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Elementary point charge excitations in three-plus-one-dimensional (3+1D) topological phases can condense
along a line and form a descendant excitation called the Cheshire string. Unlike the elementary flux loop
excitations in the system, Cheshire strings do not have to appear as the boundary of a 2D disk and can exist
on open line segments. On the other hand, Cheshire strings are different from trivial excitations that can be
created with local unitaries in zero dimensions and finite depth quantum circuits in one dimension and higher. In
this paper, we show that to create a Cheshire string, one needs a linear depth circuit that acts sequentially along
the length of the string. Once a Cheshire string is created, its deformation, movement and fusion can be realized
by finite depths circuits. This circuit depth requirement applies to all nontrivial descendant excitations including
symmetry-protected topological chains and the Majorana chain.
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I. INTRODUCTION

Cheshire strings describe linelike excitations in topologi-
cal states, which contain a mysterious hidden charge along
the length of the string [1,2]. The charge content cannot be
pinpointed to one or a few local regions on the string and
therefore costs no extra energy compared to the zero charge
state. The degeneracy is a result of the spontaneous symmetry
breaking, or more precisely Higgsing, of (part of) the gauge
symmetry in the topological phase and the condensation of
the corresponding gauge charges along the string. Since the
gauge charge is condensed, adding more does not change the
energy of the condensate.

Cheshire strings have been included as an essential part
in the formulation of a complete mathematical description
of three-plus-one-dimensional (3 + 1D) topological orders in
terms of higher categories [3–13]. In Ref. [5], the example of
3 + 1D toric code was discussed explicitly where fundamental
objects in the higher category include 1D objects such as
the Cheshire string and magnetic gauge flux loop and the
0D domain walls between them, which includes the electric
gauge charge excitation. From a physics perspective, it is not
immediately clear why a consistent theory of the 3 + 1D Z2

topological order needs to involve the Cheshire string. After
all, the elementary excitations—the gauge charge and gauge
flux—capture all the fractional statistics we see in the model
and their corresponding string and membrane operators cap-
ture the full logical operations in the degenerate ground space.
The Cheshire string is made of gauge charges and in this sense
a descendant excitation [6]. Are they really necessary in the
description?

Some observations point to the intrinsic nature of Cheshire
strings in 3 + 1D topological phases. First of all, they do
exist as a 1D excitation in the model and can hence ap-
pear next to magnetic flux loops and change their feature.
In non-Abelian gauge theories, it has long been known that

magnetic flux loops are intrinsically Cheshire as the flux loop
breaks the non-Abelian gauge symmetry down to a subgroups
and therefore gauge charges that transform nontrivially un-
der the broken part of the gauge group have to condense
along the loop [1,2]. In Abelian gauge theories with nontrivial
three-loop braiding [14–21], some flux loops are intrinsically
Cheshire as well. Such flux loops can be thought of as the
boundary between different 2 + 1D gauge theories and can
only be gapped if the gauge charge is condensed along the
loop [5].

The following questions and answers may help clarify the
situation.

(1) Do we need to include Cheshire points in our descrip-
tion of topological order as well?

We already have. A Cheshire point can be obtained by
shrinking the Cheshire string to a point and is a direct sum
of all charge states. In the Z2 case, it is 1 ⊕ e. When the
condensate is zero dimensions, the degeneracy between the
two charge states will generically split and we end up with
either 1 or e.

(2) Why did we not include Cheshire strings in the de-
scription of 2 + 1D topological order?

2 + 1D topological orders are characterized in terms of
braided fusion categories whose fundamental objects are point
excitations—the anyons. Cheshire strings appear at one higher
dimension and hence do not mix with the anyons. However,
they do play an important role as defects and boundaries of the
topological states and are described as (bi)module categories
over the bulk fusion category, as explained in Ref. [22].

(3) Apart from Cheshire strings, are there other types of
descendant excitations?

Yes. Cheshire strings correspond to the 1 + 1D symmetry-
breaking phase of the gauge charge. There are also invertible
phases such as symmetry-protected topological phases in 1 +
1D. For example, when the gauge charge is a fermion, there is
also the Majorana chain. Cheshire strings are a noninvertible
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excitations while the latter two correspond to invertible de-
scendant excitations. (References [23–27] construct examples
of such excitations.) Going to higher dimensions, we would
also need to consider membranelike descendant excitations of
point and loop excitations.

