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Disorder-induced topological transitions in a multilayer topological insulator
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We examine the impact of nonmagnetic disorder on the electronic states of a multilayer structure compris-
ing layers of both topological and conventional band insulators. Employing the Burkov-Balents model with
renormalized tunneling parameters, we generate phase diagrams correlating with disorder, demonstrating that
nonmagnetic disorder can induce transitions between distinct topological phases. The subsequent section of
our investigation focuses on the scenario where disorder is unevenly distributed across layers, resulting in
fluctuations of the interlayer tunneling parameter, termed off-diagonal disorder. Furthermore, we determine the
density of states employing the self-consistent single-site diagram technique, expanding the Green function in
relation to the interlayer tunneling parameter (locator method). Our findings reveal that off-diagonal disorder
engenders delocalized bulk states within the band gap. The emergence of these states may lead to the breakdown
of the anomalous quantum Hall effect (AQHE) phase, a phenomenon that has garnered significant attention from
researchers in the realm of topological heterostructures. Nonetheless, our results affirm the stability of the Weyl
semimetal phase even under substantial off-diagonal disorder.
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I. INTRODUCTION

The study of topological materials continues to be a “hot”
direction in the modern theory of condensed matter [1–7]. One
of the most pressing questions is the influence of various types
of disorder on topological phases [8–13]. Disorder plays a key
role in establishing certain properties of electronic systems.
For example, disorder is the cause of quantum localization
(Anderson localization), as well as Hall plateaus in the integer
quantum Hall effect. Another interesting effect is disorder-
induced topological phases in two- and three-dimensional
systems, which have been called two- and three-dimensional
Anderson topological insulators. Disorder in these systems,
on the one hand, induces Anderson localization, and on
the other hand, the topological mass is renormalized due to
disorder until the sign changes (band inversion) and the sys-
tem undergoes transition to a topologically nontrivial state
[9]. Thus, disorder induces chiral edge states in the system,
which in the pure state is topologically trivial. The disorder-
induced metal-insulator transition has also been studied in
Weyl semimetals (see, for example, [14,15]). In recent work,
these effects were studied in a two-layer structure [16]. It is
worth noting that the topological Anderson phase was pre-
dicted not only for crystalline systems, but also for amorphous
ones (see, for example, [17,18]).

In this work, we study the effects of nonmagnetic disorder
in a multilayer system of topological (TI) films and con-
ventional (normal) insulators within the Burkov-Balents an-
alytical model [19]. The study of various TI heterostructures
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is of particular interest due to the emergence of unique effects
in such systems [20–30]. One such effect is the anomalous
quantum Hall effect (AQHE), and many ongoing works are
aimed at searching for signs of the topological magnetoelec-
tric effect and axion insulator phases. In a multilayer structure,
the AQHE mode can be achieved due to the proximity effect
without introducing magnetic impurities directly into the TI
layers, which means that magnetic impurities are introduced
into the layers of a conventional insulator. Thus, they affect
only the spin degeneracy of edge modes (which is neces-
sary to obtain the AQHE and Weyl phase modes) but are
not the centers of scattering of these modes. Another funda-
mental motivation for studying multilayer topological systems
is related to the fact that such structures are convenient for
observing phenomena associated with the quantum geometry
(see, for example, [31,32]). This concept is the most general
and fundamental approach to topological condensed matter
physics. In PT-symmetric heterostructures (this is achieved by
appropriate selection of layers), in which the Chern number
is identically equal to zero due to symmetry, the so-called
nonlinear quantum Hall effect has been measured [32]. The
origin of this effect can be explained by the nontrivial quan-
tum metrics of Bloch bands. On the other hand, recent work
has investigated multilayer magnetic topological insulators
with an asymmetric layered structure, which makes it possible
to achieve a magnetic field-controlled phase transition to the
AQHE regime.

The paper is organized as follows. In Sec. II we recall the
main aspects of the Burkov-Balents model for multilayer TI.
In Sec. III we examine the disorder-induced renormalization
of the edge modes and tunneling parameters of the model used
and plot phase diagrams for various cases as a function of
disorder. In Sec. IV we investigate the density of states for
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FIG. 1. Schematic representation of the system under study. Hor-
izontal arrows on the right panel represent chiral edge modes in the
TI films. Different colors of arrows (green and red) correspond to
different chiralities. A unit cell of height d contains one TI layer and
one normal insulator layer.

the situation where disorder is unevenly distributed across
layers. This leads to the fact that the interlayer tunneling
parameter randomly changes (fluctuates) from layer to layer—
off-diagonal disorder. At the end we draw a conclusion, which
briefly summarizes the main results.

II. BURKOV-BALENTS MODEL

The multilayer system of conventional insulators and TIs
we are studying is shown in Fig. 1. To study such a system
we use the well-known Burkov-Balents model, which is quite
effective for studying topological properties. The Hamiltonian
of the system within this model can be written in the following
form [19]:

H =
∑

k⊥,i, j

c†
k⊥i

[
(τ zυF (ẑ × σ ) · k⊥ + �Sτ

x )δi, j

+ 1

2
�Dτ+δ j,i+1 + 1

2
�Dτ−δ j,i−1

]
ck⊥ j, (1)

where υF (ẑ × σ) · k⊥τ z is the Hamiltonian of the edge modes
of the TI film, in which there are two chiralities are given
by the Pauli matrix τ z, k⊥ = (kx, ky). The Pauli matrices τ

define the degrees of freedom associated with the top and
bottom edges of the TI layer, and the Pauli matrices σ describe
the spin degrees of freedom. The indices i, j number the TI
layers. The term with �S matches tunneling between edge
modes inside the TI film (i.e., hopping between the upper
and lower surfaces of the same layer), and the terms with
�D correspond to tunneling between edge modes neighbor-
ing films (see Fig. 1). In the momentum representation, this
Hamiltonian has the following form [33]:

Hk =
(

υF (ẑ × σ) · k⊥ �S + �Deikzd

�S + �De−ikzd −υF (ẑ × σ ) · k⊥

)
, (2)

with the spectrum

εk = ±
√

υ2
F

(
k2

x + k2
y

) + �2(kz ), (3)

where the function � is defined as �2(kz ) = �2
S + �2

D +
2�S�D cos kzd .

