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We theoretically study the interplay of short-range random and quasiperiodic static potentials on the low-
energy properties of three-dimensional Weyl semimetals. This setting allows us to investigate the connection
between the semimetal to diffusive metal “magic-angle” phase transition due to quasiperiodicity and the
rare-region-induced crossover at an avoided quantum critical point (AQCP) due to disorder. We show that
in the presence of both random and quasiperiodic potentials the AQCP becomes lines of crossovers, which
terminate at magic-angle critical points in the quasiperiodic, disorder-free limit. We analyze the magic-angle
transition by approaching it along these lines of avoided transitions, which unveils a rich miniband structure and
several AQCPs. These effects can be witnessed in cold atomic experiments through potential engineering on

semimetallic band structures.
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I. INTRODUCTION

There is a significant push to discover and understand the
nature of gapless topological materials. This has been fu-
eled by the experimental discovery of three-dimensional (3D)
topological Dirac and Weyl semimetals in weakly correlated
narrow-gap semiconductors [1-9], as well as their observation
in several strongly correlated materials [10-18]. However,
the Fermi energy does not typically coincide with the Weyl
or Dirac touching points in the band structure, making the
effects on the low-energy thermodynamic properties indirect.
Nonetheless, nodal touching points have been identified using
a combination of angle-resolved photoelectron spectroscopy
experiments [1-3,19,20] and ab initio calculations [21,22],
while their manifestation in transport arises through a nega-
tive magnetoresistance [23-25]. These measurements provide
a systematic means to identify the existence of Dirac and
Weyl nodes in several weakly correlated material candidates.
Recently, the demonstration of a 3D Weyl semimetal in
an ultracold atom experiment using artificial spin-orbit cou-
pling [26] opened the door to a new level of control over Weyl
semimetals. These systems are tunable; filling is controlled
by the number of atoms in the trap, and disorder and lattice
imperfections are removed altogether. Therefore, perturba-
tions can be turned on at will to determine the fate of Weyl
semimetals experimentally while opening the door to study
effects that are out of reach in solid-state compounds.

Due to the interplay of topology and a vanishing pseudogap
density of states, single-particle perturbations can have several
nontrivial effects. In particular, the effects of disorder on non-
interacting Weyl semimetals have been well studied [27,28].
Within perturbative (e.g., self-consistent Born [29,30],
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large-N [31], and renormalization group [32,33]) treatments
of the problem, a disorder-driven quantum critical point was
found. However, when taking into account the nonperturba-
tive effects of disorder, rare regions of the random potential
give rise to power-law quasibound states where the disorder
is atypically large and cannot be treated perturbatively [34].
These rare states were found to endow the Weyl semimetal
with a finite density of states at the Weyl node, destabilizing
the Weyl semimetal phase into a diffusive metal for any weak
random potential [28]. As a result, it was shown that the
putative critical point is rounded out into a crossover, dubbed
an avoided quantum critical point (AQCP) [35-38]. Instanton
fluctuation calculations (about the saddle point) for a single
Weyl cone found that this picture is modified [39], and these
results were interpreted in terms of a nontrivial scattering
phase shift [40]. However, it was later shown that such phase
shifts are inherently problematic as their conclusions violate
Levinson’s theorem [41] and, instead, the AQCP is the correct
description [42]. This is also consistent with a numerical study
of a disordered single Weyl cone in the continuum limit that
showed the transition remains strongly avoided with essen-
tially the same kind of AQCP as in previously studied lattice
models with multiple Weyl cones [43].

On the other hand, the fate of Weyl semimetals in the pres-
ence of quasiperiodicity that does not have any rare regions
(due to the potential being infinitely long range correlated)
was only considered recently. It was numerically shown [44]
and then rigorously proven [45] that the Weyl semimetal
phase is stable to a weak quasiperiodic potential. As a re-
sult, at a large enough potential strength quasiperiodicity
drives a bona fide semimetal to diffusive metal phase tran-
sition at a nonzero critical quasiperiodic strength [44]. At this
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transition the Weyl velocity goes to zero continuously, the
density of states becomes nonanalytic, and the single-particle
wave functions at the Dirac node energy delocalize in mo-
mentum space. Studies of similar effects in two-dimensional
Dirac semimetal models [46—48] have linked this quantum
phase transition to the magic-angle phenomena originally dis-
covered in twisted bilayer graphene [49] (and extended to
incorporate incommensurate effects [46,50]). Thus, the transi-
tion that was originally sought in disordered Weyl semimetals
was uncovered in the quasiperiodic limit by removing rare
regions from the problem. We therefore refer to the critical
point due to a quasiperiodic potential as a “magic-angle tran-
sition” (MAT); here the “angle” refers to the incommensurate
wave vector characterizing the quasiperiodic potential that can
be viewed as an angle within a higher-dimensional projective
quasicrystal construction [51].

