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Three-dimensional flat band evolution between pyrochlore and perovskite lattices
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Distinct from the flat band in two dimensions, the three-dimensional (3D) flat band and the corresponding
physics have been relatively unexplored. Here, based on tight-binding models, we present a theoretical study of
the evolution of the 3D flat band between pyrochlore and perovskite lattices, which are structurally interconvert-
ible through diagonal strain and host double-degenerate flat bands. We discovered the presence of a persistent
3D flat band during the transition, which is stabilized by a robust compact localized state within the preserved
kagome plane perpendicular to the diagonal direction. Furthermore, under the influence of spin-orbit coupling
and Zeeman field, we can consistently achieve a magnetic Weyl semimetal state during this transition process
due to the unique 3D flat band nature. Pairs of Weyl points form near the conserved flat band, leading to a large
anomalous Hall conductivity (AHC) peak right at the energy of the flat band. Interestingly, we also observe
an enhanced AHC during the transition from pyrochlore to perovskite lattice due to the enlarged momentum
separation between Weyl points and the superimposition with another AHC peak from the dispersive Dirac
bands.
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I. INTRODUCTION

A system with a flat band that has a momentum-
independent energy and infinite effective mass is known to
be an ideal platform for exploring the strong correlation ef-
fects among electrons [1–9], which has garnered widespread
attention. Various exotic quantum phenomena have been theo-
retically proposed, such as room-temperature ferromagnetism
[10–12], Mott physics [5,13], unconventional superconduc-
tivity [14,15], Wigner crystallization [6,16], and nontrivial
topological properties [17–20], a few of which have been
experimentally confirmed [21–23]. Partially benefited from
the high tunability and rich varieties of candidate materials,
most of those studies have focused on the two-dimensional
(2D) systems [24–26], especially in the recently extensively
studied twisted bilayer systems [27–31] and/or crystals with
kagome lattice [32–35]. Lately, several experimental studies
have shown evidence of the existence of a three-dimensional
(3D) flat band in the pyrochlore lattice [36,37], i.e., 3D
kagome, which has opened a novel avenue in exploring exotic
quantum physics related to the flat band. Although theoretical
research on 3D flat bands has existed for a long time for
both single-particle [38–40] and electron-electron correlated
scenarios [41,42], the exploration of the distinctive features
of 3D flat bands is still relatively rare compared to their 2D
counterpart.

Before the experimental demonstration of the 3D flat band,
there were several theoretical studies that explored the for-
mation of 3D flat bands in various lattices and proposed
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their unique topological and transport properties [20,40,43–
48]. Among those limited few lattices that host the 3D flat
band, the two well-known pyrochlore and perovskite (i.e., 3D
Lieb) lattices, which can be viewed as a 3D version of the 2D
kagome and Lieb lattices, show many intriguing similarities,
such as the uncommon double-degenerate flat bands and their
coexistence with the Dirac band [39,45]. Those unique re-
semblances can be traced back to their structural equivalence,
i.e., one corner-site and three edge-center states in the unit
cell. Similar to their 2D counterpart [49,50], pyrochlore and
perovskite lattices are also interconvertible by applying strain
along the diagonal direction. It would be interesting to study
the evolution of the flat band and the corresponding topo-
logical states during the transition, which may provide some
insight in revealing their peculiar properties in 3D systems.

In this study, we delve into the intriguing structure transi-
tion between the pyrochlore and the perovskite structures by
systematically investigating the evolution of the 3D flat band
through analysis of their unique compacted localized states
(CLSs) [51–53] and exploring their topological properties
using the tight-binding model Hamiltonian. Our investigation
reveals that despite the variation in lattice symmetry during
this transition, at least one flat band remains consistently
present throughout the entire process. Furthermore, we metic-
ulously examine the alterations in CLS corresponding to the
persisting flat band as it evolves during the structure transition.
Moreover, we investigate the topological properties consid-
ering both the spin-orbit coupling (SOC) [40] and Zeeman
field effect, which yields a robust magnetic Weyl semimetal
phase during the transition, as confirmed from the Fermi
arc and topological invariant calculations. More interestingly,
we found a surprising enhancement of the anomalous Hall
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FIG. 1. (a)–(c) The lattice crystal structure of a pyrochlore lattice, transition lattice, and perovskite lattice, and (d)–(f) the corresponding
band structure along high-system k paths for the three lattices with the NN hopping t = −1. (g)–(i) The first Brillouin zone and high-symmetry
k-point paths of the pyrochlore lattice, transition lattice, and perovskite lattice.

conductivity during the lattice transformation process, which
can be attributed to the enlarged Weyl point separation and
superposition of different Weyl points due to the unique 3D
flat band.

