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We explore the stability of certain many-body quantum states which may exist at zero or finite temperatures,
may lack long-range order and even topological order, and still are thermodynamically distinct from uncorrelated
disordered phases. We sharply characterize such states by the conservation of topological charge, or equivalently
confinement of instantons, using a generalization of the Wilson loop and the correlation length of an emergent
gauge field. Our main conclusions are (i) topological orders can exist at finite temperatures, (ii) relativistic liquids
of topological defects can also exist as stable phases at finite temperatures, and (iii) there are two universality
classes of instanton suppression. We also relate the instanton dynamics to the problem of the pseudogap state in
underdoped cuprates. A universal experimental signature of the instanton deconfinement transition is a change
of the quantum noise spectrum, which can perhaps be measured in some situations, for example, via a quantum
anomaly, or indirectly detected with a specific heat jump. The method of analysis is a functional renormalization
group that generalizes the Coulomb gas treatment of Kosterlitz and Thouless to arbitrary interactions and
dimensions. In particular, we construct an exact nonperturbative technique for confining interactions between

instantons that introduce irreparable infrared divergences in the standard perturbative approaches.

DOLI: 10.1103/PhysRevB.109.165132

I. INTRODUCTION

Strongly correlated states of matter pose a great chal-
lenge to our universal understanding of materials, especially
when interactions between particles are combined with quan-
tum entanglement, thermal effects and nontrivial topology.
Topological order is a form of many-body quantum en-
tanglement which cannot be unambiguously detected by
correlations between any local properties and yet produces
ground state degeneracy on topologically nontrivial manifolds
[1]. Fractional quantum Hall states are the only experimen-
tally confirmed realizations of topological order in electronic
materials up to date. However, the theory of topological orders
has advanced very far. A complete classification of topologi-
cal orders in two spatial dimensions may have been achieved
[2], and at least a partial classification in three dimensions
is emerging [3—15]. This major gap between theory and ex-
periment is actually also manifest in the theory itself since it
seems unclear how to take a random case from the available
classification schemes and construct a realistic microscopic
model (beyond a specialized exactly solvable model) which
realizes the chosen topological order in its ground state. This
is in contrast to the phenomenon of symmetry breaking and
conventional long-range order: the moment we choose a group
for symmetry transformations, we have an idea about what
degrees of freedom to use and how to couple them within
a physical Hamiltonian, and then we have many techniques
at our disposal to analyze the dynamics. The present study
attempts to approach the problem of topological order from
a similar physical point of view, still quite universal but
focused on the issues of feasibility and stability instead of
classification.
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Here, we explore certain general conditions for the stabil-
ity of unconventional quantum phases which exhibit strong
correlations and no spontaneous symmetry breaking. We
are interested in the phases shaped by delocalized but
uncondensed topological defects. A topological protection
mechanism that conserves topological charge, and hence al-
lows particles to be delocalized as well, is engaged through
the confinement of instantons. We study instanton confine-
ment as a function of temperature and interaction type in
D =d + 1 > 2 space-time dimensions using renormalization
group. While much is already known about the issues of
confinement [16-54], the general scope and various technical
aspects of this study make it nontrivial. The instanton con-
text of confinement leads to several important and surprising
conclusions: (i) topological order is possible at finite tempera-
tures, (ii) relativistic correlated quantum liquids of topological
defects and antidefects are also possible at finite temperatures,
with or without topological order, and (iii) there is more than
one universality class of instanton deconfinement.

We will show that stable thermodynamic phases of con-
fined instantons can exist independently of spontaneous
symmetry breaking in generic systems which support topo-
logical defects. An important prerequisite is the presence of
an intrinsic length scale distinct from the ultraviolet cutoff
and unrelated to temperature or disorder. The new length scale
is required in order to determine a finite coherence length
& of the matter field. If the instantons are neutralized within
distances A < &, then topological defects are well-defined and
conserved for all practical purposes. The fractional quantum
Hall state is an example: it lacks long-range order at least
because the introduced vortices are mobile, but its filling
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factor v, the number of particles per vortex, is rationally
quantized. Since charge is conserved, this is possible only if
topological charge, or vorticity, is conserved as well. Another
example may be the Nernst effect in the underdoped pseudo-
gap state of cuprates [55-57], which demonstrates coherent
vortex dynamics in the absence of a Cooper pair condensate.
Our findings give a theoretical support for such correlation
phenomena, generalizing the thermodynamics of protected
topological defects to finite temperatures and beyond topo-
logical order. We suggest that an instanton confinement phase
transitions can be experimentally detected with quantum noise
and specific heat measurements, at least in principle.

This paper is organized as follows. Section II introduces
instantons and explains a thermodynamic characterization of
their confinement with a generalized Wilson operator and a
correlation length for an emergent gauge field. Then, Sec. IT A
surveys the literature about confinement-deconfinement tran-
sitions and describes the context of this study together with
its essential ideas for the setup and interpretation of renor-
malization group. Technical presentation of the instanton gas
renormalization group is given in Sec. III (which uninterested
readers can skip). After a brief introduction, we consider
nonconfining potentials in Sec. IIT A, logarithmic potentials
in Sec. III B, general confining potentials in Sec. IIIC, and
finite-temperature phase transitions in Sec. I[II D. At the end,
the critical scaling of the correlation length with temperature
is derived for two universality classes of instanton deconfine-
ment. Then, Sec. IV explores possible experimental signatures
of the confined-instanton phases, hidden in the quantum noise.
Section V is a nontechnical discussion of possible implica-
tions for the physical systems such as fermionic and bosonic
quantum Hall liquids, high-temperature superconductors, and
materials with strong spin-orbit coupling. All conclusions are
summarized in Sec. VL.

Throughout this paper, we use units Z=c=1 and
Einstein’s convention for the summation over repeated
indices. Spatial directions are denoted by Latin letters
i,j k,...e{l,...,d}, and space-time directions by Greek
letters w, v, A, ... € {0, 1,...,d}.

II. THERMODYNAMIC DISTINCTION BETWEEN
CONFINED AND DECONFINED PHASES

Consider a generic quantum system in the continuum limit
whose local degrees of freedom are accessed by a field opera-
tor ¥ (x). If the system supports topological defects, it is also
possible to construct an operator Jy[v] which probes their
density. The topological index or “charge” of all defects inside
a d-dimensional volume B is

N= [ dJ. (D)

Bd
No smooth field deformations can change the topological in-
dex. We mathematically represent this fact by a conservation
law 9,7, = 0, where J; is the current density of topological
defects. The solution of the conservation equation can be ex-
pressed using an antisymmetric tensor gauge field A, ..., ,,

\7# = GMU)\I...M?I 8VAA|---A4,| . (2)

Explicit constructions of 7, have been obtained for spinor and
vector fields whose topological defects (vortices, monopoles
and hedgehogs) are classified by the 7,,(S”) homotopy groups
[58]. Using Stokes-Cartan theorem, we find that the topolog-
ical invariant is the gauge flux through the boundary S¢~!
of B%:

N = i d’x €0iji - ja-1 aiAjl"'jd—l

= féd,] dd_lx6j1~~jd71~'4j1'“jdf]~ (3)

In our notation, the Levi-Civita tensor € either carries all
space-time indices or displays only the indices which live on
the integration manifold as in the last line.

In order to study dynamics at any temperature, we con-
struct the imaginary-time path integral for the partition
function

Z =tr(e FHU) = / Dy e SV, )

Here, H is the Hamiltonian operator, S is the imaginary-time
action, and 8 = 1/T is the inverse temperature. The action
is an integral of the Lagrangian density £ over the infinite
d-dimensional space and a finite imaginary time extent 7 €
(0, B) with periodic boundary conditions. Let us introduce the
instanton density operator

L =0,Tu 5)

which vanishes if the topological charge is conserved. For our
purposes, instantons are the lowest-action events of quantum
tunneling between topologically distinct classical configura-
tions, i.e., events in which topological defects are created or
annihilated. Therefore instantons require singularities in the
field configuration v (x, ). We can apply Gauss’ theorem to a
space-time volume B*! and express the number of instantons
in it as the flux of J, through the boundary S¢:

N= [ attiiz= f dx i T, ©)
BzHl Sd

where ), is the unit-vector locally perpendicular to the ori-
ented surface S°.

By simple symmetry considerations, we could naively
capture the essential dynamics of topological defects with
a gradient term 7,7, in the Lagrangian density, which is
the Maxwell term of the gauge field A,,..,, ,- If no other
Lagrangian term is relevant for instanton dynamics, then
the action cost of N % 0 will be minimized by evenly dis-
tributing the flux of J, over the entire S¢ manifold. This
produces a Coulomb attractive interaction potential between
opposite-charge instantons separated by r in the D =d + 1
dimensional space-time:

Ve(r) ~ 1/rP72, (7)

This estimate comes from the NV = 1 solution of (6), 7, (r) o
?M/rd, and the ensuing action cost fdd“x (ju)2 X 1/r"1_1
cutoff by the distance between the two instantons. It is known
that the Coulomb interaction in D > 2 is not able to confine
its charged particle sources into neutral dipoles [23]. Con-
sequently, instantons with this interaction would be free to
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FIG. 1. An illustration of instantons for vortices in D =2 + 1
space-time dimensions. (a) Worldlines of a vortex and antivortex
(blue) are terminated by a pair of opposite-charge instantons. In
this example, the two instantons occur at the same time ¢ = f;, but
this is not generally required. The phase gradients V& of i ~ €,
which build the action cost, are indicated with colored clouds. Far
away from the instantons, the phase gradients are minimal (green),
and typically produce a Coulomb-like interaction between the topo-
logical defects (screened to a finite range in the presence of gauge
fields). But, the gradients must smoothly deform near the instantons
in order to minimize the impact of a sudden change across ¢t = f.
In the best case scenario, there is a large action cost V(r) on the
temporal space-time lattice links (due to 9,0) at the time ¢ = #, and
within a region of space which grows in proportion to the distance r
between the instantons. The resulting V (r) o r confines the instan-
tons and suppresses the shown vortex creation/annihilation events.
However, the underlying assumption was that discontinuous changes
of 0 are very costly. Instead, phase fluctuations on a lattice can be
abundant enough to uncorrelate § even across distances comparable
to the lattice constant. This situation characterizes Mott insulators
and removes the linear confinement of instantons [i.e., V () becomes
short-ranged]. (b) The case of confined instantons: vortex flux lines
cannot terminate. In this example, a vortex-antivortex pair annihi-
lates, but the horizontal connecting flux line V x A # 0 corresponds
to the electric field E = 9,A which is generated via Faraday’s law.
The Maxwell action cost of this electric field suppresses vortex
creation/annihilation process across large distances.

roam and destroy the conservation of topological charge at
macroscopic length and time scales.