In this paper, we make a direct link between the avoided
transition and the magic-angle quantum critical point in three
dimensions. We do so by considering how the avoided transi-
tion is connected to the magic-angle condition of a vanishing
velocity by studying the interplay of disorder and quasiperi-
odicity on equal footing. A closely related problem has been
studied in two-dimensional Dirac semimetal models and is
pertinent to understand the role of twist disorder in magic-
angle graphene experiments [50,52-56], which have attracted
a great deal of attention. However, in two dimensions the
marginal relevance of disorder removes the AQCP from the
problem and does not allow a direct link between the two
effects to be exposed.

Through numerical calculations of the density of states
of an inversion-broken 3D Weyl semimetal using the kernel
polynomial method (KPM) we show that the AQCP becomes
a line of crossovers that terminate at the MAT, as shown
in the phase diagram in Fig. 1. We study the fate of the
analytic properties of the zero-energy density of states when
disorder is added to the quasiperiodic Weyl semimetal model,
demonstrating the interplay of incommensurate induced mini-
band formation and nonperturbative rare-region effects. Last,
the critical properties of the magic-angle transition are deter-
mined by approaching it along the crossover line of avoided
transitions, which allows us to provide an accurate estimate of
the power law nature of the vanishing Weyl velocity.

The remainder of this paper is organized as follows: The
model and the method used are introduced in Sec. II, and
we determine the phase diagram of the model in Sec. III and
the critical properties along the line of crossovers in Sec. IV.
Finally, in Sec. V we discuss the implications of our results
and how to detect our predictions using ultracold atoms and
conclude. In the Appendix we briefly discuss the formation of
the first and second minibands in the absence of disorder.

II. MODEL AND METHOD

To investigate the interplay of the effects of disorder and
quasiperiodicity on Weyl semimetals we add two separate
potentials to a lattice model of an inversion-symmetry-broken
Weyl semimetal given by

H =3 (ita¥ioutep +He) + D vV, (1)
r,Q r

W/t

FIG. 1. Phase diagram of disorder (Wp) and quasiperiodic (W)
potential strengths at the Weyl node energy (E = 0). Solid blue
lines are stable Weyl semimetal phases that terminate at magic-angle
transitions (the Weyl semimetal at larger Wy, is an inverted semimetal
phase). At any nonzero W, the model is in the diffusive metal phase;
dark red marks the semimetal regime p(E) = p(0)+ p”(0)E?/2,
where p(0) is nonzero but exponentially small, and light red is past
the AQCP where p(0) ~ O(1). The location of the peak in p”(0)
as a function of Wy, (for fixed Wy) provides an estimate of the AQCP
(and the quasiperiodic transition at W = 0) that we label as W (Wp).
We compare two choices of the distribution of the disorder potential
P[V], showing their distinction is insignificant near the magic-angle
transitions and Gaussian and binary distributions; the latter has been
shown to weaken the avoidance for Wy, = 0 [36]. This analysis is
done on a system size of L = 89, KPM expansion order No = 2'°,
and 100 samples. Sufficiently close to the magic-angle transitions ad-
ditional minibands appear that give rise to more structure in Wy (W)
(see Sec. IV); that additional miniband structure is not shown here.
Dashed vertical lines indicate the transitions at W, = 0 into or out
of diffusive phases (from left to right, Wy, ; ~ 0.38¢, Wy, | ~ 0.395t¢,
and Wy, ~ 0.6345t).

where u = x, y, z and the potential is a sum of two separate
contributions from randomness (that we denote with D for
disorder) and quasiperiodicity Q,

V(r) = Vp(r) + Vo(r), @

which we parametrize below. The model lives on the simple
cubic lattice of linear size L, and we average over twisted
boundary conditions to reduce finite-size effects. The hopping
is then given by t, = re»/L /2, where the twist in the u
direction 6,, is randomly sampled between 0 and 2. In the
absence of the potentials the band structure is given by

Eo(k) =t | Y sin’(k, +6,/L), 3)
U=X,y,Z
with eight Weyl cones labeled by Ky at the time-reversal-

invariant momenta (for no twist) in the Brillouin zone. Near
each Weyl point Ky, the dispersion is given by

Ey(k) ~ fvo(Ky )k — Ky, “

with a velocity vo(Ky ) = £t that depends on the helicity.
The disorder potential Vp(r) is sampled independently at
each site from a probability distribution P[V]. In the following
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we consider two different distributions. To enhance rare-
region effects we consider a Gaussian distribution with zero
mean and standard deviation Wp. To suppress rare regions
and enhance the critical scaling properties we also consider a
binary distribution where the value of the potential is equally
likely to be £Wp,. In the absence of the quasiperiodic potential
the semimetal phase of this model is unstable to rare-region
effects that induce a diffusive metal phase at infinitesimal dis-
order strength. The resulting perturbative transition is avoided
and rounded into a crossover. By varying the tails of the dis-
tribution P[V] we can control the probability to generate rare
events, removing the tails as in the binary case quantitatively
suppresses (but does not eliminate) rare-region effects [36].
All results shown are for the case of Gaussian disorder unless
otherwise specified.
The quasiperiodic potential is given by