II. TRANSITION BETWEEN PYROCHLORE
AND PEROVSKITE LATTICES

The structural similarity between pyrochlore and per-
ovskite lattices can be clearly seen in Fig. 1, which contains
one corner site A and three edge-center sites B, C, and D
in the unit cell. The transformation can be easily achieved
by applying a compressive or tensile strain along the di-
agonal direction, with the angle θ between edges changing
from 60◦ (pyrochlore) to 90◦ (perovskite) during the tran-
sition, as shown in Fig. 1(b). To investigate the electronic

evolution between pyrochlore and perovskite lattices, we be-
gin by considering the single-orbital tight-binding model on
the pyrochlore lattice.

Pyrochlore lattice. The spinless Hamiltonian for this sys-
tem can be expressed as follows:

H =
∑

i

εic
†
i ci +

∑
〈i, j〉

ti jc
†
i c j +

∑
〈〈i, j〉〉

t ′
i jc

†
i c j + H.c., (1)

where c†
i and c j represent the creation and annihilation op-

erators, respectively, εi denotes the on-site energy, which is
set to be zero, and ti j and t ′

i j denote the hopping amplitudes
between the nearest-neighbor (NN) and next-nearest-neighbor
(NNN) sites, as highlighted in Fig. 1 by blue and red arrows,
respectively. Similar to the approach applied in the previous
study about the transition between the kagome and Lieb lattice
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[49], the NNN hopping term t ′
i j is empirically set to decay

exponentially with the increasing distance and is defined as

t ′
i j = te

n(a0−ai j )

a0 , (2)

in which parameters a0 and ai j denote the distances between
the NN and NNN sites, respectively. It is important to note that
the NNN hopping term could significantly influence the flat-
ness of the flat band [20,54]. In order to preclude the influence
of NNNs when the lattice becomes a pyrochlore/perovskite
structure and retain their influence during the lattice transfor-
mation process, an appropriate empirical value of n = 10 is
chosen.

The band structure of Eq. (1) can be obtained by trans-
forming H into momentum space as H = ∑

k �
†
k Hk�k with

�
†
k = (c†

Ak, c†
Bk, c†

Ck, c†
Dk ). The matrix Hamiltonian with only

NN hopping on the pyrochlore lattice is therefore obtained as

Hk = t

⎛
⎜⎜⎜⎜⎝

0 1 + e−ika1 1 + e−ika2 1 + e−ika3

0 1 + e−ik(a2−a1 ) 1 + e−ik(a3−a1 )

0 1 + e−ik(a3−a2 )

0

⎞
⎟⎟⎟⎟⎠,

(3)
where t is the NN hopping parameter, and a1 = (1, 0, 0),
a2 = (1/2,

√
3/2, 0), a3 = (1/2,

√
3/6,

√
6/3) are the three

basic unit vectors. Due to the fact that the NNN hopping
is much smaller than the NN hopping, the NNN hopping is
ignored. Solving the Hamiltonian yields a pair of energetically
degenerate flat bands with E = −2t on the top or bottom of
the Dirac bands depending on the sign of t, which can be
clearly seen in the plotted band structure for the case with
t = −1, as shown in Fig. 1(d). Here, we will only focus on
the flat band related phenomena rather than the Dirac band.
The eigenfunctions for the two flat bands are

ψ1
k = c1

⎛
⎜⎜⎜⎜⎝

e−ik(a2−a1 ) − 1

eika1 − e−ik(a2−a1 )

1 − eika1

0

⎞
⎟⎟⎟⎟⎠ (4)

and

ψ2
k = c2

⎛
⎜⎜⎜⎜⎝

e−ik(a3−a1 ) − 1

eika1 − e−ik(a3−a1 )

0

1 − eika1

⎞
⎟⎟⎟⎟⎠, (5)

where c1 = [6 − 2 cos(ka1 − ka2) − 2 cos ka1 −
2 cos ka2]−1/2 and c2 = [6 − 2 cos(ka1 − ka3) − 2 cos ka1 −
2 cos ka3]−1/2.