However, the above picture is inconsistent with the smooth
low-energy configurations of the matter field ¥ ; it requires a
continuous distribution of singularities. Instead, a coherent v
field, governed by a (3M1ﬂ)2 Lagrangian density, focuses its
nonzero topological currents into lower-dimensional singular
domains. The flux of J,, satisfying (6) then stretches through
a microscopically narrow tube, as a string connecting the two
opposite-charge instantons. The string acquires tension from
the depletion of the coherent ¥ background inside the tube,
leading to a linear interaction between instantons:

Vcoan(r) ~ T (8)

An example with vortices is shown in Fig. 1. This kind of
interaction is confining. Instantons of opposite charge are
asymptotically free at short distances but cannot drift away
from each other. Their dynamics is, however, complicated by
the instanton dipole fluctuations. If one tries to separate a
pair of opposite-charge test instantons to an arbitrarily large
distance, one eventually supplies enough action to generate

another dipole of instantons. The generated instantons can
move to completely neutralize the original instantons, and
allow one to continue pulling them apart without further
resistance. Therefore screening is inevitable despite a finite
action cost or “mass” of an instanton. The resulting finite
screening length A may be further reduced by virtual instanton
fluctuations.

We will show that instanton confinement is a thermody-
namic phase transition which can occur at finite temperatures
independently of symmetry breaking. A sharp distinction
between the confined and deconfined phases is given by a
generalization of the Wilson loop [19] operator defined on
the closed space-time surface S¢. This operator counts the
total instanton charge enclosed by S¢, and we can set it up
in imaginary time using (6) at zero temperature:

C(sH = N. )

This is a random variable and we are interested in its variance.
If instantons are deconfined, then there is a finite probability of
an uncompensated instanton appearing at any point in space-
time, uncorrelated with the locations of other instantons.
Such random fluctuations make the variance VarC(S¢)
B*! scale as the volume B4*! of the space-time enclosed by
S?. In contrast, confined instantons are always compensated
within a finite radius A, so their number inside S¢ can be
affected only by small dipole fluctuations near S¢, giving rise
to an “area-law” behavior Var C(S?) o S¢. This distinction is
made in the limit of infinite surface ¢ — oo, so it is impossi-
ble to smoothly deform the “volume-law” into the “area-law”
behavior. Ultimately, VarC (S%) serves the role of an “order
parameter” for the thermodynamic phase transition between
the confined and deconfined states of instantons:

592500 {an ., confined phase

d
VarC(§9) —— pBA+1 deconfined phase’

(10
The most general definition of the operator C (S9) is obtained
in real time by exploiting the formal correspondence between
the imaginary and real time path integrals at zero temperature.
We just interpret (6) as a quantum mechanical operator ex-
pressed in terms of the field (creation/annihilation) operators
Y, and replace the imaginary time coordinate xo = t with real
time xo — it:

C(Sd>=7§ i, T (11)
Sd

Note that a factor of i inherited from the integral measure
was absorbed into the appropriate (re)definition of 7, as
a Hermitian operator. The time dependence of field opera-
tors is handled as usual with ¥ (t) = ™' (0)e ™' in the
Heisenberg picture. Measurements of C(S?) in the ground
state |0) yield random outcomes, and their variance follows
(10) by the same topological considerations as before. Having
a proper quantum operator prescribes measurements at any
temperature as

VarC = ((C — (C)*) , () =tr(--- e PH), (12)

even when the exact real-imaginary time correspondence is
lost due to B < oo. This enables a sharp distinction between
confined and deconfined phases at 7 > 0; the infinite extent
of real time allows taking the ¢ — oo limit.
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Another important characterization of the topological de-
fect dynamics is the correlation length ¢ of the effective
gauge field A,,..,, ,. When instanton fluctuations are sup-
pressed, i.e., 3,7, = 0, then the Maxwell Lagrangian density
ﬁjﬂju with (2) yields a gauge-invariant correlation func-
tion in momentum space

<-Au1 s Md—1 (q)Avr"Wq (q,)>

€* 4uqp ,
T e € S(q+q). (13)

This algebraic form signifies the presence of gapless pho-
ton modes and a formally infinite correlation length that
characterizes the gauge field fluctuations. Note that a topo-
logical Lagrangian term which arises from a Berry curvature,
or the Higgs mechanism, can open a gap in the photon
spectrum, but this may also modify the instanton interac-
tion potential. If uncompensated instantons are present and
separated by a mean space-time distance ¢, then the pho-
tons can propagate coherently only across the length and
time scales of ¢. This effectively gives the photons a mass
m ~ ¢~'. We will find that the correlation length ¢ diverges
as a power of T — T, when the temperature 7" approaches
from above its critical value T, for the instanton confinement
transition.

A. Cases of confinement and deconfinement

Most studies of confinement are specialized to a particular
gauge theory, and ask if the gauge field fluctuations produce
a potential energy U (r) between static test charges which
grows indefinitely with the distance r. The common Abelian
electrodynamics (D = 3 4 1) does not confine charge, but its
compact variety, whose lattice action

Sz—l2 D cos| Y A, (14)
8 O

neld

evaluates the gauge flux on lattice plaquettes [, causes con-
finement in the strong coupling g > 1 regime [19,20,26-28].
Confinement-deconfinement transitions are found in all D >
4 compact U(1) gauge theories [29], while the D = 3 case is
special and always confined in the absence of a dynamical
matter field [20]. Here is a naive explanation. The weak cou-
pling regime g < 1 justifies taking the continuum limit

1 D 2
S= 55 [ dPx (et (15)

This noncompact Maxwell form suppresses monopoles, i.e.,
terminations of the vortex (world)lines, and hence medi-
ates plain Coulomb interactions between charges. It just
happens that the Coulomb potential U (r) oc 1/r¢~2 between
particles separated by r vanishes as r — oo in d > 3, but
becomes confining U(r) o In(r/a) in d =2 (D = 3), mak-
ing only neutral bound states possible. The opposite g >
1 limit of (14) has to be considered on the Ilattice. It
admits free flux-quantum fluctuations through lattice plaque-
ttes and hence allows monopoles. Abundant monopoles that
cannot be removed by a gauge transformation strongly frus-
trate the dynamics of uncompensated charges via quantum

interference, until only neutral objects can exist as low-energy
excitations. The mechanism is similar to the particle local-
ization in Mott insulators when viewed from a dual theory
[59,60]. Since gauge symmetry breaking is not possible [61],
the phase transitions in pure gauge theories have topological
character.

The deconfinement of particles in the presence of dynam-
ical matter fields has been intensely studied in condensed
matter physics [37,62], especially in relation to the stabil-
ity of spin liquids [40-45,50]. Massless particles suppress
gauge field fluctuations and facilitate charge deconfinement.
In d = 2 spatial dimensions, where this matters most, mass-
less Dirac fermions coupled to a U(1) gauge field can be
deconfined if they exist in sufficiently many flavors [45,50].
Fermi liquids expel electric fields and superconductors ex-
pel all gauge fields, so their particles are self-consistently
deconfined. Everything becomes more complicated with non-
Abelian gauge fields. A crucial property of Yang-Mills gauge
theory is the existence of instanton configurations which cost
a finite action even in the continuum limit [21,22,31,36,52].
Similar to skyrmions in d = 2, these instantons are charac-
terized by an arbitrary length-scale which determines their
size, so they are relevant macroscopically (in the infrared
limit). Their proliferation is responsible for the confinement
of quarks.

Our interest in this paper is the confinement of instantons
instead of particles. The fate of instantons is most directly
decided by their interaction potential. We only tackle a small
part of this problem by asking which instanton interactions
lead to confinement, and what kinds of deconfinement tran-
sitions occur in D space-time dimensions at zero or finite
temperatures. We answer these questions by a real-space “in-
stanton gas renormalization group” (IGRG), building on the
Coulomb gas renormalization group of Kosterlitz and Thou-
less [17,18,23]. In contrast to many similar studies in soft
condensed matter contexts [63—67], we take into account the
dipole creation/annihilation processes.

Most modern works address the charge or monopole
confinement by calculating the renormalization of a bare
interaction potential without considering the possibility of
losing the infrared convergence of the partition function. This
might not be a problem for the typical studied cases of non-
confining potentials and logarithmic potentials in no more
than three dimensions [40-43,54]. However, it definitely be-
comes a problem when perturbative renormalization group
arguments are generalized to confining potentials. The main
technical distinction of this work from prior literature is the
systematic exposure of infrared divergences in Secs. III A and
III B, and the proposal of a remedy for confining potentials in
Sec. ITIIC.

Instanton interaction potentials which vanish at large dis-
tances are regarded as naively nonconfining. As expected
[23], we find that the Coulomb and weaker potentials cannot
confine instantons in any D dimensions at any temperature.
The employed perturbative renormalization group method
breaks down for stronger nonconfining potentials due to
the emergence of couplings which introduce an infrared
divergence. This could indicate renormalization into con-
fining potentials, but must be verified with different
approaches.
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We show that infrared divergences have a universal reso-
Iution in the emergence of exclusive confining interactions:
instantons become connected by “flux tubes” and interact with
only one partner of opposite charge, like quarks in mesons.
This can be analyzed with an exact real-space renormal-
ization group. We find that exclusive potentials which are
asymptotically free and more confining than the logarithm
generally induce instanton confinement below a finite critical
temperature. Exclusive confining potentials which are singu-
lar at the origin, such as the logarithm, are considered not
asymptotically free. They stabilize a different fixed point, with
deconfined but suppressed instantons at zero temperature and
no finite temperature transition.