(4) What is the benefit of including Cheshire string in the
description of topological orders?

One benefit is that it makes the correspondence between
bulk and boundary more natural (at least in a mathematical
sense as shown in Refs. [9,22,28,29]).

(5) The elementary excitations are generated with uni-
tary string and membrane operators. Does this also apply to
Cheshire string?

Yes, this is what we are going to show in this paper. Previ-
ous discussions have mostly focused on generating Cheshire
string by changing the Hamiltonian of the topological state
or using projection operations [5]. We want to emphasize that
Cheshire strings can also be generated using unitary circuits
and the way it is generated using unitary circuits makes clear
its nontrivialness as a descendant excitation. Magnetic fluxes
are nontrivial loop excitations because they can only be gener-
ated as the boundary of a unitary membrane operator. Because
of that, they have to form closed loops. Cheshire strings, on
the other hand, do not have to appear on the boundary of a
membrane and can exist on open string segments (i.e., they
admit a topological boundary). However, if we would like
to generate a Cheshire string with a unitary circuit along the
string, the circuit depth has to grow linearly with the length
of the string.1 The linear depth of the circuit distinguishes
Cheshire strings from trivial linelike excitations that can be
generated with finite depth circuits. In particular, as we show
below, the linear depth circuit has a sequential structure. That
is, each layer contains only one local gate set acting on a local
region in the string. The gate set moves from one end point
of the string to the other and acts on the string in sequential
way. This is hence an example of a sequential quantum circuit
[30–34]. Once a Cheshire string has been created, we show
that it can be deformed, moved, and fused using finite depth
circuits. Therefore, the equivalence relation between Cheshire
excitations can be established with finite depth circuits, simi-
lar to the case of elementary point and loop excitations.2

The paper is structured as follows. In Sec. II, we show how
to generate a Cheshire string in 2 + 1D toric code using a
sequential linear depth circuit. In Sec. III, we show how to
deform, move, and fuse Cheshire strings in 2 + 1D toric code.
In Sec. IV, we show how similar circuits work in (3 + 1)

1An argument is the following: suppose there exists a finite depth
circuit to create a Cheshire string, we may use it to create two
Cheshire strings of extensive length and extensive separation in the
system size. This configuration now has an additional ground-state
degeneracy. The degeneracy can be labeled by the amount of charge
on each Cheshire string, which can only be detected nonlocally by
moving a flux around one of the Cheshire strings. Moreover, chang-
ing the amount of charge on each Cheshire string requires an operator
of extensive support, which is the string operator of the charge. Since
this degeneracy is robust, it is a contradiction.

2Equivalence relations between point excitations are given by local
unitary transformations.

FIG. 1. Generation of an e-Cheshire string in 2 + 1D toric code
with a sequential circuit. Ap and Bv are Hamiltonian terms of the
2 + 1D toric code. A Cheshire string (on the dual lattice) from p0

to pN is generated by applying a sequence of gate sets represented
by the blue dot pairs. The dashed black edges are mapped to the
product state |0〉 forming the condensate, while the total charge of
the condensate measured by

∏
X around the red loop is conserved.

Adding an e charge using the string of Z along the dashed green line
maps between the two degenerate states of the condensate.

dimensions. In fact, in the 2 + 1D toric code, there are five
types of nontrivial defects [25,26]. Their creation and fusion
can be achieved similarly with sequential linear depth cir-
cuits/finite depth circuits. We demonstrate this in Appendix A.
In the summary section (Sec. V), we discuss the relation
between different types of excitations in topological phases
and the unitary operation that generates them.