Vor)=Wo Y cos(Qury + ¢, (5)

H=X,Y,2

where the quasiperiodic wave vector is taken as a rational ap-
proximant Q; = 27 F,_, /L, where the system size is given by
the nth Fibonacci number L = F, and in the thermodynamic
limit Q; — Q = 27[2/(+/5 + 1)]>. The random phases ¢,
are randomly sampled between O and 2w as the origin of
the quasiperiodic potential is arbitrary. In the absence of the
random potential this model has been shown to host several
magic-angle transitions between Weyl semimetal and diffu-
sive metal phases as a function of increasing Wyp. Near the
magic-angle transition W,, in the semimetallic phase, the ve-
locity of the Weyl cone vanishes as

v(Wo) ~ [Wo — W, [P/, ©)

where B ~ 2 and d = 3 is the spatial dimension [44]. The
plane wave Weyl eigenstates delocalize in momentum space,
and the level statistics become consistent with random matrix
theory when one enters the diffusive metallic phase. In the
following, we use disorder to round out the critical properties
of the quasiperiodic induced transition, which allows us to
approach the MAT from a new direction.

To characterize the system we numerically compute the
density of states (DOS), which is given by

1
p(E) = EZ«S(E—E,-), 7

where E; are the eigenenergies of H. The DOS is computed
using the KPM by expanding it in terms of Chebyshev poly-
nomials to order N¢ and evaluating the expansion coefficients
with sparse matrix-vector multiplication. For the system sizes
L = 55, 89 considered here, N¢ is the most dominant finite-
size effect, and therefore, we try to converge our results with
Nc. The analytic properties of the density of states are inves-
tigated by assuming the DOS is always analytic and Taylor
expanding

p(E) = p(0)+ 1p"(OE* + - -, ®)

and we directly compute the second derivative of the DOS
with the KPM at the Weyl node energy (E = 0) p”(0) [36]. If
the DOS becomes nonanalytic, then p”(0) — oo, whereas if
the system undergoes a crossover, it will remain finite.

1 St . . . - -

EH"@-{;\ V(Wg)lvg =

0.8t cp.‘*\ AWQVAOI"? o

By WaWoW,0)
0.6 | % ]
),

04 | f@'% ]
gt‘& éf DD;_@

0.2 ¢ g 0% |

%g 4 D%

) I .- S

0 01 02 03 04 05 06

FIG. 2. Renormalized velocity and related scales: Comparison of
the renormalized velocity v(Wy) with the location of the avoided
transition W, (W) and the dependence of the density of states A(Wy)
[see Eq. (12)]. The velocity v(Wy) of the renormalized semimetal is
obtained from the disorder-free limit using p”(0) oc v (for system
size L =144 and N =20 from Ref. [44]), A(W,) is extracted
from the rare-region dependence of In p(0) ~ A(Wp)/(Wp)?* [from
the data that are converged in L and N¢; see Eq. (12)]), and W, (Wy)
denotes the line of AQCPs determined from the maximum in p”(0)
as a function of Wy (obtained from a system size of L = 89 and
KPM expansion order No = 2!°). Sufficiently close to each MAT,
the formation of minibands (see the Appendix) enriches the picture
beyond the relations implied by these data; that requires sufficiently
large L and/or N¢ to observe (see Sec. IV).

For a stable Weyl semimetal phase we have p(0) = 0 and
0"(0) = Ny /(2m*v?), where v is the velocity of the Weyl
cone and Ny denotes the number of Weyl points in the band
structure. Using this relation, an estimate of the velocity in
the Weyl semimetal phase Wp = 0 is shown in Fig. 2. Impor-
tantly, this also implies that when v — 0, the DOS becomes
nonanalytic as p”(0) — oo, signaling a MAT. Thus, Fig. 2
also demonstrates the existence of three MAT's taking place at
W1 =~ 0.38¢ into the diffusive metal (DM) phase and out of
the DM phase to a reentrant semimetal (SM) at WA’,L1 ~ 0.395¢
and then a transition back to the DM phase at Wy, , ~ 0.6345¢
for this range of Wy and Q/27 = [2/(+/5 + 1)]*. We note
that the reentrant semimetal phase for W > W), | occurs by
inverting the positive and negative energy bands, which we
refer to as an inverted Weyl semimetal phase. In Ref. [44]
we demonstrated that the critical properties of each of these
quasiperiodic driven transitions is the same (to within numer-
ical accuracy). The structure of the phase diagram (e.g., the
number of magic-angle transitions) depends on the choice of
QOr, in Eq. (5) [44,46]. Predicting the structure of the phase
diagram to this level requires higher-order perturbative correc-
tions [the leading order given in the following section, Eq. (9),
contains only one].