Spontaneous symmetry breaking generally gaps out gauge
fields and thus suppresses the instantons. As explained earlier,
the interaction between instantons is then confining, in fact
linear V (r) o< r if the instantons create and destroy singu-
lar point defects with a 7;_(S?~") homotopy invariant (see
Appendix A for a general derivation). Instantons associated
with the Hopf index interact at least logarithmically, which is
still confining (shown in Appendix B), but instantons associ-
ated with finite loops and other contractible structures tend to
have short-range interactions. If the potential is confining, ev-
ery instanton will be compensated by its antiinstanton within
a finite screening radius A. Even when fluctuations or Pauli
exclusion preclude the broken-symmetry phase, the dynamics
can retain coherence of the ordered state below the length
and time scales given by a correlation length &. If A < & is
maintained, we may compute the confining instanton inter-
action potential as if we were in the ordered phase and then
let the renormalization group confirm confinement from the
macroscopic point of view by showing the flow & > A — 0.
We, therefore, find instanton confinement in the absence of
spontaneous symmetry breaking, and sharply distinguish it
from the opposite regime A > & by the generalized Wilson
correlation (10).

III. INSTANTON GAS RENORMALIZATION GROUP

In order to study instanton confinement, we introduce in-
stantons at space-time positions X; as boundary conditions on
the ¢ field in the partition function (4). Then we integrate out
the smooth fluctuations of i in order to obtain the instanton
path integral:

The configurations of Ny identical instantons of charge +
are still summed over, with Ny + N_ = N. The action S,
of an instanton core is consumed into the fugacity y, =
e, and an ultraviolet cutoff length scale R, is included
in order to keep yo dimensionless. We will not attempt
to derive the effective instanton action Sy from any mi-
croscopic model. Instead, we will consider all possible
interaction potentials and attempt to classify all possible
scenarios that lead to confinement or deconfinement. We will
neglect three-body and other many-body interactions with

an assumption that interactions over large distances are the
ones most important for the macroscopic behavior of the
system.

The usual picture of nonexclusive pairwise interactions

1.N
=32V x) (7
i#]
works well for nonconfining potentials that vanish at large
distances, V(r — oo) — 0. Here, ¢; = +1 is the instan-
ton charge at position x;. However, this breaks down for
confining potentials V(r — o0o) — oo which allow only
bound states: their screening computed from the parti-
tion function is plagued by an infrared divergence. We
will show that physically acceptable confining interactions
must be exclusive and act only between opposite-charge
instantons:

N/2

Sy =Y Vix
i=1

Here, instantons are first grouped into N/2 dipoles with +
charges at x; and — charges at x;. Then, the + charge from
each dipole i engages in an exclusive interaction with only
one — charge from the same or any other dipole P(i). All
possible interaction pairings are captured by the permutations
P and need to be summed over in (16). While natural for
V(r) o< r, this character of interactions is required of any
confining potential.

Section IIT A analyzes the nonexclusive interactions (17)
with a functional extension of the Coulomb gas renormal-
ization group [23]. Stronger-than-Coulomb and logarithmic
potentials generate corrections which become progressively
more important at large distances and look like a run-away
flow into confinement. The perturbation theory quickly breaks
down due to the development of an infrared divergence. How-
ever, an infrared divergence of the partition function (16)
cannot be cured by any renormalization of the interaction
because the underlying coarse-graining and rescaling must
preserve the partition function. Instead, the bare potential
must be different. Section IIIC explains how this differ-
ence comes about at the more microscopic level where (16)
is derived, and then develops a nonperturbative functional
renormalization group for the ensuing exclusive confining
interactions (18). Considering also finite temperatures in
Sec. IID, we compile a picture of two universality classes
for instanton confinement.

— Xfp)- (18)

A. Nonconfining interactions

Here we consider the attractive interaction potential

—ZK” ., K,>0 (19

C(6x) = -V (6x) = o

which vanishes at large distances dx = |§x| — oo and has
a singularity at éx = 0. This is the Laurent expansion of an
arbitrary nonconfining potential about éx = 0. The screened
potential C’(8x) =C'(Jx —x’|) can be determined by
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inserting a “test” instanton dipole at x, X’ and computing

- y
=z RD"NN e ,/Hde,exp{ > a4ig;C(xi — x,|>—C<|x—x|)+Zq,C<|x,—x|>—Zq,C(|xl—x|>}
i#j

e—C/(Sx)

(20)

in the path integral with the instanton action (17). We use the fugacity as an expansion parameter, assuming yg < 1, and restrict
to globally neutral instanton configurations, i.e., N = 2k and > _ g; = 0. Substituting (16), we find to the lowest order in fugacity:

2
€000 1 4 Y0 / dPRaPr e-C R x-c(R-Eox)-c(Rs g ic(R-gox]) ) 1)

Here, only one fluctuating dipole with size r = x; — X, and the center of mass R = %(xl + x;) screens the test dipole. We
anticipate that only small fluctuating dipoles make a significant impact, but this must be verified by scrutinizing the r — 0o

limit inside the integral:

2
o~ C/(63) ,C(6x) =X 1+%/dDRdDr{ _Z
n

Only the quadratic term remains after integrating out the fluc-
tuating dipole orientations f,

—C'(8x) C(6x) TR - a,K,8x*
o = [ 3 O

We are not concerned with the R integral because we assumed
[r| > |R|. But, there is a lower bound

d—1
2
for the acceptable terms in the expansion (19) which do not
cause an infrared divergence of (20). A well-behaved integral

is indeed dominated by small r, so we estimate its value by
Taylor-expanding (21) about r = 0:

(23)

n >

o—C/6) ,Cow) _ Dp D, —C(r)
* * 1+ZDR2D/dere 4

2
x {r2[VRC(|R —x)) — VRC(R x|

+ O(r“)}. (24)

Again, we only keep the f-independent terms [68]. Next, we
turn our attention to the R integral and find

deR [VRC(IR — x|) — VRC(IR — X'’

= nmK, Ky By m 857720, (25)

n,m
Defining the area of a unit n-sphere
2T (n+1)/2

rE)

Sp = (26)

the positive dimensionless coefficients B, ,, are given by

Sp—2 = —D+1 i - D2
Bum = —/ dg gD H1Htm) do sin” 60
2D—-2—(n+m) 0 0

22+n nk, . 1 22+n nk, . 2
Fltn Fox +2|:Z Fltn ] +} (22)

1
x ( (1 + &2 — 2& cos 0) 1+ tm)2
1
+(1 + &2 4 2€ cos )1+ (r+m)/2
2(1 - &%)
(1 + 24 2E cos0)+7/2(1 + £2 — 2 cos 9)1+m/2>
(27

(note & = 6x/2R). The infrared behavior of 8, , obtains by
taking the limit £ — 0 (i.e., R — o0) inside its integrand:

oo
0
Bum EL) const. X f d& é—D+1+(n+m)52 x 54—D+(n+m).
0

This imposes another requirement on the acceptable terms in
the expansion (19), less strict than (23):
D d—-3
n>——2=——. (28)
2 2
The integral is well-behaved in the § — oo limit (D > 0), but
has an ultraviolet singularity forn +m > D —2at§ = 1,60 €
{0, w}. Substituting € =1+ 6& and 6 =860 or 6 = — 46,
then expanding to the lowest orders in §&, 66 and integrating
out §¢ € (§&y, 00), 66 € (0, co) reveals:

o Spal(P5h) (=)

ﬁn,m

sing—0 2D—2—(n+m) F(l + %)
S D—2—(n+m)
%) — const. (29)
D=2 — (n+m)]

The ultraviolet singularity corresponds to the overlaps be-
tween the positions of the virtual and test instantons.
Overlapping instantons are physically indistinguishable below
the ultraviolet cutoff length scale Ry, so the integral over R
should be regularized by cutting out the volumes of the order
of RY around R =+ §x/2. In other words,

8 —>0X 8 R
= X ER s~ 2 140
2R 8x F Ry x

(30)
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So, substituting §&y ~ Ry/éx in (29) and (25) gives us a
qualitatively accurate renormalization (24) of the instanton
potential to the order of yé:

2DR2D anK K, /dDr e ¢

D—2—(n+m) D—2—(n+
(yn mR e ﬂnm(sx " m))

e*C’(Bx)eC(Bx)

The coefficients g, ,, and y, ,, are positive.

Now we can derive the renormalization group beta func-
tions for the interaction couplings K,,. We first coarse-grain
the view of dynamics by integrating out fluctuations of small
dipoles, r € (R, e’ Ry), where 81 <« 1:

efC’(sz) C(6x)

=1+

Z nmK, K, S, \RP+281

n,m

2DR2D

x e—C(RU)(yn mRD 2—(n+m) ﬁ/

n,m

8xD—2—(n+m)) '

Then, to the lowest order in y%,

2

C'(8x) = C(8x) — RzD anK K,,Sp_ RE 81

2D

% e—cam(yn LREm e 5xD—2—(n+m)).