Further, without loss of generality, we assume that
�S,�D > 0. Let us note two features of this Hamiltonian that
are important in the rest of the paper. First, for �S = �D the
system is gapless and contains the Dirac point (0, 0, π/d ).
Second, this Dirac point in fact can be considered as a critical
point of a phase transition between topological (�S < �D)
and ordinary (�S > �D) insulators [34]. This transition is
described by the topological invariant ν, which is determined
from the expression (−1)ν = sgn(�S − �D). For other details
of the model, the reader can refer to the work [19].

III. DISORDER-INDUCED RENORMALIZATION OF EDGE
MODES AND PHASE TRANSITIONS IN MULTILAYER TI

Let us now perform the generalization of the Burkov-
Balents model to the case of the presence of nonmagnetic
disorder inside the TI layers. First of all, we briefly discuss
the effect of such disorder on the electronic states of an
isolated TI film. The main idea of our work is based on the
fact that the disorder inside the TI film rearranges its edge
modes, tunneling between, which ultimately determines the
electronic structure of the multilayer structure. In this section,
we consider in detail the renormalization of TI edge states
and the consequences of such renormalization in the form of
topological phase transitions.

Following the works [2,10,35], we use for TI with disorder
the following four-band Hamiltonian for a cubic lattice (for
simplicity, the lattice constant is set equal to unity):

HT I =
∑

k

Ψ
†
k

⎡
⎣ 3∑

μ=0

dμ(k)
μ + d4(k)I

⎤
⎦Ψk +

∑
j

UjΨ
†
j Ψ j,

(4)
where Ψ j is a four-component state vector at the jth site of the
crystal lattice, d0(k) = χ − 2t

∑
i cos ki, di(k) = −2λ sin ki,

d4(k) = 2γ
∑

i(1 − cos ki ), 
μ are Dirac matrices, and Uj is
a random potential at the jth lattice site caused by disorder.
We use the simplest Anderson model, within which the energy
values at the sites are distributed uniformly with a density of
1/U0 in the interval [−U0/2,U0/2].

For U0 = 0 we obtain the Hamiltonian of the pure sys-
tem H0

T I = ∑
k Ψ

†
k H0

k Ψk. This Hamiltonian contains a term
m = χ − 6t , called the topological mass. It can be shown that
for m > 0 the system is an ordinary band insulator with a
gap value equal to m. If m < 0, then the spectrum becomes
inverted and the system, in addition to gapped bulk states, also
contains gapless edge states that have topological protection.
This phase is called a TI. Note that for U0 = 0 the Hamil-
tonian is invariant under time reversal, since T 
0T −1 = 
0,
T 
iT −1 = −
i, di(−k) = −di(k), where T is the time in-
version operator. This invariance is the basis for topological
protection of chiral edge states.

At U0 �= 0 the spectrum of the system is renormalized.
Within the single-impurity diagram technique [36–38] the
self-energy part can be depicted as in Fig. 2. The use of such
a diagrammatic series means going beyond the Born approxi-
mation. As we see below, this eliminates some singularities
from the calculations and gives more accurate results. The
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FIG. 2. Diagram series for the self-energy part (5) in the single-
impurity cross technique in the T-scattering matrix approximation.

Born approximation can be applied if the condition is met
k3

F

∫
u(r)d3r � εF (see, for example, Ref. [39]). If we assume

that the impurity potential is equal to u0 in the region �3r and
is close to zero in the rest of the space, then this criterion can
be rewritten as �3r � εF /u0k3

F � 1/(u0(2m)3/2ε
1/2
F ). Thus,

the criterion is satisfied for a short-range potential and small
values of the Fermi energy and topological mass. This is
important because the transition from a topologically trivial
phase with m > 0 to a topologically nontrivial phase with
m < 0 is carried out through the value m = 0. It should also be
noted that we do not take into account diagrams with intersec-
tions from several impurities. The smallness of such diagrams
is estimated as h̄/εF τ � 1 [39]. This condition can be inter-
preted as follows: the shorter the relaxation time τ , the larger
the diffusion volume covered by the particle and the lower the
probability of the particle returning to the starting point. We
assume that the both mentioned criteria (the applicability of
the Born approximation and neglecting intersected diagrams)
are satisfied in our system. Thus, the diagrammatic series
in Fig. 2 can be summed in the short-range impurity center
approximation, when the Fourier transform of the impurity
potential can be considered as a constant. In this case

�̂(εF ) = U

(
1 − U

∑
BZ

Ĝ(εF , k)

)−1

, (5)

where Ĝk(εF ) = (εF + iδ − H0
k − �)−1. Averaging over im-

purities gives

�̂ = − (F̂−1)2

U0
ln

1 − U0
2 F̂

1 + U0
2 F̂

− F̂−1, (6)

where we introduce the following notation: F̂ = ∑
BZ Ĝk and

F̂−1F̂ = I. The matrix structure of the Hamiltonian leads
to a similar structure of the self-energy part. Therefore, the
latter can be expanded in the basis of Dirac matrices � =∑

μ 
μ�μ + I�4, where �μ = 1/4tr(
μ�), �4 = 1/4tr�.
We consider the case of nonmagnetic impurities. This means
that the total Hamiltonian (4) has to be also T -invariant. Thus,
T �T −1 = � or T �iT −1 = −�i. However, the quantities
�μ are functions of energy only and do not depend on momen-
tum. Therefore T (di(k) + �i )T −1 = −di(k) + �i should be
true. If we take into account that T 
iT −1 = −
i, then we
finally obtain �i ≡ 0. Thus, nonmagnetic impurities lead to
renormalization of the topological mass and Fermi energy
due to the quantities �0 and �4, respectively: m → m =
m + Re[�0], εF → εF = εF − Re[�4]. Expansion of func-
tion (6) in terms of U0F up to the second order gives the
self-consistent Born approximation � = (U 2