III. PHASE DIAGRAM

As the Weyl semimetal phase is stable in the presence of
a quasiperiodic potential, we find it most natural to explain
the structure of the phase diagram at the Weyl node energy by
adding disorder to the quasiperiodic Weyl semimetal model.
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FIG. 3. Evolution of the density of states: (a) and (d) p(E) (with L = 89 and N = 2'*), (b) and (e) 0”(0), and (c) and (f) 0(0) as a function
of Wp and W, for various values of the KPM expansion order N¢, L = 55 (open symbols), and L = 89 (solid symbols). The values of the
quasiperiodic potential are W, = 0.2¢ in the semimetal phase (top row) and W, = 0.55¢ in the inverted semimetal phase (bottom row). These
data are averaged over 1000 samples for No = 2°,2'°, 2! and 5000 samples for No = 2'2, 2!3. Straight lines in (c) and (f) are fits to the

rare-region form in Eq. (12).

From this perspective, we can safely use perturbation the-
ory to determine a new low-energy effective model in the
quasiperiodic renormalized semimetal phase. We note that for
Wy1 < Wo < Wy, the inverted semimetal phase requires a
rather high order in perturbation theory to be described. For
Wp = 0 we can evaluate the self-energy of the single-particle
Green’s function by treating Wy, perturbatively [46], similar
to what is done to describe twisted bilayer graphene [49].
Focusing on the present case with Q close to 7, we need to
consider only internode scattering. This results in a renormal-
ized velocity v(Wy), with a perturbative expression to leading
order [46]

v(Wp) 1 —2(2—cos(Q))a?
- 1 + 6a?

©)
Vo
where the dimensionless coupling constant o =
W/[2¢t sin(Q)] and a magic-angle condition occurs where
v(Wp = Wpma) = 0. We note that sufficiently high orders in
perturbation theory are required to describe the data in Fig. 2.
Nonetheless, our numerical results confirm beyond perturba-
tion theory that the quasiperiodic potential produces a magic-
angle transition where the velocity vanishes. At the same
time, away from the magic-angle transition the quasiperiodic
potential carves out a mini Brillouin zone (mBZ), with
an effective band structure on an emergent moiré lattice
that is qualitatively described by perturbation theory (see
Refs. [46,57] for an explicit construction of the band structure
along these lines as well as the Appendix for more details).
The band gap in the density of states in Fig. 3(a) for
Wp = 0 and W = 0.2t demonstrates the stability of the Weyl
semimetal phase to a weak quasiperiodic potential at low
energies and the presence of the mBZ. As we will demonstrate

below, our numerical results in a portion of the weakly disor-
dered semimetal phases of the model can thus be interpreted
as introducing disorder to a Weyl semimetal that lives on the
mBZ with a renormalized velocity v(Wy). At larger quasiperi-
odic strength, in particular, in the reentrant semimetallic phase
with Wy 2 0.5¢, this is modified due to the inversion of the
bands and the lack of a true band gap, an example of which
is shown for Wp = 0 and Wy = 0.55¢ in Fig. 3(d). In each
case, introducing disorder smoothly fills in these band gaps,
pseudogaps, and fine features while rounding out the sharp
structure that is due to quasiperiodicity.

To determine the location of the AQCP at finite disorder
and quasiperiodic potential strength we evaluate p”(0) for
fixed Wy as a function of Wp to determine the location of the
peak in p”(0), as shown in Figs. 3(b) and 3(e), which provides
an accurate estimate of the AQCP crossover location Wy (Wp).
Importantly, these data are converged in system size L and
KPM expansion order N¢, and there is no divergence of p”(0)
upon increasing either L or N¢, demonstrating the crossover
nature of the AQCP. Doing this across the parameter regime
results in the phase diagram shown in Fig. 1. We note that
the phase boundary is obtained for a fixed system size L = 89
and KPM expansion order Ne = 2'°, and very close to the
MAT at small Wp, it could be weakly shifted. Remarkably, the
AQCP smoothly connects from the termination of the small
diffusive metal phase due to the first magic-angle transition at
Wo = Wy, to the second magic-angle transition near Wy =
Wama 2 =& 0.63¢. Comparing the crossover boundary in Fig. 1
with the estimates of the velocity of the disorder-free model
v(Wp) shown in Fig. 2 demonstrates that the line of avoided
transitions Wy (W) is simply parameterized by the relation