It can be formally seen from (21) that adding a constant to
the potential has no physical effect. Thus, we are free to
interpret the entire bracket content in the last expression as
the nonconfining interaction with power D —2 — (n +m) <
0 (shifted by a constant). Then, substituting the expansion (19)
and matching powers gives us

K)ian_RD 22/30 24+n— mm

K, sl

—24n—m"m

with positive coefficients 8, for n,m >0 limited by
(23). This yields the contribution of coarse-graining to the
beta function (K, — K,)/8] — 8K, /81. After coarse-graining,
we rescale the coordinates to restore the original cutoff,
'Ry — Ry:

— C(ESI}’) = K}‘/l — K, _ 8K,
- sl 8l

Combining the coarse-graining and rescaling gives us the full
beta function:

8K,
- RD 2 ZIBD 2+n—m,m D 24n— me nKn (32)

C'(r)

= —nK,. (1)

The renormalization group flow of fugacity yy = e~ is ob-
tained by fixing the partition function under the rescaling of
the ultraviolet cutoff Ry. The action of a single instanton

S1 = 8o + C(A; Ro), (33)

contains the core part Sy and the “coherent” part estimated
by the (attractive) instanton interaction potential C(r) at an

infrared cutoff distance A. The potential can generally de-
pend on the ultraviolet cutoff Rj,. The partition function
of a single instanton stays invariant under the change of
scale ] — [ + 481,

A\? A\?
Z o~ ™S — vo(R, e~ CRo)
1 (R()) Yo( 0)<R0)

2\ coeir
)e(’g 0 (34)

= yo(e‘wRo)( R,

so that
Yo(Ro + Rodl) = yo(Ro) + 8y0

aC(A)
oR, R()Bl). (35)

= y()(Ro) <1 +D81 +

This yields the beta function for fugacity

dyo aC(1)
= D Ry ). 36
S YO< + oR, 0) (36)

The nonconfining potential (19) must be cut off in the ultra-
violet limit r — 0. The proper way to do it is to shift it by a
constant that achieves C(Ry) = 0

1
C(s K, — . 37
<x)a2 (R,, W) 37)
The implication for the fugacity is
8o nk,
— =y|D - . 38
3 on(o-2 ) >

The full set of renormalization group equations for nonconfin-
ing instanton interactions is

8K,
8; = RD ) ZﬂD 24+n—m,m D 24n— me —I’lKn,

5}’0 nKn
—yo[D- . 39
7o) >

Since n >0 and B, > 0, attractive interaction couplings
K, > 0 generally decrease with the scale parameter [, irre-
spective of the value of fugacity yy. Eventually, sufficiently
small K, cannot prevent the growth of y,. There is only
one basin of attraction, K,, — 0, yo — 1(c0). The fixed point
corresponds to prolific noninteracting instantons with a van-
ishing core action Sy, and hence represents the deconfined
phase.

Even though the last conclusion looks simple, the gen-
eration of new interaction channels from the microscopic
ones holds important further insight. If interaction channels
with K, # 0 are limited to n € [M, N], then the first equa-
tion in (39) generates new interactions in channels n’ € [2M +
2 — D, 2N + 2 — D]. Only the generalized Coulomb interac-
tion n = D — 2 yields a closed set of interactions channels,
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which can be handled in a more straight-forward manner
[23]. Weaker-than-Coulomb potentials n > D — 2 generate an
endless set of even weaker nonconfining potentials whose
main effect is to alter the interactions at short distances.
Therefore the concluded absence of instanton confinement
holds consistently for the Coulomb and less confining
potentials.

Note that a microscopic attractive interaction in channel
n > D — 2 can formally induce a first-generation repulsive
interaction between opposite-charge instantons in a higher
channel n’ > n. Then, the attractive n and repulsive »’
channels together generate an attractive second-generation
potential in the channel " =n+n' — (D —2) > n'. As the
new interaction channels are introduced, the net interaction
remains attractive at large distances as dictated by the original
lowest channel n. The generation of formally repulsive chan-
nels is innocuous for two reasons: (i) the net interaction is
renormalized only at short distances and (ii) all the couplings
K, — 0 are irrelevant in the renormalization group sense in
all channels.

The most interesting aspect of the interaction renormal-
ization is that stronger-than-Coulomb n < D — 2 potentials
generate an open set of interaction channels n’ < n which
progressively become more rather than less important at large
distances. This breaks down the current approach when the
channels violating (23), or even confining channels n < 0, are
reached. Attempting to still take the equations (39) seriously
reveals a transformation of the n < 0 interaction couplings K,
into relevant operators which flow away from zero while yy <«
1. This might indicate an evolution of stronger-than-Coulomb
interactions into confining potentials at large distances, but
needs to be examined using different methods. Specifically,
the infrared divergence of an interaction potential correction
in any renormalization group step likely reveals an infrared
divergence of the partition function (16) at some order in yy,
not necessarily lowest.

B. Logarithmic interactions

A special case of interactions between instantons is the
logarithmic potential

Cir)=—-V()=KIn (L) (40)
Ry

This is a Coulomb potential in D = 2 space-time dimensions
which leads to the Kosterlitz-Thouless transition [18] between
confined and deconfined phases of instantons. In higher di-
mensions D > 2, we must check if an infrared divergence
arises in (25) due to small virtual dipole fluctuations:

/ dPR[VRC(R — x|) — VRC(R — X

_ g2 dPR
B (R + 18x?)" — (Rox)?
i

(41)

Power counting shows that divergences from R — oo oc-
cur in D > 4. Specifically, in D =4 we have the weakest

logarithmic divergence:

5 2/ d*R
X
(R? + 16x2)” — (Rox)?
00 R? — 18x2
=4n2/ dRR(1- #
0 R2 + ZSXZ

2
R on25x2In (8—x) + 726x% + (9(81) (42)
R R?
If the naive renormalization of the microscopic potential
appears infrared divergent, then a different microscopic mech-
anism must be engaged in the generation and renormalization
of interactions. We will discuss this mechanism in the next
section. Logarithmic interactions in all D > 4 space-time di-
mensions must be treated as confining.
The direct renormalization of a logarithmic interaction in
D = 3 is both infrared and ultraviolet convergent:

532 f &R 3 43)
X = T 0X.
(R2 + 18x2)” — (Rox)?

However, coarse-graining generates a new confining potential
C’(8x) o 8x. This hints a renormalization of the logarithmic
interaction into a confining form at macroscopic scales, but
also breaks the perturbative renormalization group: further
interaction corrections due to the generated linear potential
are infrared divergent. If this corresponds to an infrared di-
vergence of the partition function, then the resolution is again
the confinement we describe in the next section. Otherwise,
some earlier studies have suggested that the D = 3 logarith-
mic interaction can drive a confinement-deconfinement phase
transition [40,41], while others have argued renormalization
into a nonconfining Coulomb potential [42,43]. These works
did not transparently consider a possible infrared divergence.

C. Confining interactions

We previously found that instanton interactions which do
not decrease fast enough with the distance cause an infrared
divergence of the screening (20). This includes algebraic po-
tentials (19) that violate (23), and logarithmic potentials in
D > 4 space-time dimensions. The infrared divergence comes
from the wandering of the virtual instanton dipoles’ center-of-
mass R throughout space-time. If the largest possible values
of |R| produce the most statistically-important instanton con-
figurations for screening, then the virtual dipole fluctuations
are effectively suppressed in the thermodynamic limit since
they are unlikely to occur anywhere near the test dipole.

A physical system can always find its way out of this
trouble. If instanton fluctuations are to take place, their in-
teractions must be restructured by the appropriate dynamics
of the system’s matter field . Instanton interactions are
subject to the boundary condition (6). One way to satisfy
this condition is to evenly spread the flux of the topological
current 7, over the spherical manifold S9 which encloses an
instanton. If this leads to infrared divergences, then the flux
must spread differently. The alternative extreme option is for
the flux to focus into strings. Preserving (6) then leads to the
exclusive confining two-body interactions (18) with a linear
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form C(r) o r at large distances. Any nonlinear form is either
not exclusive, or exhibits some additional bias among the in-
teracting instantons which requires a more complex dynamics.
Interestingly, it is possible to calculate the renormalization of
exclusive potentials exactly. We will show that the exclusive
interaction given by (18) always resolves the problem of in-
frared divergence.

Consider + instantons at locations x; and an equal num-
ber of — instantons at locations x;. We visualize exclusive
interactions by connecting every instanton with exactly one
other instanton of opposite charge. A connection diagram is
specified by a permutation P: the + instanton i is connected
to the — instanton P(i). The instanton partition function with
exclusive interactions is

N

=3 () 7o
x Y f HdD dPx, exp|: ZC(X xp(,))}

PIN]
(44)
|

€7C’ (Xo—X) —

2m

RZmD Z/HdD de/ exp
0

Plm

k=0 Ry Plk+1]

There are only two connected clusters with sizes k = 0 and
k = 1, because the test dipole has only two terminals which
can be either connected to each other (k = 0) or to the termi-
nals of another dipole (k = 1). Therefore

e—C/(x—x/) _ e—C(x—x’)
:0 D, 4D —C(y—x')—C(y' —
25 dPydPy emCOTI=CO=) (47)

yields the exact renormalized potential C’(r) to all orders
in yo:

C'(r) = —In (efc(’) + otzy%)
C(V) O[ZyZeC(r) Ol2y(2) < e—C(r)
- &€ —co)’ (48)
—1In (a yO) T e ’ azyg > e €0
where
1 o
a[C] = ﬁ/dDye o, (49)
0

We may consider various forms of the unscreened poten-
tial C(r) in order to understand the present approach better.
Confining attractive potentials C(r) o ", n > 0 always keep
this procedure infrared convergent, while the logarithmic

- ZC(X;‘
j=1

When a test dipole is inserted at (xo,xg), its interaction
potential acquires the following renormalization by virtual
instanton fluctuations:

o0
o—C%—¥0) _ %Z( ') o 3 /HdD dPx
N=|

PIN+1]
N
X exp |:— Z C(x; — X’P(i)):|. (45)
i=0

If the instantons of the test dipole are not connected to any of
the virtual instantons, we will say that the connection diagram
is disconnected. Let us first demonstrate that only the con-
nected diagrams contribute to the interaction renormalization.
Consider a generic diagram of N virtual dipoles,i =1,..., N
in which only k dipoles make a connected cluster with the
test dipole i = 0. There are () ways to chose k out of N
available instantons of each charge to create the connected
subdiagram. Combining with the 1/N! factors gives us the
sum over connected clusters only (N = k + m):

conn.

ii(mmw) (Hm) R / ndD A exp[ 2,6 XP“))}

Plk+1]

/
= Xp(j))

=Z< ) R2D Z /HdD ,dPx; eXp[ ZC(X XP(:))i| (46)

(

attractive potential C(r) = K In(r/Ry) needs a large enough
coupling constant K > D to keep « finite. The renormalized
potential C’ is not confining even though the microscopic one
is. This makes sense only when C’ is correctly interpreted as
the effective action C'(r) = Ses(r) for an inserted instanton
dipole of size r. If the dipole starts off small and we gradually
increase its size, then for a while we keep paying more and
more confinement potential “energy” according to C’'(r) =~
C(r). The eventual flattening of C’'(r) — const. at sufficiently
large r > A indicates that the inserted test instantons become
screened. The crossover from the confining to the flattened
regime reveals the screening length A:

e ™ = oczyé = C)=

—In(a?y). (50
We can also define the bare confinement length A, as the
dipole size which provides enough unscreened potential
“energy” for a new compensating dipole,

C(hy) =28, = —In (7). (51)

In comparison to Ag, the screening length A is affected by
a certain renormalization that enters through the factor of

2 in (50); generally, o« > 1 implies A < Ay. While Ay un-
ambiguously increases when the confining interaction C(r)
becomes weaker, . can exhibit the opposite behavior for
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sufficiently weak interactions because « increases at the same
time according to (49). This effect is due to entropy. A
strong confining interaction places the compensating instan-
tons very close to the original test instantons. In contrast, a
weak confining interaction (more asymptotically free) is much
less selective; even though the corresponding A is larger,
virtual instanton fluctuations have an enhanced probability
and contribute significantly to screening, thereby reducing A.
Note, however, that the present approach cannot be trusted
to determine a small A in the weak-interaction limit since
the underlying assumption of exclusive interactions need not
apply to very short distances.