II. GENERATION OF CHESHIRE STRING
IN (2+1) DIMENSIONS

Let us first consider the generation of a Cheshire string
in the 2 + 1D toric code. Consider the toric code on two-
dimensional lattice defined with the Hamiltonian

H = −
∑

p

Ap −
∑

v

Bv

= −
∑

p

∏
e∈p

Xe −
∑

v

∏
v∈e

Ze. (1)

Let us call excitation of the Ap terms the gauge charge excita-
tion labeled by e and the excitation of the Bv terms the gauge
flux excitation labeled by m. Applying Ze on one edge creates
two gauge charge excitations on the neighboring plaquettes.
Having a charge condensate corresponds to enforcing −Ze

as the Hamiltonian term so that the ground state remains
invariant under the pair creation or hopping of gauge charges
between the neighboring plaquettes. If such a term is enforced
on a string of edges on the dual lattice (dotted blue line in
Fig. 1), we get a Cheshire string for the gauge charge e.

While the Cheshire string can be generated with projection
operators 1

2 (1 + Ze) acting on the edges along the string all
at the same time, generating it with unitary operations takes
a number of steps that scales linearly with the length of the
string. Consider creating a Cheshire string on the dual lattice,
which starts at a plaquette p0 and ends at plaquette pN , ad-
jacent plaquettes in the sequence pi and pi+1 share an edge
ei,i+1. The sequential circuit to create the Cheshire charge is
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given by

U =
1∏

i=N

R
(
Api

)
R
(
Zei−1,i

)
, (2)

where we define R(O) ≡ e− iπ
4 O, which has the property that

for Pauli operators P and Q,

R(Q)PR(Q)† =
{

P; [P, Q] = 0
iPQ; {P, Q} = 0

. (3)

Note that the R gates do not commute with each other so the
ordering is important. Our convention is that gates to the right
are applied before gates to the left. Therefore, the sequence of
gates are R(Ze0,1 ), R(Ap1 ), R(Ze1,2 ), R(Ap2 ), and so forth. Since
Ap and Ze commutes with the vertex term, the circuit leaves
the vertex stabilizers invariant while mapping

Api → Zei−1,i , i = 1, . . . , N

Ap0 →
N∏

i=0

Api

N∏
i=1

Zei−1,i . (4)

Therefore, after the circuit, the edges along the dual string are
in the condensate state |0〉 stabilized by Ze. The total charge of
the condensate measured by

∏N
i=0 Api remains invariant in the

ground state, while the individual charges Api are no longer
conserved. Adding an e charge using the string of Z operators
along the dashed green line changes the total charge of the
condensate, but does not affect the local terms in the conden-
sate. Therefore, the two total charge states are degenerate on
the Cheshire string.

Generating a Cheshire string—a condensate for the gauge
charge e—in the toric code corresponds to opening up a slit
of vacuum state inside the topological bulk with a smooth

FIG. 2. Deforming [(a) to (b) and (b) to (c)] and moving [(a) to
(c)] a Cheshire string using finite depth circuit in (2 + 1) dimensions.
The gate sets in each diagram can be applied in parallel. The dashed
black edges are in the |0〉 state of the condensate. Red loop of

∏
X

measures the total charge in the condensate.

FIG. 3. Fusion of two Cheshire strings with a finite depth circuit
in (2 + 1) dimensions. (a) Before fusion,

∏
X around each red

rectangle measures the total charge on each string. Qubits on the
domain wall are coupled with ZZ terms (green bond). A single Z
on the domain wall (green dot) tunnels a charge between the two
condensates. (b) Applying the controlled-NOT gates indicated by the
arrows, the domain wall qubits are decoupled from the bulk. The ZZ
coupling remains, giving rise to twofold degeneracy.

boundary between the two. Similar operations (or the inverse)
have been discussed in Refs. [35–37]. In Appendix A, we are
going to discuss how a similar condensate of the gauge flux m
corresponds to a rough boundary between toric code and the
vacuum.

III. FUSION OF CHESHIRE STRING
IN (2+1) DIMENSIONS

Once a Cheshire string is created, it can be deformed,
moved, and fused using finite depth circuits. In other words,
finite depth circuits establish the equivalence relation between
Cheshire string excitations.