Wa(Wp) < v(Wp) (10)
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for Wp < Wy1. This relation inside the semimetal phase
demonstrates that in the low-energy limit the only relevant
scale left in the problem is the Weyl cone velocity v(Wp),
which we comment on in more detail at the end of this section.
In Fig. 1 we compare the line of AQCPs between Gaus-
sian and binary disorder distributions. The distinction between
these two distributions is significant only at sufficiently weak
Wp. This can be understood as follows: As we increase the
quasiperiodic potential strength (with Wp = 0), a semimetal
miniband forms around zero energy for Wy 2 0.15¢ with a
hard gap [e.g., Fig. 3(a)] and a new effective mini Brillouin
zone of linear size (r — Q)/a (where a = 1 denotes the lattice
spacing). As a result, an emergent unit cell develops that goes
from size a to ayp = a(nz_—”Q) ~ 8.5a. The density of states
before and after this first miniband has opened is shown in
the Appendix. As the magic-angle transition is approached
further, lower-energy minibands continue to appear [46]. If
we then project the Hamiltonian onto the lowest-energy mini-
band, which is separated from the rest of the states by a
hard gap via the projection operator Pyg = 3 E,emp |En) (Enl
(which sums over energy eigenstates with energies within the
miniband), we can then compute Wannier states on the lowest-
energy miniband. Thanks to the hard gaps and no topology
in the band structure, these are exponentially localized to
Wannier centers [58] labeled by R on the moiré lattice with
the Wannier functions Wr(r). Applying this unitary operation
plus a projection onto the lowest-energy miniband maps the
disorder potential in the Hamiltonian to ) . Vo) e —

>R VD(R)I/I; YR, where R labels the Wannier centers and
VpoR) = Y V()| Wa()? (11)

reavs

is the coarse-grained random potential on the scale of the
moiré unit cell. As a result, the sharp distinction between the
Gaussian potential, which has large local fluctuations, and the
binary distribution, which does not, is lost after coarse grain-
ing over this larger unit cell. This conclusion is consistent with
the lack of distinction between Gaussian and binary disorders
in the vicinity of each magic-angle transition.

Now turning on finite disorder strength at a fixed value
of Wy (which remains in the semimetal phase), we expect
that a nonzero density of states will be induced at the Weyl
node energy due to rare-region effects. As shown in Figs. 3(c)
and 3(f), we find that the DOS is converged in N¢ and goes as

AWo)
W5

In p(0) ~ — 12)
(for each value Wy that is in the semimetal phase of the
model for Wp = 0). From fits to this rare-region form shown
in Figs. 3(c) and 3(f), we extract A(Wp). At weak disorder
and quasiperiodicity strength we find good agreement with the
identification

A(Wp) o v(Wp)?, (13)

as demonstrated in Fig. 2 by comparing A(Wp) to the
numerically estimated value of v(Wy) from p”(0). However,
we do find a distinction at larger quasiperiodic strengths
Wy 2 0.5t, where the Weyl semimetal miniband is no longer
isolated from the rest of the states by a hard gap such as in

Fig. 3(d) (this minigap closure occurs near W =~ 0.5¢, which
is not shown), which alters the shape of the cutoff function
and energy dramatically. Correspondingly, the prefactor in
the DOS A(Wy) does not simply follow v(W) in this regime
(Wp 2 0.51).

The data in Fig. 2 and results in Egs. (10) and (13) suggest
that in the semimetal phase there is only one relevant scale
v(Wp), which is described by the following picture. For a
Weyl semimetal in the presence of disorder, the low-energy
continuum model H = vk - 0 + V(x) has one dimensionless
parameter that controls the physics: «p = Wp/(v/a) for dis-
order strength Wp, velocity v, and cutoff (lattice) scale a.
As the length scale is not varied in this problem, only v =
v(Wp) at low energy, suggesting Wy ~ v(Wy), as we find. In a
similar manner, the density of states should be exponentially
suppressed by In p(0) ~ —1/a} ~ —v(Wp)?/W}. This sim-
ple single parameter which controls the low-energy theory is
consistent with all of the data, allowing us to even discover
properties of the low-energy Hamiltonian. It further lends cre-
dence to the statement that what we are witnessing is physics
occurring due to the Weyl point itself and not another structure
imposed by, say, the myriad gaps opened by either subtle
tight-binding model effects or the fine structure emerging at
higher energies due to quasiperiodicity.

IV. APPROACHING THE MAT ALONG THE LINE
OF AQCPs

Having identified the crossover boundaries marked by
the line of AQCPs, defined by the disorder strength Wp =
Wa(Wp) that terminates at the magic angles, i.e., Wy(Wma) =
0, we now study the critical properties of the magic-angle
transition. The inclusion of disorder allows us to approach the
magic-angle transition from the line of avoided transitions,
which effectively parametrize the path through parameter
space of maximal correlation length (as a function of Wp) for
each value of Wy. As the critical properties of each magic-
angle transition remain the same, without loss of generality,
we focus on the second magic angle that occurs for Wy 2/t ~
0.63 and approach it from below. This is also convenient
because the close proximity of the two transitions Wy, ; and
W, | (see Fig. 1) that we expect will make the numerical study
below more challenging.