0 /12)F , used in
[8–10]. Next, to obtain analytical expressions, we simplify the
problem and set Ĝk → Ĝ0

k, where Ĝ0
k = (εF + iδ − H0

k )−1.
Then, using the same considerations as in the works [8–10]

to calculate
∑

BZ Ĝ0
k, we obtain1

Re[F ] � − 1

2π

t
0 + γ

t2 − γ 2
= F0
0 + F1. (7)

The problem of finding the quantities �μ can be simplified
if we first establish their form in the expression (5), and then
carry out averaging over impurities. As a result we obtain

�0 = 2πt + 4π2γ t

U0
ln

∣∣∣∣∣ (U0 − 4πγ )2 − 16π2t2

(U0 + 4πγ )2 − 16π2t2

∣∣∣∣∣
+ 2π2(γ 2 + t2)

U0
ln

∣∣∣∣∣ (U0 − 4πt )2 − 16π2γ 2

(U0 + 4πt )2 − 16π2γ 2

∣∣∣∣∣, (8)

where �4 is defined as

�4 = −�0(γ � t ). (9)

To obtain Eq. (8), we put Ĝk → Ĝ0
k in (5) and used Eq. (7).

After that, we multiplied matrix (5) by 
0 and calculated the
trace. The resulting expression was integrated in the interval
[−U0/2,U0/2] with a weight of 1/U0. Similarly, to obtain
Eq. (9), we took the trace of matrix (5) (without multiplying
by 
0) and repeated the mentioned integration. One can obtain
the same expressions if one finds tr(
μ�) from the formula
(6). Note that, in contrast to the Born approximation used in
the works [8–10], the expressions (8) and (9) for the self-
energy part do not contain the singularity at t = γ . This is
due to the fact that we summed up the entire single impurity
diagram series (see Fig. 2).

The main result of this paper, as will be seen below, is
based on the dependence m(U0). In this case, the condi-
tion m � 0 should be satisfied for edge states to exist. This
condition can be obtained either in a conventional insulator
(m > 0) in the Anderson phase [U 2

0 > 24πm(t2 − γ 2)/t], or
in a topological insulator (m < 0) with t < γ . Further, we pro-
ceed from the dependence m(U0), assuming that this condition
is satisfied.

The Burkov-Balents model we use to study a multilayer
system is based on the inclusion of tunneling amplitudes
between the edge modes of TI films. These edge modes
represent zero-energy solutions. Here we consider the effect
of disorder on the spatial distribution of these modes. We
start from the Hamiltonian H0

T I . It is necessary to solve a
boundary value problem within open boundaries condition.
This problem has been considered by many researchers (see,
for example, [25,40,41]) in the continuum approximation,
when d0 ≈ χ − 6t + t

∑
i k2

i = m + tk2, di ≈ −2λki = υki,
d4 ≈ 0. Then the problem of finding edge modes is reduced
to solving the wave equation with a one-dimensional Dirac
Hamiltonian along an axis perpendicular to the edge. This
approximation allows us to see all the basic properties of edge
states. The qualitative picture of the behavior of edge states
is as follows: at m < 0 there are edge states, but at m > 0 the
edge states disappear, and at m = 0 these edge states become
bulk and the system is in the state of a Dirac semimetal. It

1The Fermi energy is localized inside the gap, therefore the imag-
inary part F , which is the density of bulk states of a pure system, is
zero at zero temperature.
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FIG. 3. Schematic representation of the dependence of the spatial
distribution of edge modes on the topological mass value. A smaller
value of |m| corresponds to a greater depth penetration.

is important that edge modes have a finite penetration depth,
the latter being a function of the topological mass. This fact
is of key importance for our work. The dependence of the
penetration depth on the topological mass can be obtained
from the solution of the boundary value problem [25,40,41]:
ξ = h̄υ/|m|. From this it is clear that ξ → ∞ for m → 0,
i.e., edge modes permeate the entire system, becoming bulk
states. In the presence of nonmagnetic disorder, in the Born
approximation, taking into account the above results for the
penetration depth, we obtain

ξ = h̄υ

|m + Re�0| , (10)

where Re�0 is defined by Eq. (8), while within the Born
approximation Re[�0] = −U 2

0 t/24π (t2 − γ 2) [9,25]. Thus,
the penetration depth of edge states is a function of disorder.
This dependence is shown schematically in Fig. 3 for the case
m < 0 and t < γ . Our main idea is that nonmagnetic disorder
thus leads to a renormalization of tunneling amplitudes be-
tween edge modes through a change in the penetration depth
of these states. Two main mechanisms for such renormaliza-
tion can be noted. First, increasing the penetration depth leads
to a decrease in the effective distance between edge states
inside the TI film. This, accordingly, leads to an increase in
the parameter �S . This also can be understood if we take into
account that �S ∼ ∫

d3rψ∗
edge1(r)ψedge2(r + L). Second, an

increase in the overlap of edge modes as they approach each
other further increases the amplitude of tunneling between
them due to the effects of violation of orthogonality �S →
�S/(1 − S2) (S is the modulus of the overlap integral) [43,44].
Strictly speaking, renormalization of the penetration depth
also affects �D. As can be seen from Fig. 3, this parameter
decreases as ξ increases. However, this effect is of a higher
order of smallness than the change in �S . For simplicity, we
neglect it here. So the Burkov-Balents model Hamiltonian
in the presence of nonmagnetic disorder can be rewritten as
follows:

Hk =
(

υF (ẑ × σ ) · k⊥ �S + �Deikzd

�S + �De−ikzd −υF (ẑ × σ) · k⊥

)
. (11)