As shown in Fig. 2, if we start from a Cheshire string in the
bottom row [Fig. 2(a) with dashed black edges in state |0〉],
we can make it thicker [Fig. 2(b)] and then thinner [Fig. 2(c)]
using finite depth circuits. The individual gate sets (the blue
dot pairs) take the same (inverse) form as in Fig. 1. The
difference is that now the gate sets are oriented in parallel,
rather than connecting head to toe. It can be easily checked
that parallel gate sets commute with each other and hence
can be applied simultaneously. Going from Figs. 2(a) to 2(c)
moves the Cheshire string perpendicular to its length by one
step. The total charge of the condensate, measured by

∏
X

along the red loop, is conserved in the whole process.
Two identical Cheshire strings c defined on a segment fuse

as3

c × c = 2c, (5)

which can be realized with finite depth circuit as well. Using
the circuits discussed above, we can always move the two
strings with finite separation right next to each other as shown
in Fig. 3(a) with a finite depth circuit.

3More generally, the coefficient of the fusion depends on the space-
time manifold of the string [25]. Explicitly, for a Cheshire string
supported on a spatial manifold M, the coefficient is the partition
function of a 1+1D Z2 gauge theory on M × S1, i.e., it is the
degeneracy of a 1+1D Z2 ferromagnet on M.

165149-3



NATHANAN TANTIVASADAKARN AND XIE CHEN PHYSICAL REVIEW B 109, 165149 (2024)

FIG. 4. Creating, deforming and moving Cheshire string in 3 +
1D toric code. Ac and Be are Hamiltonian terms in the toric code.
(a) Cheshire string along the dual string (blue dotted line) can be
generated with a sequential circuit along the length of the string.
Once the string is created, it can be deformed [(a) to (b) and (c) to
(d)] and moved [(a) to (c)] with finite depth circuits.

Before fusing,
∏

X around the red rectangles measures the
charge on each string. Along the domain wall separating the
two strings, the Hamiltonian involves pairwise ZZ terms as
shown by the green bond in Fig. 3(a). A single Z on the do-
main wall tunnels a charge from one string to another. It spoils
the conservation of charge on each string while preserving
their sum.

The fusion of the strings can be achieved with the finite
depth circuit shown in Fig. 3(b). Each arrow represents a
controlled-NOT gate with the start of the arrow being the
control and the end of the arrow being the target. All the gates
commute and can be applied in one step. After the circuit, the
domain wall separating the two strings become completely
decoupled from topological bulk. The ZZ couplings along
the domain wall remain invariant, resulting in a twofold de-
generacy between the |00 . . . 0〉 state and the |11 . . . 1〉 state.
When the domain wall is in the |00 . . . 0〉 state, it merges
naturally with the condensates on the two sides into a single
condensate. When the domain wall is in the |11 . . . 1〉 state,
a simple one-step rotation would take it into the |00 . . . 0〉
state and the same conclusion holds. Therefore, two Cheshire
strings merge into one Cheshire string with a prefactor of 2. If
one wants to put the fused string into a standard form (e.g., of
width 1), this can be done with another finite depth circuit of
the form in Fig. 2(c).

IV. CHESHIRE STRING IN (3+1) DIMENSIONS

A similar construction holds in 3 + 1D toric code as well.
Consider the 3 + 1D toric code on a cubic lattice with Z2

qubits on the plaquettes. The Hamiltonian contains a charge
term Ac around each cube c and a flux term Be around each

FIG. 5. Fusion of two Cheshire strings with a finite depth circuit
in (3 + 1) dimensions. (a) Before fusion,

∏
X around each red rect-

angular cuboid measures the total charge on each string. The front
and back faces of the cuboid are not shaded red for clarity. Qubits on
the domain wall are coupled with ZZ terms (the green plaquette pair).
(b) Applying the controlled-NOT gates indicated by the arrows, the
domain wall qubits are decoupled from the bulk. The ZZ coupling
remains, giving rise to the twofold degeneracy.

edge e, as shown in Fig. 4(a).

H = −
∑

c

Ac −
∑

v

Bv

= −
∑

c

∏
p∈c

Xp −
∑

e

∏
e∈p

Zp. (6)

Similar to the 2 + 1D case, applying Zp on one plaquette
creates two gauge charge excitations in the neighboring cubes.
A Cheshire string corresponds to enforcing −Zp on the pla-
quettes along a dual string [the dotted blue line in Fig. 4(a)].