To better understand the strict localization of those flat
band states, a compact localized state (CLS) with finite ampli-
tude only within a restricted region in real space can usually
be constructed, as a manifestation of the destructive interfer-
ence. Therefore, based on the aforementioned eigenfunctions,
we calculated the relevant CLS (unnormalized) through an
inverse Fourier transformation [55]. Due to the double degen-
eracy of the flat bands, there are two sets of CLSs (A(1)

0,R and

A(2)
0,R), which have the forms shown below in Eqs. (6) and (7)

FIG. 2. Schematic of three types of CLSs of a (a) pyrochlore
lattice, (b) perovskite lattice, and (c) transition lattice. The CLSs are
exhibited by blue and orange shaded areas. The yellow and black dots
represent positive and negative phases, respectively. (d) The CLS for
the transition lattice with θ = 75◦ in the (1, 1, 1) plane perpendicular
to the diagonal direction with A, B, and C represent the translated
CLSs, respectively. The quadrilateral formed by the blue dashed line
is the in-plane primitive cell.

and illustrated in Fig. 2(a) using blue and orange, respectively.
The two CLSs have a similar form as that in the 2D kagome
lattice, i.e., hexagonal ring with alternating positive (yellow
colored state) and negative (black colored state) phases,

A(1)
0,R =

⎛
⎜⎜⎜⎜⎝

δR,−a1+a2 − δR,0

δR,−a1 − δR,−a1+a2

δR,0 − δR,−a1

0

⎞
⎟⎟⎟⎟⎠, (6)

A(2)
0,R =

⎛
⎜⎜⎜⎜⎝

δR,−a1+a3 − δR,0

δR,−a1 − δR,−a1+a3

0

δR,0 − δR,−a1

⎞
⎟⎟⎟⎟⎠. (7)

Perovskite lattice. By applying compressive strain to the
pyrochlore lattice along the diagonal direction, we can achieve
the perovskite structure with θ = 90◦, as shown in Fig. 1(c).
The matrix Hamiltonian that describes the perovskite lattice
can be expressed as (the effect of NNN hopping t ′

i j can be
ignored)

Hk = t

⎛
⎜⎜⎜⎜⎝

0 1 + e−ika1 1 + e−ika2 1 + e−ika3

1 + eika1 0 0 0

1 + eika2 0 0 0

1 + eika3 0 0 0

⎞
⎟⎟⎟⎟⎠,

(8)
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where a1 = (1, 0, 0), a2 = (0, 1, 0), and a3 = (0, 0, 1) are the
three basic unit vectors. Interestingly, the band structure also
hosts two energetically degenerate flat bands. Different from
the pyrochlore lattice that has the flat band on top of the Dirac
bands, the flat band in the perovskite lattice is located in the
middle of the Dirac band at E = 0, as can be seen in Fig. 1(f).
Further, we can obtain the corresponding eigenvectors,

ψ1
k = c1

⎛
⎜⎜⎝

0
−eikx − ei(kx−ky )

1 + eikx

0

⎞
⎟⎟⎠, (9)

ψ2
k = c2

⎛
⎜⎜⎝

0
−eikx − ei(kx−kz )

0
1 + eikx

⎞
⎟⎟⎠, (10)

where c1 = [4 + 2 cos kx + 2 cos ky]−1/2 and c2 =
[4 + 2 cos kx + 2 cos kz]−1/2. As illustrated in Fig. 2(b),
one can clearly see the geometry of the two CLSs,

A(3)
0,R =

⎛
⎜⎜⎝

0
−δR,−a1 − δR,−a1+a2

δR,0 + δR,−a1

0

⎞
⎟⎟⎠, (11)

A(4)
0,R =

⎛
⎜⎜⎝

0
−δR,−a1 − δR,−a1+a3

0
+δR,0 + δR,−a1

⎞
⎟⎟⎠, (12)

that correspond to the ψ1
k and ψ2

k . Each 3D CLS has a similar
form to the 2D Lieb lattice with four edge-center states with

alternating phases [55], as highlighted by the black and yellow
colors with plus and minus sign, respectively.

However, as a result, the CLS obtained by linearly su-
perposing the eigenstates in momentum space will miss the
eigenstate at k = (0, 0, 0), and the CLSs in the pyrochlore lat-
tice are therefore incomplete [39,55], i.e., there are eigenstates
that cannot be described by the simple lattice translation of
those CLSs due to the existence of singular touching points
between the flat and dispersive bands [39]. Examining the
band structure of the pyrochlore lattice, it becomes evident
that the two degenerate flat bands and the dispersion band
indeed intersect at the � point.