Let us get now the dependence of �S on the parameter ξ .
We proceed from the most general and simplest considera-
tion. For |m| → ∞, edge modes are localized directly near

FIG. 4. Dependence of the value �S on U0. The upper panel
shows the case where m < 0 and t < γ and an increase in U0 leads
to an increase in �S . It can be seen that �S = �D for some value
of U0. This leads to a transition from the topological phase to the
normal. This transition can be understood if we use the formula for
the Z2 topological invariant from the work [42], rewritten as (−1)ν =
sgn(�S − �D ). The lower panel demonstrates the case when films
in a multilayer structure are Anderson insulators with m > 0 and
t > γ , and an increase in the value of U0 leads to an increase in the
topological mass and a decrease in �S .

the edge, i.e., ξ → 0. In this case �S (ξ = 0) = �S = tSe−αL,
where L is the distance between edge modes, which coincides
with the thickness of the TI film, tS, α are some constants
characterizing tunneling (see [45]). For finite values of m, the
effective distance between edge modes decreases to L − 2ξ .
Thus, �S = �Se2αξ , and ξ � L/2. We use this dependence
further. In Fig. 4 we show the phase diagrams of multilayer
TI for the case of m < 0 and t < γ . We assume that α =
10−5 cm−1. It is clear from the figure that nonmagnetic dis-
order can induce a phase transition from the topological phase
to the trivial phase and vice versa, depending on the sign of
the ordered topological mass and the relationships between
the parameters t, γ .

Let us now move to the brief discussion of the influence of
Zeeman splitting on the effects presented above. In this case,
the Hamiltonian can be rewritten in the following form:

Hk → Hk + τ 0σz�Z , (12)

where �Z is the value of Zeeman splitting. Zeeman splitting
leads to the appearance of Weyl points, as well as to the
transition to the AQHE phase (see, [19]). The spectrum of
such a Hamiltonian, accordingly, has the form

ε2
k± = υ2

F

(
k2

x + k2
y

) + [�Z ± �(kz )]2. (13)
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FIG. 5. Phase diagrams for the parameters �S and U0. The upper
panel shows the situation �Z < �D, when only the phases of an
normal insulator and a Weyl semimetal can be realized. The lower
panel demonstrates the situation when �Z > �D, when in addition
to the indicated phases, the implementation of the AQHE phase is
possible. From the figures it is clear that disorder can be the cause of
transitions between the mentioned phases.

Here we once again emphasize that nonmagnetic disorder in-
side the TI layers leads to a renormalization of the topological
mass in them and, accordingly, the tunneling parameters, and
the Zeeman splitting �Z is created, for example, due to the
proximity effect of magnetic impurities in the dielectric layers
(see, for example, [25]). Thus, magnetic impurities do not
affect the topological mass. From such a Hamiltonian one can
obtain the condition for the existence of Weyl points [19]. This
condition has the form

(�S − �D)2 < �2
Z < (�S + �D)2. (14)

It is clear that the fulfillment of this condition depends on
disorder inside TI layers. On the upper panel in Fig. 5, one can
see the phase diagram as a function of disorder U0. It is clear
from the figure that nonmagnetic disorder can be the cause of
a phase transition from the state of a normal insulator to the

Weyl phase and vice versa. The main conclusion that follows
from this is that uncontrolled disorder in real TI multilayer
structures can be the reason for the implementation of differ-
ent phases in them with the same composition and structure.
This is especially important for the values of tunneling param-
eters corresponding to the phase boundaries in this diagram.
In the vicinity of such boundaries, even small fluctuations of
these parameters can lead to interesting consequences. One
type of such fluctuations is discussed in the next section.

Finally, let us dwell briefly on transitions to the AQHE
state, which arises separately from the Weyl phase and the
phases of the topological and normal insulators. This phase
occurs at �2

Z > (�S + �D)2. The lower panel of Fig. 5 shows
the phase diagram for the values of such tunneling parameters
and Zeeman splitting at which disorder-induced transitions
between different phases are possible. It can be seen that
the Weyl semimetal phase appears as an intermediate phase
between the normal insulator (�2

Z < (�S − �D)2) and the
state of AQHE. It should be noted that the anomalous Hall
effect appears already in the Weyl phase. In this case, the
Hall conductivity is proportional to the distance between the
Weyl points. In turn, the latter depends on the relationship
between Zeeman splitting and tunneling parameters. At the
same time, at �2

Z > (�S + �D)2 a quantized Hall state (Hall
conductivity plateau) arises. From the spectra in Fig. 6 it can
be understood that in the Weyl phase the anomalous Hall
conductivity arises due to the presence of Weyl points, and
at �2

Z > (�S + �D)2 the spectrum becomes inverted, which
leads to a nonzero Chern number and a Hall plateau. It should
be noted that disorder-induced transitions between the phases
of a Weyl semimetal, AQHE, and normal insulator in a double
quantum well were predicted in [16]. The nature of such
transitions in a multilayer structure, studied in our paper, is
absolutely new. The effects we predict are based on changes
in the interlayer tunneling parameters due to renormalization
of the penetration depth of edge modes.

IV. OFF-DIAGONAL DISORDER IN MULTILAYER
TOPOLOGICAL INSULATOR

In this section we consider the situation when the char-
acteristics of impurities (potential, concentration) fluctuate
randomly from layer to layer. In this case, we are dealing
with the Burkov-Balents model with fluctuating tunneling
parameters. The type of disorder when the fluctuating quantity
is not the site energy (the diagonal parameter of the Hamil-
tonian) but the intersite hopping is called the nondiagonal
disorder [46–48]. Historically, the inclusion of off-diagonal
disorder in the theory of disordered electron (and phonon)
systems was apparently done in [49–51]. In these works an
approximation of the coherence potential with off-diagonal
disorder was developed for binary transition metal alloys. The
main reason why the off-diagonal disorder occurs in such
systems is that the width of the d level increases the higher
the d level. Therefore, to realistically describe the electronic
structure of transition metal alloys, it may be important to take
into account the difference in the hopping integral, in addition
to the difference in d-level energies (e.g., a 3d-3d hopping is
different from a 3d-4d hopping). There are also alloys of other
metals in which off-diagonal disorder cannot be neglected.
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FIG. 6. Spectrum of Hamiltonian (12) for different parame-
ter values: (a) �Z = 0, an ordinary insulator, (b) |�Z | < |�S −
�D|, ordinary insulator, (c) |�S − �D| < |�Z | < |�S + �D|, Weyl
semimetal phase, and (d) |�Z | > |�S + �D|, inverted spectrum-
AQHE state.