As shown in Fig. 4(a), a Cheshire string from cube c0 to cN

can be created with a sequential circuit

U =
1∏

i=N

R(Aci )R(Zpi−1,i ). (7)

The circuit leaves the Be terms invariant while mapping

Aci → Zpi−1,i , i = 1, . . . , N

Ac0 →
N∏

i=0

Aci

N∏
i=1

Zpi−1,i . (8)

Similar to the 2 + 1D case, the shaded plaquettes are mapped
to the |0〉 state of the condensate while the total charge of
the condensate measured by

∏N
i=0 Aci remains invariant in

the ground state. Adding an e charge using the string of
Z operators along the dashed green line maps between the
two degenerate states of the Cheshire string. By generating
a Cheshire string in the bulk of the toric code state, we create
the vacuum state in a linelike region with a smooth gapped
boundary to the topological bulk. Similar operations (or the
inverse) have been discussed in Ref. [38].

Once a Cheshire string is created, it can be deformed
[Figs. 4(a) to 4(b) or 4(b) to 4(c)] and moved [Figs. 4(a)
to 4(c)] with finite depth circuits. Fusion of two Cheshire
strings proceeds in a similar way as in (2 + 1) dimensions. As
shown in Fig. 5(a), when two Cheshire strings (gray shaded
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TABLE I. Generation and equivalence of excitations in topologi-
cal states with unitaries. LU refers to local unitary; FD refers to finite
depth circuit; SLD refers to sequential linear depth circuit. The top
section is for elementary excitations and the bottom section is for
descendant excitations.

Topological excitations Generated by Equivalence

Abelian anyon FD 1D LU
non-Abelian anyon SLD 1D LU
Abelian flux loop FD 2D FD 1D
non-Abelian flux loop SLD 2D FD 1D

FD 2D or
invertible 1D descendant FD 1D

SLD 1D
noninvert. 1D descendant SLD 1D FD 1D

plaquettes) lie next to each other, the plaquettes on the domain
wall between them couple with ZZ terms. The operator

∏
X

around each red rectangular cuboid measures the total charge
on each string. (The front and back faces of the cuboid are not
shaded red for clarity.) Applying the controlled-NOT gates
indicated by the arrows in Fig. 5(b), the domain wall qubits
are decoupled from the topological bulk. The ZZ coupling
remains, giving rise to a twofold degeneracy of |00 . . . 0〉 and
|11 . . . 1〉, each of which merges with the two condensates into
one condensate.

V. SUMMARY

By discussing the generation and fusion of the Cheshire
string using unitary circuits, we put it under the same frame-
work as other excitations of a topological system. Table I
summarizes the different cases. We expect that higher-
dimensional descendant excitations can also be systematically
generated by sequential circuits with linear depth in their
corresponding dimensions.

Anyons in (2 + 1) dimension and gauge charge/gauge flux
excitations in (3 + 1) dimensions are generated as the bound-
ary of a higher-dimensional unitary operator. Anyons and
gauge charges are generated as the end point of a string
operator while gauge fluxes are generated as the boundary
of a membrane operator. When the excitation is Abelian,
the string/membrane operator can be implemented with a
finite depth circuit. In other words, small pieces of the
string/membrane operator can be connected without defect.
When the excitation is non-Abelian, the string/membrane op-
erator has to be implemented sequentially, and requires a
sequential linear depth circuit in one/two dimensions. Such
excitations are called elementary excitations.

Descendant excitations such as Cheshire string on the
other hand do not have to be created as a closed loop and
hence can live on open strings (or higher-dimensional discs).
They are nontrivial in the sense that when they are created
in the dimension they are in, a sequential linear depth cir-
cuit is needed while trivial excitations are created with finite
depth circuits. Among the descendant excitations, some are
invertible, such as SPT states and Majorana chains, etc. The
invertible excitations can also be created as the boundary of
a higher-dimensional unitary and in this case a finite depth

circuit is enough. The noninvertible ones, on the other hand,
cannot be created with finite depth circuit even as the bound-
ary of one higher dimension.