Three additional noncontractable loop states are needed to
form the subspace of the flat band for a complete description
[39]. On the other hand, for the perovskite lattice, the flat band
touches both the upper and lower dispersive bands at the R
point, where one of the touching points can be eliminated
by altering the on-site energy of the lattice while preserving
the flat band. Therefore, one of the touching points is not
immovable [39,55] and has no impact on the incompleteness
of the CLSs. There are also three additional states that need to
be complemented besides the CLSs to fully describe the flat
band for the perovskite lattice similar to the pyrochlore case.

Transition lattice. Because of both the structural and
electronic similarity between the pyrochlore and perovskite
lattices, it would be interesting to study the intermediate
lattice during the structural transition. Therefore, we create
a Hamiltonian that varies with θ to describe the transition
lattice. It is important to note that the NNN hopping term is de-

fined as t ′
i j = te

n(a0−ai j )

a0 , which can be rewritten as t ′
i j = t f (θ ),

with f (θ ) = exp{n[1 − (2 − 2 cos θ )1/2]}. The f (θ ) varies as
a function of NNN distance ai j that changes with the parame-
ter θ , as illustrated in Fig. 1(b). With this information, we can
construct the Hamiltonian for the transition state as follows:

Hk = t

⎛
⎜⎜⎝

0 1 + e−ika1 1 + e−ika2 1 + e−ika3

0 f (θ )(1 + e−ik(a2−a1 ) ) f (θ )(1 + e−ik(a3−a1 ) )
0 f (θ )(1 + e−ik(a3−a2 ) )

0

⎞
⎟⎟⎠, (13)

where a1 = (1, 0, 0), a2 = (cos θ, sin θ, 0), and a3 =
[cos θ, y, (1 − cos2 θ − y2)1/2] are the three θ -dependent
basic unit vectors with y = cot θ (1 − cos θ ). Interestingly,
distinct from the evolution in the 2D systems between the
kagome and Lieb lattice that completely destroys the flat
band [49], there is one flat band that remains robust against
the structural transformation in the 3D systems with the
eigenvalue of E = −2t f (θ ), as shown in Fig. 1(e).

During the transition from pyrochlore to perovskite lattice,
one of the two double-degenerate flat bands on top of the
dispersive bands becomes dispersive, while the other one re-
mains flat and gradually moves to the middle that forms the
double-degenerate flat bands in the middle of Dirac bands
[Figs. 1(d)–1(f)]. To understand the underlying physics, we
calculate the related eigenstate that corresponds to the robust
flat band for the transition lattice, which can be described as

follows:

ψk = c

⎛
⎜⎜⎝

0
e−ika2 − e−ika3

e−ika3 − e−ika1

e−ika1 − e−ika2

⎞
⎟⎟⎠, (14)

with c = [6 − 2 cos k(a3 − a2) − 2 cos k(a1 − a3) −
2 cos k(a1 − a2)]−1/2, and the corresponding CLS expressed
as

A0,R =

⎛
⎜⎜⎝

0
δR,a2 − δR,a3

δR,a3 − δR,a1

δR,a1 − δR,a2

⎞
⎟⎟⎠. (15)

The CLS for the transition state is visually depicted in
Fig. 2(c), which shares a similar geometry feature as that of
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FIG. 3. (a) The structure of transition lattice θ = 65◦, but one of the NN hopping strengths (blue arrows) changes to t + �t . (b) The band
structure of the transition lattice with t = −1 and �t = 0.5. (c), (d) same as (a) and (b), but with different NNN hopping (red arrows).

the kagome lattice. When further examining the plane where
the CLS is situated, i.e., perpendicular to the diagonal direc-
tion, it becomes apparent that the plane’s structure is identical
to that of a 2D kagome lattice, as can be clearly seen in
Fig. 2(d). As the lattice structure undergoes changes between
pyrochlore and perovskite, this plane continuously persists,
regardless of the value of θ . The only variation lies in the
alteration of the lattice constants, but the CLS remains intact,
as shown in the blue shaded areas in Fig. 2(d). We note that
there are different CLS selections for the flat bands besides the
current CLSs shown in Fig. 2. We can also choose the hexagon
within the (1,1,1) kagome plane as one of the two CLSs,
which can better demonstrate the continuous transformation
between the pyrochlore and perovskite lattices (more details
are given in Appendix A).