An important feature of the renormalized potential (48)
is that screening occurs inevitably at a finite length scale
A regardless of whether the unscreened potential C(r) is
truly confining in the » — oo limit. Exclusive confining in-
teractions between instantons are formed beyond some short
length-scale, and may extend to a finite distance &, given for
example by the coherence length of the fundamental field v,
aslong as £ > A. If circumstances reduce & below A, instanton
confinement will be lost. Similarly, thermal deconfinement re-
quires a finite temperature scale in the presence of asymptotic
freedom.

Our main goal is to identify the conditions for confinement
phase transitions and explore their universal properties. The
usual tool for this purpose is renormalization group, but here
we have to slightly depart from the tradition and construct a
stripped-down scaling argument. The scaling A — 0 of the
screening length will serve as an indicator of confinement,
and computing A with (50) requires the unscreened poten-
tial C(r), not the renormalized one. At the same time, the
fugacity yg is determined by the full partition function, so it
implicitly depends on the renormalized potential. The general
beta function for fugacity (36) involves the scale-dependent
renormalized potential only through its singular dependence
on the ultraviolet cutoff length R,. The key observation for
our purposes is that all screening renormalizations alter only
the large-distance behavior of the interaction potential C(r),
so the renormalized potential has the same short-distance
singularities as the unscreened one. Therefore we may use
the unscreened potential C(r) in the beta function (36) for
fugacity.

We will track the unscreened potential and fugacity as
functions of the observation scale parametrized by ! > 0. Co-
ordinate rescaling modifies the potential according to

C'(r) = C(r) 4 8C(r) = C(er) = C(r) + rVC(r) 8l

which amounts to §C(r)/§l = rVC(r). No further renor-
malization of the unscreened potential takes place under
coarse-graining. For completeness, the full set of scaling
equations for isotropic potentials is

aC(r)
dRy

8C(r) aC(r) 8Yo

st or T o) 62
These equations are accurate to all orders of yj, so we can
reliably track the flow of fugacity to large values. They also
apply to arbitrary confining functions C(r;/; Ry) which do not
create infrared divergences in the present approach. The exact

solution for the potential scaling is
C(r;l) = C(ré"). (53)

It turns out that identifying fixed points is not particularly
useful because they lie outside of the limits in which the
scaling equations are valid. Formally, C(r) = const. is a fixed
point potential, but it breaks down this procedure by intro-
ducing an infrared divergence in (49). Fugacity always has
yo = 0 and yyp — 1(00) fixed points. The logarithmic potential
C(r) = KIn(r/Ry) scales in a manner C(r;[) = Kln(e’r/RO)
which keeps the interaction strength K fixed and allows a non
trivial fixed point for fugacity at K = D, but this and smaller
couplings also make (49) divergent.

Instead of considering fixed points and their stability, we
can analyze the evolution of concrete potentials. It is easy
to see that a generic asymptotically-free power-law potential
becomes only more confining at larger length scales

Cry=)Y_As" = Crl)y=) A", (54
n>0 n>0

without jeopardizing asymptotic freedom. Since this interac-
tion has no ultraviolet singularities, the fugacity scales as

= yo() = yo(0) ™. (55)

This is unbounded flow toward infinity, but we should stop it at
yo = 1 because fugacity yo = e~ is given by the action Sy of
an instanton core, so yo — 1 corresponds to the vanishing cost
of a core. If we focus on a single channel n, i.e., C(r) = A,r",
we can also easily compute (49)

Sa F(%) D!

a(l) = (56)
nRDADT"
and solve (50) to find the running screening length
Al = 1(0)e! (57)

in terms of the microscopic screening length
1/n
[ 0@ e@1] " 0@ e <1

Ry— 0 . Y(0)a(0) > 1
(58)

A(0) =

Recall that the formal saturation A — Ry in the ayy > 1

regime cannot be trusted because it pertains to weak inter-

actions which need not assume an exclusive form at short

distances. The main insight for now is that instantons are nec-

essarily confined at 7 = 0 according to A(/) — 0 as/ — oo.
We can repeat this exercise for logarithmic potentials

C(r:l)=Kln (Le’>. (59)
Ro
The new ingredient is an ultraviolet singularity from Ry — 0
that enables a nontrivial flow of fugacity:
dyo _
Z7 =@ =Ky = yo) =y0(0) e,
Only the cases K > D are accessible without infrared diver-
gences in the present approach. The fugacity then flows into

(60)
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the yo — O fixed point and pushes the screening length A
toward infinity,

2/K
A(l) = e 'Ry (é”“’” k=D ) 2% . (61)
Sa y0(0)

Instantons are formally deconfined, but their fluctuations are
suppressed by yp — 0 and the photons of the gauge field
(13) have an infinite correlation length at 7 = 0. At finite
temperatures, the absence of confinement makes the correla-
tion length finite. We will find indications that the state with
K < D is deconfined and short-range correlated even at zero
temperature in the next section.

An exclusive logarithmic potential considered here is not
realistic. However, the last analysis reveals a general pos-
sibility of a nontrivial yo — 0 fixed point shaped by the
short-distance modifications of a physical confining potential.
Note that a crossover to a nonexclusive interaction at short
distances does not by itself jeopardize this argument because
(36) holds for nonexclusive potentials as well. It is not obvious
what microscopic dynamics may pull the fugacity toward
zero. Nevertheless, instantons’ positional fluctuations can al-
ter the effect of (6) at short distances from the instanton, and
accommodate the potential. Overall, the behavior of fugacity
determines two different universality classes of instanton sup-
pression at T = 0, characterized by the fixed points yg — 0
and yp — 1(c0).

D. Instanton confinement at finite temperatures

Here we analyze the fate of instanton confinement at finite
temperatures 7 by developing a two-stage renormalization
group. In stage 1, we start from a D = d + 1 dimensional
space-time which hosts the imaginary-time path integral (4)
of a d-dimensional quantum system at a finite temperature
T . The time-direction has periodic boundary conditions and a
finite extent T € (0, B), where 8 = T ! is the inverse temper-
ature. The system remains infinite in all d spatial directions,
and the Lagrangian density of the system is the same as in
the T = O case. The renormalization group proceeds exactly
as in the previous section, but the span of the imaginary time
coordinate changes under scaling as

dT

—=IT = T{)=T0)¢ |,

_ -1
T B() = pB0)e".

(62)
We must stop the stage 1 at a finite scale [ = [y when 8 — Ry
becomes comparable to the ultraviolet cutoff length and the
system effectively flattens to its d-dimensional spatial mani-
fold. The running coupling constants have picked by then the
essential quantum renormalizations, while the pure scaling of
the energy couplings w(l) = w(0)e' has imparted on them a
factor of 8. Then, we embark on the “classical” stage 2 of
renormalization group, utilizing the last d-dimensional action
of B = Ry which has a Landau-Ginzburg form. The final fixed
point at / — oo signifies the phase in which the microscopic
theory lives. The entire procedure is depicted in Fig. 2.

The following discussion assumes that the coherence
length £ of the microscopic field ¢ remains larger than the
instanton screening length A at all scales /. During stage 1,
the confining interaction potential C(r) and fugacity yy flow
according to (52). Let us first consider the asymptotically free

FIG. 2. (a) Stage 1 of the renormalization group: the temporal
(vertical) extent of the world 8 = 1/T flows toward zero. While
B is large enough, the configurations of topological defects and
instantons can comfortably fit into the world view. In particular, the
field configuration (e.g. the shown phase gradient V8) can maintain
a confining action potential V (r) o r between the instantons. Such
confined instantons are macroscopically irrelevant if their confine-
ment length A scales down to zero during this stage. (b) Stage 2 of
the renormalization group: S has scaled down to the cutoff length,
and the world has lost its imaginary time dimension. If the instantons
have not been confined under A — 0 yet, they cannot be properly
defined any more. Any surviving spatial gradients, which build topo-
logical defects, can take their minimum-action form. This typically
produces an algebraic U (r) ox r~® potential energy between the de-
fects (¢ > 0). One could interpret U (r) as the interaction potential
between instanton remnants, but this is not enough for confinement.
An exception is U(r) « In(r) in d = 2 spatial dimensions, which
permits a Kosterlitz-Thouless transition.

regime yp — 1(00). The confinement length A and the inverse
temperature B both decrease with the scale parameter and race
toward the cutoff Ry. If A reaches the cutoff first, the instan-
tons become strictly confined and neutralized at microscopic
scales during the stage 1. Further scale evolution of dynamics
features only the fluctuations of neutral dipole excitations,
since the running theory cannot keep any information about
the microscopic details below the cutoff length Ry. Dipoles
are all that’s left when the stage 2 begins and we merely expect
that their positive mass drives the remaining renormalization
group flow as a relevant operator. The final fixed point is
confined.

