, more realistic, types of polaron
hopping rates. When Coulomb interactions between the po-
larons are taken into account, polaron-polaron correlations
become important and should be included at high polaron
densities. In the present work, approximations were made
to preserve the lattice symmetry, in conjunction with a con-
tinuum approximation, so that two-site correlation functions
only depend on the distance between the sites. In principle,
these approximations do not need to be made. Without these
approximations, the solution of the involved equations will
be technically more difficult, but possibly still feasible. Per-
colative effects in the triplet and polaron motion can then be
explicitly accounted for.
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APPENDIX: ANALYTICAL SOLUTIONS
FOR LIMITING CASES

Analytical solutions of Eqs. (20)–(22) can be obtained
in the limiting cases of (i) strong polaron diffusion and no
triplet diffusion, and (ii) no triplet nor polaron diffusion [37].
We additionally apply a low triplet and low polaron-density
approximation. Because we neglect correlations in between
polarons, we have gPP(r, t ) = 1. Furthermore, all correlations
vanish for large distances,

lim
r→∞ gαβ (r, t ) = 1. (A1)

In the transient cases that we will consider, no correlations are
initially present at t = 0 so that

gαβ (r, 0) = 1, (A2)

in accordance with the physical initial conditions of a TRPL
experiment.

(i) In the case of strong polaron diffusion (W (r) → ∞)
and no triplet diffusion, the strong polaron diffusion washes
out the correlations between polarons and triplets, so that
gTP(r, t ) = 1. For this case, we separately consider the tran-
sient solution, to be compared with a TRPL experiment, and
the steady-state solution. For the transient solution (G = 0) in
the regime of low triplet and polaron density, the first term
on the right-hand side of Eq. (21) is dominant and gTT(r, t ) is
obtained as

gTT(r, t ) = e−2S(r)t . (A3)

With this, the solution of Eq. (20) becomes

T (t ) = T0e−k3t

(
1 +

√
2 T0π

2R3
F,TTA

3
√

k3/kr
erf (

√
k3t )

)−1

, (A4)

where k3 ≡ kr + kTPQP. Here, we have additionally assumed
that r0 	 RF,TTA, so that the integral of the first term in square
brackets of Eq. (20) can be extended to r = 0. This is a good
approximation for a typical value RF,TTA = 3 nm.

For the steady-state case, we derive an expression for
gTT(r) by taking into account additionally the terms propor-
tional to G at the right-hand side of Eq. (21) and putting the
time derivative on the left-hand side equal to zero,

gTT(r) = 1

1 + T S(r)
G( 1

a3 −P)
. (A5)

By substituting this expression into Eq. (20) and setting
dT/dt equal to zero, we obtain as equation for the steady-state
solution

−k1T + G

(
1

a3
− P

)
− 2π2

3
a3/2T 3/2

√
Gkr (1 − Pa3)

×
(

RF,TTA

a

)3

= 0. (A6)

From this equation, T can be solved as a function of G. Here,
we have again assumed that the integral of the first term in
square brackets in Eq. (20) can be extended to r = 0.

(ii) In the limit of no triplet nor polaron diffusion, we can
also obtain exact results when both the triplet and polaron
densities are low. In the transient case, we find again that
gTT(r, t ) is given by

gTT(r, t ) = e−2S(r)t . (A7)

We obtain gTP(r, t ) from Eq. (22) by again taking into account
only the first term on the right-hand side, yielding

gTP(r, t ) = e−Q(r)t . (A8)
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Substituting the expressions for gTT(r, t ) and gTP(r, t ) into
Eq. (20) yields as a solution

T (t ) = T0e−(kr+2k4Pa3/
√

krt )t

(
1 +

√
2

3
T0π

2R3
F,TTAe(k4Pa3/kr )2

× [erf (k4Pa3/kr +
√

krt ) − erf (k4Pa3/kr )]

)−1

,

(A9)

where k4 ≡ (2/3)krπ
3/2R3

F,TPQ/a3. In this case the integrals
of both terms in square brackets in Eq. (20) have been ex-
tended to r = 0, which now requires both r0 	 RF,TTA and
r0 	 RF,TPQ.

To obtain the steady-state solution, we solve Eq. (22) in
the low triplet and low polaron-density approximation, which
yields, after putting the left-hand side equal to zero,

gTP(r) = 1

1 + T Q(r)
G( 1

a3 −P)
. (A10)

Next, this solution is employed to solve Eq. (21) in the low
triplet and low polaron-density approximation, resulting in

gTT(r) = G
(

1
a3 − PgTP(r)

)
G

(
1
a3 − P

) + T S(r)
. (A11)

Finally, by substituting these expressions for gTP(r) and gTT(r)
into Eq. (20), we obtain

G(1−Pa3) = Ta3(G + kr ) + 2

3
π2PR3

F,TPQ

√
GkrTa3(1 − Pa3)

+ 2

3
π2

√
GkrT 3a3

1 − Pa3
R3

F,TTA

×
(

1 − Pa3
R3

F,TTA

R3
F,TTA + R3

F,TPQ

)
. (A12)

The steady-state triplet density can be found by solving this
equation for T as a function of G.
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