To better understand the robust CLS that is located within
the kagome plane perpendicular to the diagonal direction, we
analyzed the geometric symmetry of the transition structure.
Along the diagonal direction, the Hamiltonian’s C3 symmetry
significantly impacts the formation of flat bands. To further
verify the relationship between symmetry and the flat band,
we purposely varied the hopping parameters to break the C3

rotational symmetry. This can be done by either modifying the
NN or NNN interaction. If one of the NN hopping strengths,
ti j , is modified, as illustrated in Fig. 3(a), the Hamiltonian
no longer possesses C3 rotational symmetry, leading to the
destruction of the flat band, as shown in Fig. 3(b). Similarly,
the change of one of the NNN hopping parameters, t ′

i j , also

leads to the breakdown of the flat band in the 3D Brillouin
zone, as shown in Figs. 3(c) and 3(d).

III. TOPOLOGICAL PROPERTIES

It has been shown that the double-degenerate flat band in
3D systems can lead to certain unique topological properties
beyond their 2D counterpart [20,49], such as the 3D topo-
logical insulator [20] and enhanced anomalous Hall effect in
magnetic Weyl semimetals [20,56]. It would be interesting to
also explore the topological evolution during the transition
between pyrochlore and perovskite lattices. In this section,
we will explore the topological properties of the lattices in
transition by further considering an intrinsic NNN spin-orbit
coupling (SOC) interaction as described in Eq. (16) and
Zeeman-type exchange splitting term to the Hamiltonian, as
described in Eq. (17) [46],

HSOC = iλ
∑

〈〈i j〉〉αβ

(
�r1

i j × �r2
i j

) · σαβc†
iαc jβ, (16)

Hz = λz

∑
iα

c†
iασzααc jα, (17)

where c†
iα and c jβ represent the creation and annihilation

operators, respectively, and α and β denote different spins.
σ = (σx, σy, and σz ) are the Pauli matrices. �r1

i j and �r2
i j are

the two NN bonds that electrons traverse from site j to i, as
shown in Figs. 1(a)–1(c), which are used to describe the SOC.
λ and λz indicate the strength of the SOC and Zeeman field,
respectively.
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FIG. 4. The energy band structure (choose upper branch, lower
branch is symmetric to the upper) with SOC (λ = −0.2t) and Zee-
man term λz = 5t of the (a) pyrochlore lattice, (b) transition lattice
θ = 65◦, and (c) transition lattice θ = 70◦ along the high-symmetry
k path in the Brillouin zone. Insets: The Weyl points with red dashed
boxes. (d)–(f) The corresponding Fermi arc state in the (1,1,1),
(0.0.1), (0,0,1) plane, respectively.

Magnetic Weyl semimetal. For simplicity, in this work, we
will investigate the systems in the large Zeeman field limit
with λz = 5t to focus on the interaction between one set of
spins related to the flat band. When considering the large
Zeeman splitting, the position of the spin-up and spin-down
flat bands corresponds to an electron filling of 3/8 and 7/8,
respectively. When we further consider the SOC effect, the
system becomes a time-reversal symmetry-breaking magnetic
Weyl semimetal. Pairs of Weyl points (WPs) are generated
near the quasiflat band, which aligns with what has been
previously reported [20,46], as illustrated in Fig. 4(a). We note
that there are multiple pairs of Weyl nodes near the quasiflat
band, while only one single pair of Weyl nodes, WP(�), is
formed by the quasiflat band and the dispersive band near the
� point, as highlighted by the red square in Fig. 4(a). We
further conducted calculations of two transition lattices with
θ = 65◦ and θ = 70◦, respectively. The band structures are

shown in Figs. 4(b) and 4(c), which shows that as the lattice
angle undergoes variations, the two quasiflat bands gradually
separate into one quasiflat band and one dispersive band.
Interestingly, near the � point, the quasiflat band remains
intersecting with the dispersive band, leading to the formation
of a robust Weyl semimetal phase with a single pair of Weyl
nodes, as highlighted by the inset in Figs. 4(b) and 4(c).