Figures 4(a) and 4(b) show the energy dependence of the
density of states along the line of avoided transitions terminat-
ing at W = Wja 2. At each avoided critical point the density
of states develops the scaling at finite energy [|E| > |E*|,
where E* marks the crossover energy set by the finite value
of p(0)],

p(E| > |E*|) ~ |E], (14)

where this power law is consistent with the one-loop renor-
malization group results that produce a dynamic exponent
z = 3/2 [32]. We note that this energy dependence is seen at
each avoided transition [i.e., maximum in p”(0) versus Wp],
as also seen in Figs. 3(a) and 3(d). However, at the AQCP
and sufficiently low energy, the density of states is nonzero
p(0) > 0 [as exemplified in Figs. 3(c) and 3(f) and Eq. (12)],
which rounds out this power law. At the MAT, on the other
hand (with W, = 0), p(0) is nonzero, as seen in Fig. 4(b). One

165151-5



PIXLEY, HUSE, AND WILSON

PHYSICAL REVIEW B 109, 165151 (2024)

(a) 08 Wot=0275
0.7 0.250 —— ]
0.6 -
0.5 T
W o4
(X
0.3
0.2
0.1
0 ! ! ! !
-0.4 -0.2 0 0.2 0.4
E/t
(b)©-% Wp/t=0.060
03 0.045 ——
: 0020
0014
025 0.00 ——
—~ 0.2
U\J’ 0
Q. 0.15
0.1
0.05

-0.02 -0.015-0.01 -0.005 0 0.005 0.01 0.015 0.02

E/t

FIG. 4. Density of states along the line of AQCPs that is defined
by Wa(Wp). We show p(E) for L = 89 at larger Wp = Wy(Wp) in
(a) (with Np = 2'%) and closer to the transition at a much lower
energy scale in (b) (with No = 2'%) as Wy — 0 [recall Wa(Wp) is
shown in the phase diagram in Fig. 1]. The data are shown starting
from Wy = 0.55¢ and terminating at the magic-angle transition at
W3 = 0.6345t for Wp = 0. The finite but low-energy dependence
along the line of AQCPs is consistent with the expected behavior
in Eq. (14). However, as we go from (a) to (b), we can see that
a consequence of the second miniband opening up for W, ~ 0.62¢
realizes a dramatically renormalized p”(0) seen through the shape
near zero energy until we hit the MAT and a finite density of states is
generated (Wp = 0).

can clearly see that the slope of the linear part of the density of
states that follows Eq. (14) is monotonically increasing as we
approach the MAT, which is directly reflected in the behavior
of p(E) and p”(0) at the lowest energies, which we now come
to.

First, we recall that p”(0) diverges at the magic-angle
transition [44]; approaching this singular behavior from fi-
nite disorder strength allows us to approach the magic-angle
transition in a unique way to probe the critical scaling
properties. We first focus on p”(0) along Wy (W) at large
enough KPM expansion order to resolve the second miniband
opening near Wy ~ 0.62t (Wp = 0) in Fig. 5(a). We show
how this second miniband appears in the Appendix. Before
the second miniband opens (W, < 0.62t) we see a single
clear maximum in p”(0). In contrast after the second mini-

band has opened (Wyp > 0.62¢), we see the AQCP becomes
significantly sharper, leaving behind a second peak. While
we are able to converge both of these peaks in N¢ for Wy =
0.625¢ as shown Fig. 5(b), that is not possible as we get
closer to the MAT. As an example, we show Wy = 0.63¢ in
Fig. 5(c); while we are able to converge the weaker peak at
larger Wp, we cannot converge the sharper weak at weaker
disorder strength.

In order to associate these two peaks with AQCPs in the
first and second minibands we show the evolution of p(E) at
fixed Wp = 0.63¢ as a function of Wp in Fig. 6. Importantly,
we find that at each peak in p”(0), p(E) follows the expected
AQCP “scaling” form in Eq. (14). As the value of p”(0)
is significantly larger and not fully converged in N¢ for the
second miniband, we now turn to how this begins to diverge
as we come to the MAT.