In our system, the off-diagonal disorder is caused by the
difference in the penetration depths of edge modes in different
layers, caused by the diagonal disorder inside TI layers.

It is also necessary to note the following important feature
of multilayer TI. The interlayer transport occurs due to tunnel-
ing between chiral edge modes. These modes themselves are
protected against scattering by nonmagnetic impurities. Thus,
we are dealing with a system in which delocalized states in
the plane (edge modes) do not sense the presence of disorder.
Thus, disorder affects only interlayer states.

Let us formulate the problem for the case when the
off-diagonal disorder presents in the system. In the most gen-
eral form, the Burkov-Balents Hamiltonian with fluctuating

FIG. 7. Schematic representation of off-diagonal disorder: tunnel
parameter �S as a random function of layer number.

tunneling parameters can be written as

H =
∑
k⊥,i

c†
k⊥i

[
τ zυF (ẑ × σ ) · k⊥ + �i

Sτ
x
]
ck⊥i

+ 1

2

∑
k⊥,i, j

c†
k⊥i

[
�i

+τ+δ j,i+1 + 1

2
�i

−τ−δ j,i−1

]
ck⊥ j,

(15)

where the quantities �i
S,�

i
± are random functions of the num-

ber of the layer i of the TI. Next we can write �i
S = �S + ηi

S
and �i

± = �D + ηi
±, where �S,�D are parts of the tunneling

parameters that are regular and identical for all layers, and
ηi

S, η
i
± are corrections (fluctuations) that are random functions

of the layer number. However, as in the previous part of
the article, we consider here a simpler case, when only �S

is the fluctuating quantity. In this case, the fluctuations are
similar to the random potential on the layer, because this
quantity is included with the factor δi j , although �S is the
off-diagonal parameter and describes tunneling between edge
modes, which is expressed by the presence of a factor in the
form of the Pauli matrix τ x. Neglecting fluctuations in �D

simplifies the problem. However, such neglect does not lead to
the loss of important features of the system. These fluctuations
are shown schematically in Fig. 7. Let the quantity ηi

S take
values from the interval (−η0/2, η0/2) with uniform distri-
bution. From simple topological considerations, three modes
can be distinguished: (1) �S − η0/2 > �D, (2) �S + η0/2 <

�D, and (3) �S + η0/2 > �D > �S − η0/2. However, these
modes are not clearly manifested for all phases. Below we
calculate the density of states for different phases as a func-
tion of disorder. We expect that radically new phenomena
are possible in such a system, for example, the induced by
fluctuations appearance of delocalized states inside the band
gap, up to the total collapse of the gap, etc. Such effects for
a one-dimensional semiconductor system with a fluctuating
gap were predicted in the works [52,53]. Below we see that
something similar occurs in our system.

We assume that fluctuations ηi
S are independent of each

other, i.e., 〈ηi
Sη

j
S〉 = Dδi j . Thus, formally we are dealing

with an Anderson-type model, in which the fluctuating �
potential � has the form ηi

Sτ
x.

The Appendix shows the calculation of the self-energy
part in the simplest Born approximation without taking
into account Zeeman splitting. Within this approximation,
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it is already clear that off-diagonal disorder gives an ad-
ditional renormalization of the Hamiltonian parameters. As
we can see, such renormalization is proportional to the
squared fluctuation of the tunneling parameter η2

0. As noted
above, fluctuations of the tunneling parameter can lead to the
so-called effects of off-diagonal localization/delocalization
[46–48]. Therefore, below we dwell in more detail on the
study of the influence of this type of disorder.

For a more detailed study of the effects of off-diagonal
disorder and to identify the possibility of the emergence of
new states induced by it, we use the method of Green function
expansion in terms of the hopping integral, developed in the
works [54,55] and presented in the review [56]. It was shown
in [57] that this method, with self-consistent consideration
of the expansion parameters, is completely equivalent to the
expansion in terms of the impurity potential. In our case, the
disorder is off-diagonal, so this method seems more conve-
nient. In the case of off-diagonal disorder in binary alloys,
this method was generalized in the works [49,50] (see also
[51,58]). Let us rewrite the Hamiltonian (15) into the follow-
ing form:

H =
∑

k⊥,i, j

c†
k⊥i[Ti j (k⊥) + Viδi, j]ck⊥ j, (16)

where

Ti j (k⊥) = (τ zυF (ẑ × σ ) · k⊥ + �Sτ
x )δi, j

+ 1
2�Dτ+δ j,i+1 + 1

2�Dτ−δ j,i−1, (17)

Vi = ηi
Sτ

x. (18)

Following [54–56], we expand the Green function in the
site representation in terms of the interlayer hopping integral
ti j = 1

2�D(τ+δ j,i+1 + τ−δ j,i−1) (method of expansion in lo-
calized states):

Gi j (k⊥, ε) = Si(k⊥)δi j + Si(k⊥)ti jS j (k⊥)

+
∑

j′
Siti j′S j′t j′ jS j + · · · , (19)

where

Si(k⊥) = (ε − τ zυF (ẑ × σ) · k⊥ − �Sτ
x − Vi )

−1
. (20)