Once the excitations are created, their equivalence is es-
tablished by local unitary operations if the excitation is zero
dimensions and by finite depth circuits of n dimensions if
the excitation is n dimensions. That is, the excitations can be
deformed, moved, and fused using such unitaries.
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APPENDIX A: OTHER TYPES OF DEFECTS
IN 2+1D TORIC CODE

Following the notation in Ref. [25], the Cheshire string
discussed in Secs. II and III is a defect of the 2 + 1D toric
code labeled by Se. There are four more types of nontrivial
defects in 2 + 1D toric code—Sm, Sψ , Sem, and Sme. Their
generation and fusion follow very similar rules. To generate
these nontrivial descendant defects on an open interval, a lin-
ear depth sequential circuit is needed. To deform, move or fuse
these defect, a finite depth circuit is sufficient. In this section,
we demonstrate explicitly the generation of Sm, Sψ , and the
fusion of Sem × Se = Se, Sψ × Se = Sm, and Sψ × Sψ = S1,
where S1 is the trivial defect. All other generation and fusion
processes can be derived from here. For the fusion process,
we will show how the circuit works in the bulk of the defect
without involving the end points. The end points usually lead
to extra complications but do not change the fusion result.

In all figures, dashed black edges are in the |0〉 state
stabilized by Z and dash-dotted black edges are in the |+〉
state stabilized by X . No-arrow connectors represent the
controlled-Z gate:

UCZ =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

⎞
⎟⎟⎠. (A1)

One-arrow connectors represent the controlled-X gate with
the arrow pointing to the target:

UCX =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎟⎠. (A2)

Two-arrow connectors represent the X -controlled-Not gate,
which is the controlled-X gate with the control qubit
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FIG. 6. Generation of Sm with a sequential linear depth circuit.
The orange gate sets are applied sequentially from left to right.

∏
Z

around the green box measures the total flux on Sm.

conjugated by the Hadamard gate:

UXCX = 1

2

⎛
⎜⎜⎝

1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1

⎞
⎟⎟⎠. (A3)

The gauge flux m is dual to the gauge charge e in toric code
by switching between lattice and dual lattice and between X
and Z operators. Therefore, to generate the Sm defect from
vertex v0 to vertex vN , a sequential circuit of the form

U =
1∏

i=N

R
(
Bvi

)
R
(
Xei−1,i

)
(A4)

as shown in Fig. 6 can be applied, where again R(O) = e−i π
4 O.

This circuit maps Bvi to Xei−1,i while leaving all plaquette
Hamiltonian terms invariant. It hence opens up a slit of vac-
uum state with a rough boundary to the topological bulk.

The Sψ defect is an invertible domain wall inside the
topological bulk, which permutes e and m excitations. That

FIG. 7. Generation of Sψ with a sequential linear depth circuit.
The five-body blue term is used for the sequential part of the circuit.
Following that there are two finite depth steps: the controlled-X gates
represented by the arrows and the Hadamard gate represented by the
blue diamonds. Hamiltonian terms before and after the circuit are
shown with corresponding colors (red, yellow, and purple).

FIG. 8. Fusion of Se [bottom in (a)] with Sm [top in (a)] into Sem

[(b)] with a finite depth circuit. The circuit is composed of com-
muting controlled-Not gates represented by the arrows. All qubits
on the domain wall between the two defects are decoupled after the
circuit.

is, if an e excitation goes through the defect, it comes out
as m and vice versa. The Sψ defect can be generated with a
sequential circuit as shown in Fig. 7. Denote the blue term in
Fig. 7(a) around plaquette 1 as O1. The first step of the circuit
is

U =
1∏

i=N

R(Oi). (A5)

This step is a sequential linear circuit. The second step is
composed of controlled-X gates represented by the one-arrow
connectors in the bottom plaquettes, as well as R(Z )s repre-
sented by blue diamonds, as shown in Fig. 7(b). The gates
in the second step all commute with each other, therefore the
second step has depth one. Hamiltonian terms before and after
the circuit are shown with corresponding colors (red, yellow,
and purple) in Figs. 7(a) and 7(b). The resulting terms take
the same form as in Fig. 1 of Ref. [22]. A different version
of the circuit was proposed in Ref. [39] and implemented in
Ref. [40].