An alternative to this outcome is the scenario in which
B reaches Ry sooner than A. If that happens, then individ-
ual instanton charges, or more accurately their projections,
are still discernible in the d-dimensional world view at the
end of stage 1. However, these instanton projections cannot
interact with confining potentials in the resulting d = D — 1
dimensional world. Confining interactions were derived in the
first place from the action cost of the stiff matter field .
Let us assume that i is coherent across some length scale
&. Consider a pair of opposite-charge topological defects co-
existing at the same instant of time t a spatial distance §r < &
apart. They can be simultaneously removed by a pair of in-
stantons at time 7y. In order to minimize action, a coherent
field configuration corresponding to this removal must involve
a deformation of ¥ (r, ) from the (locally) optimal spatial
configuration at T < 79 — 87 to a costly spatial configuration
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at time 7 = 1y which is uniform everywhere except inside
a narrow flux tube that connects the defect and antidefect.
The instanton pair abruptly removes the tube and replaces it
with the surrounding uniform  at times v > tp. This was
illustrated in Fig. 1(a). The action cost proportional to &r
comes from the rapid temporal variations (99 )’ along the
tube, but the required gradient terms are expelled from the
purely spatial d-dimensional action of the stage 2. This obvi-
ously cannot be repaired by nonsimultaneous instantons, so no
mechanism is left to maintain confining interactions between
instantons. Ultimately, instantons are not well-defined in stage
2. Their projections assume at best a dynamics analogous to
that of spatial topological defects; the strength of interactions
is limited by the Coulomb law C(r) ~ r*=¢ (at least in the
case of monopoles and hedgehogs [58]), which is not able to
confine its charges (see Sec. IIl A). The final fixed point is
deconfined.

Since two different fixed points of renormalization group
can be reached at macroscopic ! — oo scales, a thermody-
namics phase transition marks the resulting sharp distinction
between the confined and deconfined phases of instantons.
Asymptotically free confining interactions C(r) = A, r" in the
yo — 1(00) universality class produce a deconfinement phase
transition at a critical temperature 7, > 0. Given (57), (62),
and the above discussion, the critical temperature is

D —1/n
T. = L = 3 In yo(o)w ) (63)
A0) | A, nRPAD"
The critical temperature is generally finite, but goes to zero
if yo — 0 at any fixed A,. It increases with the interaction
strength A, when A,, is large enough. Formally, 7. has a local
minimum at a small value of A, = A, and also grows with
decreasing A, < A,, but again, this weak-interaction regime

pushes the theory out of its applicability limits. We can also
define a critical screening length at temperature 7'

1
A(T) = 7 (64)

such that A(0) < A.(T) yields a confined phase.

In the absence of a Berry curvature, the photon correlation
length ¢ introduced in Sec. II exhibits a critical behavior near
the confinement phase transition of the yy — 1(o0) universal-
ity class. The exact screened potential (48) and the stage 1
renormalization group show that instanton dipoles are statis-
tically relevant in 7 = 0 confined phases only if their sizes
are limited by the screening length A, i.e., r < A. Conversely,
the dipoles with sizes r > A are statistically irrelevant. At
finite temperatures, we find from the renormalization group
that the dipoles of microscopic sizes r < A, = 1/T remain
confined in the macroscopic point of view, while the mi-
croscopically large r > A dipoles continue to be statistically
irrelevant because they are still neutralized in spatial direc-
tions by the confining potential of the microscopic theory, i.e.,
they are confined in the microscopic point of view. There-
fore the statistically important dipoles which contribute to the
volume-law behavior of the correlation function (10) are only
those whose microscopic sizes are A, < r < A. Consider an
instanton placed at the origin, and let P(r) be the microscopic
cumulative probability that this instanton is neutralized by an

antiinstanton within the radius r as a result of the dynamics
at T = 0. We know that P(0) = 0 and P(co) = 1. Continuity
and the absence of other length scales in the problem also
ensure that P(r) has no extrema on 0 < r < co. At finite
temperatures, an antiinstanton placed at A > r > XA, will end
up being deconfined from the instanton. The probability of
this occurrence when AT =T — T, < T, is:

, , AT
PO = POe) 2 P(Ae) A = 2e) X AP () —

c

(65)

This is a conditional probability, assuming that an instanton
was present at the origin in the first place (a compensating
antiinstanton is then required). The probability density of
satisfying the condition can be estimated as R, b ¥o- Therefore
the probability per unit space-time volume of finding a free
deconfined instanton is roughly:

AT
T

~ p-D
PR, yO)\cP/()\c) (66)
We may interpret this as the inverse volume p ~ ¢~ which
contains only one free instanton. Then, the mean distance
between uncompensated instantons is

—1/D
¢~m ' ~R, |:yO)LCP)<(Xc) T} . (67)

The photons of the effective gauge field can propagate co-
herently only across distances where they do not encounter
uncompensated instantons. Therefore the last equation esti-
mates the photons’ correlation length ¢ and their effective
mass m. We see that the correlation length diverges as a
power-law on the approach to the critical temperature. It
should be noted, however, that a phase transition with different
critical properties can take place if the coherence length & of
the fundamental field limits the screening length A due to a
temperature increase. Analyzing such a scenario requires a
more comprehensive theory, so we will not attempt it here.

The alternative yo — 0 universality class is qualitatively
different. We have seen that this regime sends the confining
length A toward infinity at 7 = 0. Consequently, A never
reaches the cutoff Ry and B trivially wins the race in the stage
1 of the renormalization group. Only a deconfined phase exists
any finite temperature. Since the fugacity reaches a finite value
yo > 0 at the end of stage 1, thermal fluctuations are always
able to generate some instantons. The scale parameter / at
which the stage 1 ends determines the length scale beyond
which instantons effectively lose their confinement. By relat-
ing this to temperature, we can find the crossover temperature
T* below which the suppression of instantons approximately
conserves the topological charge. Let us first compute the
photon correlation length ¢. If the fugacity scales toward zero
as yo(I) = yo(0)e*!, then

yo(l) = y0(0) (RoT)" (68)

at the end of stage 1 where 8(I) = Ry. The space-time volume
that typically contains a single instanton is proportional to the
inverse probability yo = e~ of a bare instanton occurrence.
Since photons propagate freely only until they encounter
an instanton, this volume limits the correlation length ¢
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of photons,
RP R
D 0 0
S L . — (69)
yo(l) yé/D (RT)</P

The scale ¢ computed this way pertains to the beginning of the
second renormalization group stage; all quantum effects have
been taken into account, and any further renormalizations
would be calculated as in the standard classical renormaliza-
tion group in d spatial dimensions. The photon mass affected
by the quantum processes is m ~ ¢!

In the case of a logarithmic potential C(r) = K In(r/Ry),
we have k = K — D. The correlation length diverges for K >
D when the temperature approaches zero. Supposing that this
expression could be trusted for K < D as well, its predic-
tion { — 0 on the approach to zero temperature is consistent
with the deconfined instanton plasma. The low-temperature
regime with an approximate topological charge conservation
is bounded by a crossover temperature 7*. Setting ¢(T*) =
xRy, we find

1 -D/k e
T* ~ 17( y(l)/D> o Ry vy 1/(K~D) (70)
0

At T < T*, photon coherence is still discernible at least at
some finite short length scales. We must pick a value for x
such that xy(l)/ P~ 1 in order to also get 7* =0 when K =
D. Ultimately, T* can be made large by a large instanton
interaction coupling K > D, together with a naturally small
ultraviolet cutoff length Ry. In this sense, the low-temperature

IV. EXPERIMENTAL SIGNATURES: NOISE
CORRELATIONS

The phase transition between instanton confined and de-
confined phases need not involve any latent heat or symmetry
breaking. The question is, then, if it is possible to exper-
imentally detect this transition. Here we argue that noise
correlations, measurable in the specific heat, provide a probe
for instanton confinement.

The practical feasibility of detailed experimental detection
rests upon the means to indirectly observe the fluctuations of
topological charge in the system. For example, since vortices
are attached to particles in quantum Hall liquids, one can gain
insight about vortex dynamics by measuring electron density
fluctuations. A relativistic example is given by the chiral
quantum anomaly of quantum electrodynamics: the relevant
instantons are the creations and annihilations of interlinked
flux loops that carry the Hopf invariant of the 73(S%) homo-
topy group, but it is their link to the electron chiral currents
that provides the means for detection. The fluctuations driven
by instanton dynamics should be visible in the specific heat as
well, although with much less detail.

Let us assume for simplicity that we have some indirect
way of measuring the total topological charge N(¢) inside
the entire system at any time f. In order to theoretically
characterize the fluctuations of N(¢), we want to consider the
generalized Wilson correlation function (10) on the boundary
5% of a slab which stretches infinitely in all spatial dimensions
but has a finite temporal extent within the interval ¢ € (¢, ).
The noise spectrum Var C(w) of this correlation function can
distinguish between the confined and deconfined instanton
phases. Let

dynamics may be significantly influenced by the quantum F— Lh+1h St =1, —1,. (71
phase transition between the states of conserved and uncon- 2 ’
served topological charge. Then,
|
iot ot - iof i [ @81
3C(8t) = N(t)) — N(t1) = | dw (? — ")N(w) =2i | dwe'™ sin - N(w) (72)

relates the correlation function to the noise spectrum N (w) of the topological charge in the system. The variance of these random

fluctuations is:

Var C(8t) = (8C*(8t)) = < ‘ / dw (€ — " )N(w)

The noise spectrum should not depend on the overall times
f at which the experiment is conducted, so we may take the
average over f without loss of information:

1 _ 8w . 5 [ Wbt
A—t_fszarC(az) - A—t_/dw sin (T) Var{|N(a))|}.