Accordingly, for the Fourier transform we obtain

Gkzk′
z
(k⊥, ε) = σkzk′

z
+

∑
k′′

z

σkzk′′
z
tk′′

z
σk′′

z k′
z

+
∑
k′′

z ,k′′′
z

σkzk′′
z
tk′′

z
σk′′

z k′′′
z

tk′′′
z
σk′′′

z k′
z
+ · · · , (21)

where σkzk′
z
= 1

N

∑
j S j exp[i(kz − k′

z )z j] and tkz =
�D[τ x cos(kza) − τ y sin(kza)]. Next, it is necessary to
average such a Green function over disorder. If the value of
ηi

S were the same in each layer, then the matrix σkzk′
z

would
be diagonal in momenta, which would allow us to factor the
terms and sum the entire series. However, ηi

S , and therefore
Si(k⊥) are stochastic quantities, the ensemble average of the
products, which cannot be equated to the products of their
averages. However, first of all, we use an approximation in
which we replace all factors σkzk′

z
with average ones according

to the following formula (below we use a more accurate
approach): 〈

σkzk′
z

〉 = 〈S j〉δkzk′
z
, (22)

which leads to〈
G(0)

kz
(k⊥, ε)

〉 = (〈S j〉−1 − tkz )−1. (23)

It should be noted here that when averaging this kind of
series of expansions of Green functions, it is important to
correctly split the Hamiltonian into the unperturbed part and
the perturbation. A rougher approximation can be obtained if
we use the expansion

〈S j〉−1 ≈ 〈(ε − Vi )
−1〉−1 − τ zυF (ẑ × σ ) · k⊥ − �Sτ

x, (24)

which corresponds to the expansion of the Green function
in terms of the complete jump integral Ti j . However, the
applicability of such an expansion requires the smallness of
all parameters included in Ti j , which is why it is rougher.

As we noted above, we will use Anderson approach when
the random variable ηi

S is distributed uniformly in the interval
(−η0/2, η0/2). Then

〈S j〉 = 1

η0

∫ η0/2

−η0/2
Si

(
k⊥, η

j
S

)
dη

j
S, (25)

where it is assumed that ε = ε + i0. The value Re[〈Sj〉−1]
leads to renormalization of the shape of the band structure,
and the value Im〈S j〉−1 is the frequency of scattering by fluc-
tuations of the tunneling parameter. This quantity goes to zero
outside the fluctuation range of energy values. Thus,

〈Gkz (k⊥, ε)〉 = G0
kz

(〈S j (k⊥)〉−1). (26)

We should note here that limη0→0〈S j〉 = [ε − τ zυF (ẑ × σ ) ·
k⊥ − �Sτ

x]−1, which leads to an expression for the Green
functions of an ordered system. To calculate the density of
states we use the standard expression

ρ(ε) = −π−1Im
∑
k⊥,kz

tr
[〈

Gkz (k⊥, ε + i0)
〉]
. (27)

In Fig. 8 we show the density of states for the cases where
the ideal system is a normal insulator (top panel) and a topo-
logical insulator (lower panel). The solid lines correspond to
the approximation (23), and the dotted lines are obtained in
a more rigorous approach, which is presented below. It is
interesting that the phases of normal and topological insula-
tors differ from each other in their response to fluctuations
of the tunnel parameter. Namely, the width of the gap of a
normal insulator decreases with increasing value η0 until it
is completely closed. On the other hand, the gap width of
a topological insulator first increases (up to η0 = 13 meV in
the figure), and then collapses quite quickly with increasing
value η0. This distinction in response to off-diagonal disor-
der between normal and topological insulators aligns with
findings in [59]. The general conclusion that we can draw is
that fluctuations in the value of ηi

S lead to the emergence of
delocalized states inside the gap, but in the topological phase
such states arise only at large values of fluctuations.

Let us now include the Zeeman term in the Hamiltonian
and study the stability of the Weyl phase and the AQHE phase
by the following inclusion S−1

j → S−1
j − τ 0σz�Z . In Fig. 9 we
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FIG. 8. Density of states as a function of energy for two phases
in the absence of Zeeman splitting (�Z = 0). The upper panel
demonstrates normal insulator phase with �S = 25 meV and �D =
20 meV. The band gap regions corresponding to different density of
states curves are shaded in different colors. An increase in η0 leads to
a decrease in the band gap and the appearance of delocalized states.
The lower panel corresponds to topological insulator phase with
�S = 20 meV and �D = 25 meV. An increase in η0 first leads to an
increase in the band gap (to approximately η0 = 13 meV), and then
the band gap quickly collapses, also leading to delocalized states.
Thus, the topological phase is stable at small values of η0. Only posi-
tive energies are shown, because the curves are symmetrical about the
vertical axis. In both cases the panels include insets demonstrating
the dependence of the band gap �̃ on η0.

present the density of states in the Weyl phase (upper panel)
and the AQHE phase (lower panel) for different values of η0.
The simplest approximation is depicted by solid lines. As can
be seen from the figure, the Weyl phase is stable with respect
to off-diagonal disorder even at large values of η0. This result
is consistent with [60] where the global phase diagram of
disordered 3D Weyl semimetals has been investigated using
a perturbative RG analysis and shown that weak disorder is
irrelevant. For the AQHE phase, an increase in the value of η0

leads to the appearance of delocalized states, as in the cases
of normal and topological insulators.