Additionally, we have conducted calculations for the Fermi
arc state (i.e., surface state of a topological semimetal that
is terminated onto the projections of the Weyl nodes on the
surface) of the pyrochlore lattice and two transition lattices
near WP(1) using the WANNIERTOOLS package [57,58]. For
this analysis, we have selected the surface where the pair
of Weyl points formed by the quasiflat band is located. Fig-
ures 4(d)–4(f) display the Fermi arc state of the three systems
with different θ , which confirm the formation of magnetic
Weyl semimetal phases. We notice that these Weyl points
will also gradually move away from the � points while trans-
forming from pyrochlore to the perovskite lattices, resulting
in a widening Fermi arc. It has been reported that the Weyl
points’ separation in the momentum space plays a crucial
role in determining the strength of the anomalous Hall effect
[20,56]. Therefore, we further calculate the anomalous Hall
conductivity of those systems.

Anomalous Hall effect. The anomalous Hall conductivity is
calculated based on the Kubo formula with

σxy = −e2

h̄

∫
BZ

d3k

(2π )3

∑
n

fnk�
xy
n (k) (18)

and

�xy
n (k) = −

∑
n′ �=n

2 Im[〈unk|vxk|un′k〉〈un′k|vyk|unk〉]
(εn′k − εnk )2

, (19)

which integrates the Berry curvature �
xy
n of all the occupied

states throughout the whole Brillouin zone. For the pyrochlore
structure, we find that near the two energetically degener-
ate quasiflat bands, there is a wide peak (P1) constructed
of two nearly degenerate peaks, labeled P1(a) and P1(b),
respectively, as shown in Fig. 5(a). Such anomalous Hall
conductivity (AHC) peak can be attributed to the formation
of multiple Weyl points due to the two quasiflat bands, which
contribute large Berry curvatures [20]. In addition, there is an
even larger AHC peak near the crossing point (“Dirac point”)
formed by the two Dirac bands due to the gap opening driven
by the SOC and Zeeman field.

We further calculate the AHC for the transition states and
the perovskite lattice. As the lattice structure changes, the
peak P1(a) gradually diminishes and eventually disappears,
leaving only P1(b), denoted as P1 hereafter. At this point,
the anomalous Hall conductivity always exhibits two robust
peaks, i.e., P1 and P2, during the structural transformation.
Interestingly, P1 and P2 are shifting along with the move-
ment of the flat band and the “Dirac point,” respectively, as
illustrated in Figs. 5(b) and 5(c). We note that the sign of
the P1 also flips during the transition, which may be caused
by a change of Weyl pairs chirality as the Berry curvature
is directly related to the chirality of the Weyl point [20].
To better demonstrate this point, we directly calculated the
chirality of the Weyl pairs formed near the � point by the
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FIG. 5. (a)–(d) The band structure along the high-symmetry k path and AHC of the pyrochlore lattice, transition lattice θ = 70◦, θ = 80◦,
and perovskite lattice. (e) Evolution of K for WP(1) and their corresponding AHC, with different θ . (f) Evolution of energy of P1 and P2.

flat band and the lower dispersion band at lattice angles of
60 and 60.5 degrees, respectively. As shown in Appendix B,
with the slight change in lattice angle, the Weyl pairs change
from the kz direction to near the (111) direction, which leads
to a chirality change and therefore a sign change of the AHC
peak near the flat band. However, by continuing to change
the lattice angle (60.5–90 degrees), the Weyl pair distribution
remains in a similar direction and the chirality of the Weyl
points remains unchanged, so the sign of the AHC will no
longer change. Most importantly, we see a clear enhancement
of P1 with the increase of θ , which agrees very well with
the increased momentum separation between the Weyl points
formed by the quasiflat bands, as demonstrated in Fig. 4.

To further verify this point, we extracted the momentum
separation between the pair of Weyl points formed by the
quasiflat band and the dispersive band, and also the magnitude
of the AHC P1 as a function of the θ . We note that due to
the double-degenerate quasiflat bands in the pyrochlore lattice
and perovskite lattice, they give rise to numerous Weyl points
in the same energy. However, in the transition states, only one
band remains flat that forms one pair of Weyl points near the �

point, as shown in Fig. 4. To better capture the relationship be-
tween the separation among one pair of Weyl points [WP(1)]
and the AHC, we plot only the results from the transition
states. The results are summarized in Fig. 5(e), which shows
a very good linear relationship between the two, consistent
with the theories proposed before, i.e., σxy = (e2K/4π2) (K
is the momentum separation between the pair of Weyl points)
[20,56]. Furthermore, with variations in the lattice structure,
the two AHC peaks gradually approach each other and merge
in the middle of the energy spectrum, leading to even larger
AHC when θ ≈ 85◦. This becomes evident from the plot of
the energy evolution of the two peaks as a function of θ , as
shown in Fig. 5(f). When the lattice structure transforms into
the perovskite lattice, two degenerate quasiflat bands reappear

between the two dispersive bands. At this point, two split
peaks emerge again near the quasiflat bands i.e., P1 and P2,
leading to a reduction in the maximum AHC peak, as illus-
trated in Fig. 5(d).