The remaining dependence on 47 is different in the confined
“area-law” and deconfined “volume-law” regimes. The slab
volume enclosed by the S¢ manifold, on which we calculate
C, is linearly proportional to 8z. In contrast, the area of S¢

2
> - '< / dw (e — ¢/“h )N(a))>
= 2/dw1dwz ei(“"_‘”Z)’[cos (M) — cos <

2

(w2 + w1 )3t

2 )}[(N(wl)zv*(wz» — (V@) (V' @) (73)

(

has a negligible dependence on é¢ in an infinite system. These
behaviors restrict the frequency dependence of the variance of
N(w):

_ |Ad(w)+ f(w), confined
Var{|N(a))|} - {B|a)|_2 + g(w), deconfined’ (74)
where
-1
f (@), g(w) = {3& 0 L(;)}Lengi;ném' (75)
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The arbitrary functions f, g specify the high-frequency spec-
trum and affect the noise correlations only on short time
intervals 8t < 8tni,. They have no bearing on the thermody-
namic properties observed in the S — oo, i.e., 8t — oo limit.
Note that the “constants” A and B can depend on temperature
and other parameters. Additional sources of noise in the in-
direct measurements of N(¢) can blur the distinction between
these frequency behaviors, but the depletion of low-frequency
noise remains a characteristic signature of the confined instan-
ton phase.

If neither direct nor indirect measurements of N(¢) can
be performed, it is still possible to see the change of noise
correlations in the heat capacity. Generally, heat capacity at
temperature 7 is related to the internal energy &£ fluctuations:

Var{€}

B

(76)
Creating a topological defect in an instanton event, perhaps
together with an attached particle excitation, always costs
some energy €. Therefore the relevant energy fluctuations
should be proportionally derived from the fluctuations of the
topological charge N(¢). The total internal energy £ inherits
such topological fluctuations from a range of low frequencies
in the spectrum:

€2 sl

Var{€} ~ A—t_/ do Var{|N ()|}

woy
€ [A(T), confined

T AT { Bj}—f), deconfined” (77)

A lower frequency bound w( is formally necessary for
the deconfined phase in order to avoid infrared diver-
gence (we naively set wg = 0 for the confined phase). The
high-temperature behavior C(T) o (¢/T)* expected for un-
correlated gap-e¢ degrees of freedom means that wy cannot
be limited by temperature. Also, the fluctuations of N are
governed by an action instead of a Hamiltonian, so there is no
clear energy scale either that could determine wy. In fact, the
only available physical source for wy is the (long) time interval
during which the noise statistics is measured. This experiment
duration limits both 7 and 4¢ in (71), so we expect wgAf ~ 1.
Since the noise statistics is accurately collected only in the
Af — oo limit, we conclude that instanton deconfinement
produces a heat capacity jump at the critical temperature 7.:

0, T <T.
(€/TY?, T>T,

(confined)

(deconfined)* (78)

Cinst. (T) o8 {

V. DISCUSSION

A prominent nonrelativistic realization of instanton con-
finement is topological order. A prerequisite for topological
order is the conservation of topological charge, i.e., instanton
confinement. It was observed recently that monopoles and
hedgehogs in higher spatial dimensions d > 2 can seemingly
exist in topologically ordered phases at finite temperatures
[58], because their degenerate ground states on topolog-
ically nontrivial manifolds are separated by free energy
barriers that grow as L?~? with the system size L. This is
similar to the barriers between the symmetry-related

degenerate ground states which enable spontaneous symmetry
breaking in macroscopic systems. The present analysis sup-
ports finite-temperature topological order by demonstrating
instanton confinement at finite temperatures.

Fractional quantum Hall states live in d = 2 spatial dimen-
sions and their topological order, i.e., ground state degeneracy,
is protected only at zero temperature by the finite free energy
barriers. However, this only relates to “vacuum” instantons
and their ability to mix classical topological sectors on topo-
logically nontrivial manifolds. Vacuum instantons create or
annihilate topological defects whose singularities do not live
on the spatial manifold (e.g. vortices threaded through the
2D-world’s torus openings). Hence, they are softer than the
“excitation” instantons on trivial manifolds, which we ex-
plore here. Excitation instantons create vortex cores on the
manifold, and can maintain confinement at finite tempera-
tures. From this perspective, a thermodynamic sharpness of
fractional quantum Hall liquids may extend to low finite
temperatures, probably with some aspects of fractionalization
surviving as long as both charge and vorticity are conserved.

Pseudogap states have a long history in the context of
high-temperature superconductors, and also can be considered
in cold atom gases. A pseudogap state may be smoothly
connected to a disordered high-temperature phase. A simple
example is the crossover from a band-insulator of weakly
interacting fermions to a Mott insulator of tightly bound
s-wave Cooper pairs [69], driven by the interaction strength.
Such a crossover parallels the BCS-BEC crossover in cold
atom gases; there is no phase transition between the two
types of insulators, but the Mott regime is characterized by
bosonic (instead of fermionic) lowest energy excitations and a
bosonic mean-field or XY (instead of BCS) universality class
for the superfluid transition [70,71]. More intricate possibility
is a correlated pseudogap phase, thermodynamically distinct
from conventional disordered states. Any state of confined
instantons is a pseudogap candidate because it is sharply
characterized at least by its instanton confinement via (10).
Many experiments have revealed distinctive short-range cor-
relations and charge coherence in the underdoped pseudogap
state of cuprates [72-83], above the superconducting critical
temperature 7, and below the doping-dependent “pseudogap”
temperature 7*. Among these, Nernst effect measurements
[55-57] find a plausible interpretation in the picture of pro-
tected and mobile vortices which drift due to a temperature
gradient and produce a voltage drop in the direction perpen-
dicular to their drift. One may ask how vortices can survive
when the superconducting order parameter loses long-range
coherence. The present study provides a rigorous explanation,
and (re)opens the possibility that a phase transition associated
with instanton deconfinement happens at the T* temperature.

A finite density of topological charge is not required for
instanton confinement. Therefore correlated phases with con-
served topological charge are also possible in relativistic
systems. Such phases can be relativistic analogues of topo-
logical orders, although it is not clear yet how to precisely
characterize them.

Several interesting systems of particles with strong spin-
orbit coupling in d = 2 and d = 3 spatial dimensions exhibit
periodic arrays of topological defects and antidefects in their
mean-field ground states [84-87]. The spin-orbit coupling
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provides a “magnetic” length that determines the separation
between the defects. One imagines that quantum fluctuations
could melt such a defect lattice. If that happens, some defects
and antidefects could annihilate, but a finite density of each
would still be energetically protected, even if the defects be-
came delocalized. It is not obvious if such a quantum liquid
would possess topological order because the average numbers
of defects and antidefects could be the same. However, the
present study shows that this quantum liquid can have a zero
conserved topological charge, and thus be distinct from a Mott
insulator.

Still, there is no guarantee that a noncondensed confined
instanton phase is a particular unconventional phase in a
particular physical system. To illustrate this point, we can
think about bosons living on a lattice and interacting with a
U(1) gauge field. Interactions can stabilize a Mott insulator,
whereby the boson field v becomes incoherent at micro-
scopic scales. A dual picture of a Mott insulator is a vortex
or monopole superconductor, so the appropriate topological
charge is not conserved. States with instanton confinement
and the topological charge conservation which accompanies
it, therefore, are not Mott insulators. Any low temperature
phase in which the bosons are not confined or localized is a
state of confined instantons. This statement can be extended
to fermions at zero temperature as well, i.e., the conventional
states such as Fermi liquids, integer quantum Hall states
and ordinary band insulators. So, the question is if there is
anything interesting about instanton confinement in weakly
correlated systems.

For example, it is possible that instanton confinement can
be related to quantum anomalies in relativistic systems. The
chiral quantum anomaly of quantum electrodynamics in D =
4 space-time dimensions links the nonconservation of the
chiral current to the Hopf m3(S?) topological invariant of
the electromagnetic field. This invariant, actually, character-
izes instantons because the spatial field configurations can
only realize singularity-free topological objects with a Hopf
index in d = 3 spatial dimensions, analogous to skyrmions
in d = 2 dimensions. Even though local quantum tunneling
can readily change the Hopf index of these configurations,
instanton confinement corresponds to the dynamics which
effectively preserves the topological index of the ground state.
So, perhaps, the chiral anomaly is a correlation effect which
replaces topological order in the nonrelativistic systems of
massless Dirac particles. After all, it does require interac-
tions via a gauge field. But then, the main question is if
sufficient correlations can be achieved at low temperatures
in some Dirac systems to sharply distinguish a nontrivial
quantum-anomalous phase from the completely uncorrelated
high-temperature phase.

Of course, the interesting confined-instanton quantum
liquids may be routinely precluded by conventional phase
transitions out of the coherent (e.g., Higgs) phase of the matter
field. At least a dedicated length scale must be provided in the
Hamiltonian for the finite correlation length & if the confined-
instanton phase is to be possible. If, instead, the model defines
only the lattice constant, or some equivalent ultraviolet cutoff
length, then the matter field cannot be short-range coherent
across any relevant finite distances £ > A. This, in fact, keeps
the phase diagram of the compact XY model simple and

without “pseudogap” phases. If the XY model is gauged and
the external magnetic field specifies a magnetic length, then
quantum Hall liquids become possible.

Instanton confinement is easiest to understand in the con-
text of bosons because condensates spontaneously break a
symmetry and manifestly confine the instantons. But, how
does instanton confinement occur in the case of fermions?
Due to the Pauli exclusion, fermions cannot maintain a macro-
scopic phase coherence in their currents. Nevertheless, their
quantum coherence is still evident at zero temperature in the
simple phenomena like the sharp Fermi surface in interact-
ing Fermi liquids and zero conductivity in band insulators.
These features characterize the thermodynamic limit, but
degrade at any finite temperature: the Fermi-Dirac distribu-
tion of occupation numbers becomes a continuous function
of energy, and the conductivity of band-insulators becomes
thermally activated. A more complicated phenomenon is the
electronic quantum Hall liquid at zero temperature, which can
be fractionalized. This type of a state still requires instanton
confinement for the quantization of the filling factor v. How is
this possible? We find an answer by observing that delocalized
fermions at zero temperature still possess quantum coherence
up to the mean inter-particle separation distance [, limited
by the Pauli exclusion. If & ~ [ is sufficiently larger than the
lattice constant, and the topological defects are separated by
comparable distances, we have the basic condition for instan-
ton confinement just as in the case of short-range coherent
bosons.