Focusing on p”(0) along the avoided line, we plot it versus
Wa(Wp) as we approach the MAT in Fig. 7(a) for both the
dominant peak and the subleading peak, while the inset shows
the location of each maximum in p”(0). As we previously
described, we are able to converge the dominant peak in N¢
when we are far enough away from the MAT. This regime,
which is controlled by the first miniband, is well described by
the partial power law

p"(0) ~

! in miniband 1, (15)
(Wa)?
and this also describes the well-converged peak (which is
also associated with miniband 1). We pause here to note that
if this power law were to hold all the way to Wy =0, we
would, in fact, find our results to not be internally consistent.
To understand why consider the following: We established in
Eq. (10) that Wy ~ v(W), but this implies that the density
of states diverges as p”(0) ~ 1/v(Wp)?, a slower divergence
than in the clean limit Wy = 0, where p”(0) ~ 1/v(Wp)?, a
contradiction. This issue is alleviated, however, by consider-
ing how the second miniband enhances p”(0).

The nature in which p”(0) is increasing in the second
miniband, on the other hand, is stronger, where our limited
numerical data yield the partial power law

0”(0) ~ in miniband 2. (16)

(WA )2.5
Importantly, the combination of this increase in the partial
power law exponent and the demonstration that its value is
miniband dependent resolves the prior internal inconsistency
with the limit of Wp = 0. To look at this partial divergence
within the second miniband in a different way, we consider
0"(0) as a function of Nc along W, from where we can
to where we cannot converge p”(0). Precisely at the MAT
Wp = 0 and Wy = 0.6345¢, we find p”(0) diverges with N¢
as p”(0) ~ (N¢)*3 for the largest N¢ that we have accessed.

This leads us to argue that as we approach the MAT,
each miniband produces a partial power-law-like divergence
of p”(0) with 1/(W,) that is described by

0"(0) ~ in miniband n 17

1
(Wy)Pn

where §, depends on the nth miniband; in the present problem
we find B ~ 2 and B, &~ 2.5. As two of us conjectured in
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FIG. 5. Evolution of the AQCP on approach to the magic-angle transition along W4 (W)). (a) Focusing on p”(0) on approach to the transition
for No = 2'3, we see that the original peak that we associate with the AQCP splits off, leaving behind a much weaker second peak at larger W,
that can be associated with an approximate AQCP due to the parts of the band outside of the second miniband. (b) We study the evolution of the
peaks for Wy = 0.625¢ as a function of the expansion order, demonstrating a converged AQCP peak at this system size (L = 89). (c) However,
for Wy = 0.63¢ as we get closer to the MAT, we are unable to converge the peak [see also Fig. 7(b)].

Ref. [46], there should be an infinite sequence of minibands
opening up as we get exponentially closer to the MAT so that
each corresponds to a given order in perturbation theory that is
dictated by the irrational nature of the incommensurate wave
vector Q in Eq. (5). Here it is the sequence F3, /2, where F,, are
Fibonacci numbers; the sequence represents the denominators
of the continued fraction of /5. As a result, we conjecture that
along the line of AQCPs there is an infinite sequence of S,;
obtaining B3 in our problem, however, remains a challenging
computational task.

V. DISCUSSION

In this paper, we made a direct link between disorder-
driven avoided quantum criticality and the semimetal-to-
diffusive metal magic-angle phase transitions tuned by

Wpt=0.010 ——
04| 0.020 — ]
0.025 —
-
03 0.050

S R A 7A S
-0.04 -0.03 -0.02 -0.01 0 0.01 0.02 0.03 0.04

E/t

FIG. 6. Demonstration of AQCPs in the first and second mini-
bands for Wy /t = 0.63. We show the density of states p(E) as a
function of energy E for L = 89 and N = 2'* at the first maximum
in p”(0) in black, depicting the scaling p(E) ~ |E| in the second
miniband. The location of the second weaker peak in p”(0) is marked
in red, depicting the scaling p(E) ~ |E| in the first miniband. For
reference, see Fig. 5(a) for the structure of p”(0). At each peak in
0”(0) we find the low-energy dependence follows the AQCP form in
Eq. (14), allowing us to identify the signatures of two AQCPs as a
function of W), sufficiently close to the MAT.

quasiperiodicity. By viewing the problem as adding disor-
der to the quasiperiodic model, we constructed a complete
phase diagram. The quasiperiodic potential renormalizes the
Weyl semimetal parameters, and away from the magic-angle
transitions the Weyl semimetal survives. Adding disorder to
this system fills in the band gaps and pseudogaps due to
quasiperiodicity, introduces a finite density of states at the
Weyl node due to rare regions of the random potential, and
rounds out the magic-angle transition into a crossover. The
line of crossovers is parameterized by the Weyl cone velocity
renormalized by the quasiperiodic potential. Last, the diver-
gence of p”(0) (or the vanishing of the Weyl velocity) at the
magic-angle transition was computed by approaching the tran-
sition along the lines of avoided critical points. In future work,
it will be interesting to also study the effects of disorder along
the two MATs at smaller Wy in Fig. 1 than we considered
here.