Figure 8 shows the fusion of Se and Sm into Sem. In
Fig. 8(a), the bottom defect is the Se defect with smooth
boundaries on the two sides and the top defect is the Sm

defect with rough boundaries on the two sides. Applying the
controlled-Not gates represented by the one-arrow connectors
in Fig. 8(b) maps the three-body Hamiltonian terms on the
domain wall between the two defects [shown in Fig. 8(a)]
to single X and Z terms [shown with corresponding color in
Fig. 8(b)]. Therefore, after the finite depth circuit, the two

FIG. 9. Fusion of Se [bottom in (a)] with Sψ [top in (a)] into Sem

[(b)] with a finite depth circuit. The circuit is composed of com-
muting controlled-Z gates (represented by the no-arrow connectors)
and controlled-Not gates (represented by the one-arrow connectors.)
Yellow and green terms map to decoupled qubits while the purple
terms map to half plaquette terms on the rough boundary.
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FIG. 10. Fusion of Sψ with Sψ into S1 with a finite depth cir-
cuit. The circuit is composed of controlled-Z gates (the no-arrow
connectors), controlled-Not gates (the one-arrow connectors) and the
X -controlled-X gates (the two-arrow connectors). In (d), all qubits in
the middle are decoupled while qubits on the two sides connect to
form complete plaquette terms of the toric code.

defects merge into one, Sem, with smooth boundary at the
bottom and rough boundary at the top.

Figure 9 shows the fusion of Se and Sψ into Sem. In
Fig. 9(a), the bottom defect is the Se defect with smooth
boundaries on the two sides and the top defect is the Sψ defect
taking the form shown in Fig. 7. The circuit is composed
of controlled-Z gates (represented by the no-arrow connects)
and the controlled-Not gates (represented by the one-arrow
connectors). All gates commute and the circuit has depth one.
The yellow and green terms are mapped to single qubit terms
after the circuit while the purple term becomes a three-body
plaquette term on the rough side of the boundary. Therefore,
Se and Sψ fuse into Sem, as shown in Fig. 9(b), which take the
same form as in Fig. 8(b)

Sψ is an invertible defect and Sψ × Sψ = S1. Figure 10
shows how the fusion can be realized with a finite depth
circuit. The first step of the circuit [Figs. 10(a) to 10(b)] is
composed of controlled-Z gates (represented by the no-arrow
connects) and the controlled-Not gates (represented by the

FIG. 11. Creating a dislocation in toric code with a finite depth
circuit. In step 1, the dark blue gate sets are used to add diagonal
edges to divide square plaquettes into triangles. In step 2, the light
blue gate sets are used to remove vertical edges and merge two
triangles into a parallelogram. A dislocation line is generated after
these two steps.

one-arrow connectors) as shown in Fig. 10(b). After this step
the yellow terms map to decoupled qubits in |+〉 state on
the middle line. The second step of the circuit [Figs. 10(b)
to 10(c)] is composed of X -controlled-Not gates [Eq. (A3)]
represented by the two-arrow connectors in Fig. 10(c). The
purple and blue terms maps to decoupled qubits in this step.
Finally, with controlled-Not gates in the last step [shown in
Fig. 10(d) with the one-arrow connectors], the red terms map
to decoupled qubits. The green terms become the plaquette
term of the toric code bulk. All gates in each step of the circuit
commute with each other, therefore the circuit has finite depth.

It might seem that instead of recovering the regular toric
code on square lattice, we end up with a dislocation on the
square lattice. But this is not a problem because a dislocation
can be generated or removed with finite depth circuit in toric
code as shown in Fig. 11.

Starting from a regular toric code on square lattice, diag-
onal edges can be added into each plaquette with the dark
blue gate sets as shown in Fig. 11(a), dividing each square
into two triangles. All the dark blue gate sets commute with
each other and can be applied in one step. Next, the vertical
edges between the triangles can be removed with the light
blue gate sets as shown in Fig. 11(b), merging two triangles
into a parallelogram. All light blue gate sets commute with
each other as well, so we have another depth one circuit. After
these two steps, we have introduced a dislocation defect into
the square lattice.
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