Above we used the simplest approximation, replacing all
functions 〈σkzk(1)

z
. . . σk(n)

z k′
z
〉 during averaging (21) over disor-

der by products of averages 〈S j〉nδkzk′
z
. This is a rather rough

approximation, similar in some sense to the mean-field ap-
proximation (in the context of disorder physics, one can also
make an analogy with the virtual crystal approximation). Here

FIG. 9. Density of states as a function of energy in the presence
of Zeeman splitting (�Z �= 0) at �S = 25 meV and �D = 20 meV.
The upper panel demonstrates Weyl semimetal phase (|�S − �D| <

�Z = 20 meV < |�S + �D|). The density of states changes very
little with increasing η0. Thus, the Weyl point is stable to nondiagonal
disorder. The lower panel shows AQHE phase (�Z = 50 meV >

|�S + �D|). It can be seen that as η0 increases, the band gap only
increases, which indicates the stability of the AQHE phase relative to
off-diagonal disorder. In the case of AQHE phase, we add the inset
where the dependence of the band gap �̃ on η0 is presented.

we refine our theory using the ideas of the generalized coher-
ent potential approximation (see [50,55,56]). Let us introduce
the renormalized locator 〈σ 〉 and interactor t i j , as shown in
Fig. 10. The renormalized locator 〈σ 〉 contains partial sum-
mation over repeated indices (similar to how the scattering
amplitude in the Born approximation is replaced by the scat-
tering matrix) [50]. This replacement takes into account that
the series (21) contains arbitrary powers of magnitude S j ,

FIG. 10. Diagrammatic expansions for the quantities 〈σ 〉 and t .
Gray circles in the lower diagrams indicate identical indices. Inter-
mediate indices can be any, but differ from the edge indices (gray).
This requirement simply corresponds to the exclusion of repeated
counting of the same charts.
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which, when averaging, do not reduce to products of averages
〈S j〉. Next, we obtain the basic formulas for our more accurate
theory.

To carry out partial summation over repeating indices, one
can apply cumulative averaging (see [55,56]). In our case,
additional caution must be exercised due to the matrix nature
of the quantities S j and Ti j . For cumulative averaging we have〈∑

k′′
z k′′′

z

σkzk′′
z
t k′′

z
σk′′

z k′′′
z

t k′′′
z
σk′′′

z k′
z

〉
c

= 〈SmtSmtSm〉δkzk′
z
, (28)

where we used the cumulant property 〈SitS jtSs...〉c �= 0 only
for i = j = s = · · · . Taking this into account, we write the
renormalized locator as follows:

〈σ 〉 = 〈Sm〉 + 〈SmtSm〉 + 〈SmtSmtSm〉 + · · · = 〈(
S−1

m − t
)−1〉

.

(29)

Finally, the diagrammatic series in Fig. 10 gives the following
expression for the value of t :

t (k⊥) = 〈σ 〉−1(〈G〉t )mm = 〈σ 〉−1
∑

kz

〈Gk〉tkz (30)

where for the Green function we have

〈Gk〉 = [〈σ 〉−1 + t (k⊥) − tkz

]−1
. (31)

In the absence of disorder 〈σ 〉 = [S−1
m − t (k⊥)]−1 and we ob-

tain an expression for the unperturbed Green function. Thus,
to calculate the density of states, we use the formulas (29)–
(31), and carry out averaging over a homogeneous ensemble,
i.e., similar to Anderson model. The method described by
the formulas (29)–(31) is called the self-consistent locator
method.

If we put G = Sm in (30), we obtain t = 0 and 〈σ 〉 = 〈Sm〉,
which brings us to the simplest approximation we used above.
To obtain the next approximation, we can put in (30) G = G1,
where G1 is the Green function obtained in the simplest ap-
proximation, i.e. G1

k = (〈S〉−1 − tk )−1. In Fig. 8 and 9 dotted
lines show numerical calculations of the density of states
using formulas (29)–(31). As can be seen from the figures,
in some cases the differences between the approaches are not
small. But qualitatively the simplest approximation correctly
describes the effect of gap collapse at large values of fluctua-
tion of the tunnel parameter. It should be noted that when more
precise formulas are used, the collapse of the gap increases.
For example, for the phase of a normal insulator (see Fig. 8
top) at η0 = 15 meV in the zero approximation there is still a
gap (about 1.2 meV), but according to the dotted orange line
the gap is narrower practically absent.

V. CONCLUSION

In this work, we investigated the effect of diagonal and
off-diagonal nonmagnetic disorder on different phases of a
multilayer TI. We have shown that disorder can cause transi-
tions between these phases. Off-diagonal disorder can induce
states to arise inside the gap and even cause the band gap col-
lapse. The appearance of delocalized states inside the bandgap
can lead to a radical restructuring of the AQHE phase.

The appearance of delocalized states in the gapped phase
can be studied experimentally using transport measurements.
In particular, the temperature behavior of static interlayer con-
ductivity is likely to be different for localized and delocalized
states. In addition, information about the presence of such
states caused by disorder can be obtained using measurements
of thermoEMF and the Hall effect.

Finally, it is interesting to compare our results with the
works of [52,53]. In the work [52], the density of states of
a one-dimensional semiconductor system with a band gap,
which is a random function of the coordinate, was studied.
The authors found an exact solution, one of the consequences
of which is the emergence of a singularity at the center of the
gap �(x) = �0 + �′(x). According to [52], a singularity of
the form |ε ln3 |ε||−1 of the density of states at the center of the
gap ε = 0 arises in an infinitely long system with �0 = 0. In
our case, the random variable is the tunneling parameter �S .
However, if one remembers that the band gap in our model is
written as |�S − �D|, then fluctuations of the parameter �S

can be perceived as fluctuations of the band gap. Thus, the
analogy between our work and paper [52,53] becomes obvi-
ous. In fact, using a similarity transformation, the Hamiltonian
(11) can be reduced to the form

(U −1HkU )k⊥=0 =
(

�S − �D �D∇z

−�D∇z −(�S − �D)

)
, (32)

where we used the long-wavelength approximation and set
d = 1, kz → −i∇z. This Hamiltonian completely coincides
with what was studied in the work [52]. The absence of a
singularity of the density of states at the center of the band
gap in our model is apparently due to the three-dimensionality
of our problem and the fact that, unlike [52], we took into
account the crystal structure along the z axis, which leads
to a limitation of the range of values of kz. In addition, we
mainly used perturbative methods, in contrast to [52] where
an exact solution was obtained. The study of off-diagonal
disorder in multilayer TI using nonperturbative methods (for
this, apparently, the method used in the work of [61] can be
applied) and the study of the singular behavior of the density
of states is a separate interesting problem.