The disordered and quasiperiodic Weyl semimetal model
we expect can be realized in future realizations of ultra-
cold atom experiments that use 3D spin-orbit coupling to
realize a Weyl semimetal phase. Disorder can be introduced
using several approaches (e.g., speckle patterns [59], pro-
grammable potentials [60,61], digital mirror devices [62]),
while quasiperiodicity can be achieved through a second
optical lattice incommensurate with the first. The phase
transition and crossovers can be measured through time
of flight imaging of wave packet dynamics [63] as well
as through the spectral function measured using radio-
frequency spectroscopy [57,64]. It will be exciting to see
whether the transition and its connection to avoided quantum
criticality can be exposed in future experiments. Alterna-
tively, circuit quantum electrodynamic setups were proposed
by one of us to also realize this phenomenon and see
its effect on spectroscopic transport measurements of the
junctions [65,66].

Future theoretical work needs to utilize a graphical pro-
cessing unit (GPU) implementation of the KPM to make
further progress. To see further minibands open up as we get
exponentially close to the magic-angle transition we would
have to systematically increase the system size beyond the
value of L = 89 that we considered here, which revealed
the second miniband at these expansion orders. In fact, the
sequence of perturbation theory order needed to see the next
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FIG. 7. Divergence of p”(0) on the approach to the MAT along
the line of AQCPs. (a) The solid data points represent peaks in p”(0)
that are converged in N that follow p”(0) ~ 1/W? (the blue solid
line is a fit). The open symbols are not yet converged [although they
are close to being converged as depicted in (b)], and we show their
N¢ dependence, with a fit to the largest No = 2'¢ (gray line), yielding
0" (0) ~ 1/W23. Inset: The locations of the leading AQCPs W, (Wy)
are shown as black symbols, while the location of the subdominant
peak is shown as magenta circles. (b) Dependence of the peak in
0"(0) on the KPM expansion order N as we approach the MAT
along the line of AQCPs. At the MAT (Wp = 0) we find this diverges
as p”(0) ~ (N¢)*? (the fit to the largest three expansion orders is
shown as a black line). All data here are obtained for a system size
L = 89.

gap open [46] up gives us a clue for this: If we take L = 3, 5,
the first miniband opens up, but the unit cell size is the en-
tire size of the system (and hence cannot be disordered); for
L = 13, 21, the second miniband forms, and the first miniband
can begin to become disordered. For L = 55, 89 the second
miniband can be disordered, while the third miniband forms as
only one unit cell. (Note that we skip even numbers since this
degenerate case puts the new miniband gap precisely at zero
energy, and no new miniband has yet been formed.) Following
this pattern, in order to begin to see disorder effects in the third
miniband, we would need to access L = 233, 377 (which are
accessible with GPU implementations of the KPM). While
continuing this process indefinitely will quickly lead to pro-
hibitively large system sizes, this issue may also be improved
by a renormalization scheme when Wp/t <« 1 that focuses

()12 Wt=000
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FIG. 8. Minibands in the clean limit, Wp = 0: For clarity, we
show the density of states in the clean limit for values of W, that
are less than and greater than required to open (a) the first miniband
and (b) the second miniband, both of which are shaded green, but
the energy scale is much smaller in the second miniband. Both mini-
bands depict the expected Weyl scaling p(E) ~ E? at sufficiently
low energy with very different coefficients. The results in (a) are for
L =89, 1000 samples, and No = 2'3, while (b) is for L = 89 and
5000 samples, where W, = 0.6 has N = 2'3 but for W, = 0.625¢
we take No = 2'* in order to show hard gaps as the second miniband
forms. We also point the reader to Ref. [44] for more data on the
opening of the first miniband.

computational effort on the lowest available miniband, which
we leave for future work.
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APPENDIX: MINIBANDS IN THE DISORDER FREE LIMIT

In this Appendix, we briefly review the formation of the
first and second minibands observed in the main text with-
out disorder. The quasiperiodic potential connects two of
the neighboring Weyl cones of opposite helicity at finite en-
ergy [e.g., scattering between the Weyl cone at K = (0, 0, 0)

and K = (r, 0, 0)]; the leading scattering process then con-
nects momentum k with w — k such that k + Q; = 7w —k,
and once the potential is strong enough, this will open a
gap at this energy (which can be described with degener-
ate perturbation theory). For this leading perturbative effect
this carves out a mini Brillouin zone of size (7w — Q;)°. If
we focus on Q; = 27 F,_,/L, the first miniband has Ny =
2(F,_3)’ states [44,47]. The second miniband arises due to
fourth-order perturbation theory with a momentum trans-
fer 40, — 37 and has N, = 2(F,_¢)° states. For the data
shown in Fig. 8 (at L = 89) this yields 18 522 states in
miniband 1 in Fig. 8(a) and 250 states in miniband 2 in
Fig. 8(b), which is excellent agreement with our numerical
data.
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