IV. CONCLUSION AND PERSPECTIVE

In summary, we systematically studied the flat band evo-
lution during the lattice transformation between pyrochlore
and perovskite lattices and explored their compacted localized
states, topological features, and transport behaviors. One of
the flat bands is found to be robust during the lattice evolution
process with the corresponding CLS located in an invariant 2D
kagome lattice plane, as protected by the C3 rotational sym-
metry along the diagonal axis. The inclusion of both SOC and
Zeeman field drives the system into magnetic Weyl semimetal
states, which remain robust and shows an intriguing AHC en-
hancement while transferred from a pyrochlore to perovskite
lattice. Such an AHC enhancement can be attributed to the
enlarged Weyl pair separation as well as the superimposition
of multiple AHC peaks driven by the evolution of 3D flat
bands during structural transformation.

It is important to note that this work only studied the
single-particle scenario of the 3D flat band based on the
tight-binding method. The further consideration of Coulomb
interaction between electrons could potentially lead to more
exotic quantum phenomena, which, however, is beyond the
scope of this work. We note that the study of the 3D flat band
is still in its infancy, where their unique exotic quantum phe-
nomena await further exploration and the realization in real
materials will play a more critical role for the breakthrough.
Several pyrochlore materials with flat bands have been stud-
ied with large anomalous Hall effect and/or ferromagnetism
[2,20,46,59]; however, realistic materials to realize the lattice
transformation through sufficient stress are yet to be explored.
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FIG. 6. Schematic of three types of CLSs of a pyrochlore lattice,
perovskite lattice, and transition lattice, respectively. The CLSs are
represented by purple and green polygons, with yellow and black
spheres denoting the different phases.
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APPENDIX A: CONTINUOUS CLSs

We note that there are actually four different CLSs for the
two degenerate flat bands in the pyrochlore and perovskite
lattices, in which only two are independent and selected for
the demonstration. Beside the CLSs presented in Fig. 2, we
can also choose the hexagon within the (1,1,1) kagome plane
as one of the two CLSs, as shown below in Fig. 6. The CLSs
are represented by purple and green polygons, which clearly
shows the continuous transformation during the lattice transi-
tion, i.e., the wave function corresponding to the CLS shown
by purple hexagons is continuously changing, while the green
CLS only exists in the perfect pyrochlore/perovskite lattice
and disappears when there is a small change in the lattice.
This is reasonable as only one of the two flat bands remains
flat during the transition, while the other one exists only for
the perfect pyrochlore/perovskite lattice.

APPENDIX B: CHIRALITY OF WEYL POINTS

In this Appendix, we demonstrate that the chirality of the
Weyl points near the � point will change when there is a slight
change in the lattice structure. We calculated the chirality of

FIG. 7. The chirality change of the Weyl points formed
near the flat band. (a), (b) The momentum position
[(−0.0874, −0.0874, −0.1147), (0.0874, 0.0874, 0.1147)] and
chirality of a pair of Weyl points near the � point as derived from
the change of Wannier charge center for a transition lattice with
60.5 degrees. (c), (d) The momentum position [(0, 0, 0.11565),
(0, 0, −0.11565)] and chirality of a pair of Weyl points near the �

point for a pyrochlore lattice with 60 degrees. The Weyl pair changes
from the kz direction to near the (111) direction during the transition
from 60 to 60.5 degrees, which leads to a chirality change.

the Weyl points at lattice angles of 60 degrees and 60.5 de-
grees, respectively [representing the handedness of the Weyl
points by calculating the change in Wannier charge center
(WCC)], as shown in Fig 7. With the slight change in lattice
angle, the Weyl pairs also slightly change in the momentum
space. More importantly, the Weyl pair changes from the kz
direction to near the (111) direction, which leads to a chirality
change and therefore a sign change of the AHC peak near
the flat band. However, by continuing to change the lattice
angle (60.5–90 degrees), the Weyl pair distribution remains in
a similar direction and the chirality of the Weyl points remain
unchanged, so the sign of the AHC will no longer change.
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