ACKNOWLEDGMENTS

The results of Secs. III and IV were obtained with the
support of the Russian Science Foundation Grant No. 22-
72-00110. The study is partly supported by the Ministry
of Science and Higher Education of the Russian Federation
(Goszadaniye), project No. FSMG-2023-0011.

APPENDIX

Let us expand the operators c†
k⊥i, ck⊥i into eigenfunctions

of the unperturbed Hamiltonian

ck⊥i =
∑

kz

ck⊥kz e
−ikzzi . (A1)

Then

V =
∑

k⊥kzk′
z

c†
k⊥k′

z
〈k′

z|η|kz〉ck⊥kz , (A2)
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where 〈kz|η|k′
z〉 = ∑

i eik′
zziηi

Sτ
xe−ikzzi . If we introduce the

Fourier transform of the quantity ηi
S in the form ηi

S =∑
q η

q
Se−iqzi , then we obtain 〈kz|η|k′

z〉 = ∑
q η

q
Sτ

xδk′
z,kz+q. In

this case

V =
∑
k⊥kzq

c†
k⊥kz+q

(
η

q
Sτ

xσ0
)
ck⊥kz . (A3)

This shows that if ηi
S = ηS , then η

q
S = δq0, which gives V =

ηS
∑

k⊥kzq c†
k⊥kz

τ xck⊥kz , i.e., simply an addition in the form
of a constant to the τ x component of the zero Hamiltonian.
Using perturbation theory with such a small parameter it is
possible to obtain corrections of any order to the Hamiltonian.
Thus, in addition to scattering on impurities, which leads to
renormalization of tunnel parameters, scattering occurs on
fluctuations of the impurity potential from layer to layer. Us-
ing the standard Matsubara formalism of Green’s functions,
for the second-order correction we obtain

−〈
T

[
ck1 (τ1) ⊗ ck2 (τ2)V (τ ′)V (τ ′′)

]〉
, (A4)

where for convenience, we omit the index k⊥ and the corre-
sponding summation, which we restore at the end. The tensor
product acts in the matrix basis 4 × 4, in which the Hamilto-
nian is written. To obtain an analytical expression, we average
over ηi

S , integrating over all ηi
S with weight 1/η0:

〈· · ·〉c =
∏

i

∫ η0/2

−η0/2

dηi
S

η0
· · · . (A5)

It is clear that in the first order in perturbation such averaging
gives a zero correction to the Green function. In second order
we have

〈V 2〉c ∼
∑
qq′

〈
η

q
Sη

q′
S

〉
c f (q, q′)

=
∑

i j

〈
ηi

Sη
j
S

〉
c

∑
qq′

eiqzi eiq′z j f (q, q′)

= η2
0

12

∑
qq′

δq,−q′ f (q, q′) = η2
0

12

∑
q

f (q,−q). (A6)

Then we have

− η2
0

12

∑
k′

zk′′
z q

〈
T

[
ck1τ1 ⊗ ck2τ2 ck′

z+q,τ ′ (τ xσ0)ck′
zτ

′

× ck′′
z −q,τ ′′ (τ xσ0)ck′′

z τ ′′
]〉
. (A7)

Next, we use Wick theorem, leaving only connected diagrams.
For a four-operator expression it can be proven that〈

T
[
ck1 (τ1) ⊗ ck2 (τ2)ck′

z+q(τ ′)(τ xσ0)ck′
z
(τ ′)

]〉
= 〈

T
[
ck1 (τ1) ⊗ ck′

z+q(τ ′)
]〉

(τ xσ0)

× 〈
T

[
ck′

z
(τ ′) ⊗ ck2 (τ2)

]〉
. (A8)

Similarly, to the second order we get

− η2
0

12

∑
kz

Ĝk1 (τ1 − τ ′)(τ xσ0)Ĝkz (τ
′ − τ ′′)

× (τ xσ0)Ĝk1 (τ2 − τ ′′), (A9)

where we used the relation (|A〉 ⊗ 〈B|)〈C|τ xσ0|D〉 = (|A〉 ⊗
〈C|)τ xσ0(|D〉 ⊗ 〈B|). Consequently, in the second order for
the proper part we obtain

�̂ f = −η2
0

12
τ xσ0

∑
k⊥kz

Ĝk⊥kzτ
xσ0 = �

f
0 + � f

μγμ, (A10)

where we restore the index k⊥ and the corresponding summa-
tion.

For simplicity, here we will restrict ourselves to the case
without Zeeman splitting. Let us introduce the notation

γ1 = −τ zσy, γ2 = τ zσx, (A11)

γ3 = τ xσ0, γ4 = τ yσ0, (A12)

then the Hamiltonian will be written in the form

Hk = γ1υF px + γ2υF py + γ3(�S + �D cos kzd )

+ γ4�D sin kzd. (A13)

It is easy to show that γ 2
i = I4×4, γiγ j + γ jγi = 0 for i �= j.

Then

Ĝk⊥kz = ε + Hk

ε2 − υ2
F k2

⊥ − �
2
(kz )

. (A14)

Because the summation over impulses is carried out within
symmetrical limits, then �

f
1 = �

f
2 = �

f
4 = 0, and for �

f
0 and

�
f
3 we obtain

�
f
0 � − d2

⊥η2
0εF

48πυ2
F h̄2

× ln

∣∣∣∣∣∣∣
ε2

F − (�S − �D)2 − �S�D − υ2
F h̄2

d2
⊥

ε2
F − (�S − �D)2 − �S�D

∣∣∣∣∣∣∣, (A15)

�
f
3 = �S + 5

6�D

πεF
�

f
0 . (A16)

Note, that the exact calculation of these integrals is not dif-
ficult, but in this case cumbersome expressions arise, and
therefore we expanded the integrands.
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