VI. CONCLUSIONS

The main finding of this analysis is that correlated quantum
phases of confined instantons can exist at low finite tem-
peratures without spontaneous symmetry breaking. Instanton
confinement is a synonym for the conservation of topologi-
cal charge, i.e., the invariant which characterizes topological
defects. Long range coherence of the matter field is not a
prerequisite for these phases. The presented renormalization
group mathematically reveals that coherence needs to extend
only up to the instanton screening distance A. Therefore con-
fined phases can be stabilized with bosonic and fermionic
particles alike. In the case of fermions at zero temperature,
A must be smaller than the mean distance between particles.

Instanton deconfinement transitions can occur at finite
temperatures and exhibit critical properties of second order
transitions even though spontaneous symmetry breaking does
not take place. This universality class characterizes asymp-
totically free instantons. We computed the critical scaling
of the emergent gauge field’s correlation length above the
critical temperature, assuming that particles remain coherent
across sufficiently long distances. At the same time, we found
that an alternative universality class characterizes instantons
which are not asymptotically free: topological charge can
be conserved only at zero temperature, but the influence of
this nontrivial quantum dynamics can be seen below a finite
crossover temperature.

These findings generalize quantum liquids of topological
defects to finite temperatures and beyond topological order.
They may be relevant for the physics of some unconventional
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phases in correlated materials, such as quantum Hall and spin
liquids, pseudogap state of cuprates, and others.

Note added. During the review of this paper, a preprint
on a closely related topic was posted by Radzihovsky and
Toner [88]. Their study finds that all stronger-than-Coulomb
interactions between charged particles in a plasma ultimately
renormalize into Coulomb interactions at large distances.
This result contradicts our findings in the case of confining
interactions, and the disagreement can be attributed to the
ignored infrared divergence of the partition function in their
analysis. At the same time, their analysis provides an alterna-
tive approach to strong nonconfining interactions, where the
perturbative renormalization group presented here is incon-
clusive.
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APPENDIX A: INSTANTONS FOR THE r,,($")
HOMOTOPY GROUPS

Spinor fields ¥ which transform in a representation of
the Spin(d) group in d spatial dimensions generally admit
singular configurations that can be characterized by 7, (S™)
homotopy groups [58]. Separate singularities exist in charge
and spin sectors. At the lowest rank, the 7;(S') singularities
are vortices in the charge sector or skyrmions in the spin
sector; these are point topological defects in d = 2, lines or
loops in d = 3, two-dimensional sheets in d = 4, etc. At the
highest rank, the my_;(S?") singularities are always topo-
logically protected pointlike monopoles in the charge sector
and hedgehogs in the spin sector. At any rank n < d, the
dynamics of charge-sector singularities can be captured by the
Lagrangian density with gradient («,) and Maxwell (e,) terms

n 2
Kn i—
Ln - E <Z(_1) 1a/LzA/M"'lti—l#m"'#n + A/M---lh;)

i=1

+@(emA..MHUMA“,\”E)VAMMM )2, (A1)

where A, ..., is an antisymmetric rank-n tensor gauge field
whose flux evaluated on closed n-manifolds is the quantized
topological charge of the enclosed 7, (S") singularities. The
gauge field at rank n — 1 serves as a matter field minimally
coupled to the rank-n gauge field. Analogous hierarchy exists
in the spin sector, but the gauge fields at lower ranks have
non-Abelian form.

Only monopoles and hedgehogs at the highest rank d — 1
can enjoy topological protection. Consider the Higgs phase of
the matter field at rank d — 1. The suppressed fluctuations of
the matter field quantize the rank d — 1 flux

1

d—1
5_1 fédq A X €y Apya, € L

(A2)

which emanates from the monopole or hedgehog singularity,
where ¢ is the flux quantum (¢ = 27 in the charge sector,
and g = S, is the area of a unit-radius n-sphere in the spin
sector). The gauge field, then, depends on the distance r from
the singularity as A,..,,, , ~ 1/r?~!. The Maxwell term of
(A1) vanishes everywhere except at the singularity, so its cost
is local. The gradient term can be compensated via the Higgs
mechanism if the matter field embeds the singularity in its
configuration, otherwise the energy cost

Kq—1 gy 1)\ 1
2 Jier pd—1 Ri—2

with an infrared cutoff R would impart the Coulomb inter-
action between static monopoles separated by the distance
R, with potential energy U(R) ~ 1/R¢~2. Note that a static
monopole is a quantized worldline stretching in the temporal
direction of the D = d + 1 dimensional space-time. Now con-
sider instantons which create or annihilate a point topological
defect at time ¢+ = (. Their action potential V (r) is largest
when the matter field at rank d — 1 is in the Higgs phase.
Since the matter field must compensate a singularity, an in-
stanton needs to change its 7;_ 18971 topological invariant.
This cannot be done with a smooth transformation. The matter
field will be discontinuous across t = 0 and the question is
only what time-dependent configuration minimizes the dis-
continuity action to form an instanton. As explained in the
introduction (Sec. II), the best option is to focus the flux
into singular worldlines. The annihilation of a monopole is
just a deflection of its world line from the temporal into
a spatial direction, which generalizes the Faraday’s law of
electrodynamics. The gauge flux is ultimately conserved and
the monopoles/hedgehogs are topologically protected. The
interaction between instantons is linear in the distance be-
tween them, V(r) o r, because it obtains from the string
tension (Maxwell term) associated with the flux worldline that
connects them. Note that we can trust this mean-field type
of conclusion without much concern in d > 2 dimensions
because we did assume a Higgs phase.

None of the finite-sized singular structures at lower ranks
are topologically protected. A singular manifold at any rank
n < d — 1 must be without a boundary if it is to have a finite
size. An example is a vortex loop in d = 3 spatial dimensions,
which becomes a vortex 2-sphere in d = 4, etc. This disturbs
the gauge fields at all ranks only locally. One can, actually,
carry out a smooth deformation of the fields to collect all
energy density into a finite volume around the singularity.
Specifically, the rank-n gauge field A,,,...,, has zero flux on
generic n-manifolds which “encircle” the singularity, because
they are not interlinked with the manifold of the singularity
(only the rank d — 1 is special since there the “encircling”
manifold for the flux calculation is by definition interlinked
with the point-manifold of the singularity). Therefore the most
dangerous rank-n gauge field can be made to vanish in all
directions a finite distance away from the singularity. Since
all energy cost can be consumed into a finite volume, an
instanton which removes the finite boundary-less singularity
also costs a finite action. The action interaction potential be-
tween instantons can only be short-ranged, so the instantons
cannot be confined and the number of lower-rank singularities

(A3)
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cannot be conserved. It should be emphasized that this con-
cerns quantum fluctuations; instantons are quantum tunneling
processes. It does not help to interlink a singular structure with
something else—this creates an energy barrier for the removal
of the singularity, but instanton quantum tunneling still occurs
with a finite probability. The only possible protection against
tunneling at ranks n < d — 1 is to make the singular domains
infinite.

The instanton deconfinement at lower ranks n <d — 1
is even more pronounced in the spin sector where the
gauge fields at these ranks are non-Abelian. See the next
Appendix for a brief example from the Yang-Mills gauge
theory.

APPENDIX B: ACTION INTERACTION POTENTIAL FOR
SKYRMION AND HOPFION INSTANTONS

Certain topological defects do not have a singularity. This
makes them more vulnerable to quantum tunneling. The best
known example are skyrmions. In d = 2 spatial dimensions,
skyrmions are topological defects of the unit-magnitude vec-
tor spin configuration fi = (7%, 7, 71*) in the continuum limit.
If one defines a gauge field from the spin chirality

€unndvAr = L€, 1 (3,A7) (3,4, (BI1)

then the topological invariant of the spin configuration is the
total flux

1 d’x2(VxA)eZ (B2)

4 s2
of the gauge field over the entire space. This number counts
the total skyrmion charge (number) in the system. The spatial
manifold must, actually, be a sphere S? in order to obtain
quantization, but this is in practice arranged on the infinite
open plane by insisting that i be uniform and ferromagnetic
in far-away regions. In physical terms, A, is the gauge field
which imparts “topological” Hall effect on electrons that
move in the topologically nontrivial magnetic background.
A skyrmion does not have a singularity, but it does have
a center where all gradients of the magnetization field can
be focused by smooth transformations. Once this is done,
a tunneling event which removes the skyrmion costs only
a finite action. Finite-action instantons interact via short-
range action potentials, so they cannot be confined. Skyrmion
charge conservation is violated by quantum tunneling events,
and hence skyrmions cannot produce a truly quantized

“topological” Hall effect.
Most generally, an instanton with creates or annihilates
a skyrmion is a hedgehog of fi in space-time. This can be
seen by taking the difference between the skyrmion charge
N(t) computed from (B2) at two different times #; # f,. The
space-time boundary at times #; and #, can be continuously
deformed into a 2-sphere S? embedded in space-time, and then
(B2) becomes the hedgehog topological index from the 7,(5?)
homotopy group. In the worst-case scenario, the interaction
between two hedgehogs a space-time distance r apart is given
by the Coulomb potential V(r) ~ 1/rin D = d + 1 = 3. This
is also unable to stabilize a confined phase of instantons [23].

One might naively suspect that topological defects without
a singularity cannot be protected against quantum fluctu-
ations. However, this is not the case. The vector field i
supports another type of topological defects in d = 3 spatial
dimensions, usually called hopfions. The corresponding topo-
logical invariant can again be expressed using the gauge field
from (B1),

1
1672

/ d’xA(V x A) e Z. (B3)
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This is the Hopf index of the m3(S?) homotopy group. Geo-
metrically, hopfions are interlinked loops of skyrmions, which
themselves are lines in d = 3, so they do not contain a singu-
larity. Now, set up a 3-sphere S* in space-time and evaluate
(B3) on it. If S* is smoothly deformed into a slab between
times #; and t,, then the computed integer is the number of
hopfions that were created (or destroyed) in the time interval
(t1, 7). Thus, (B3) gives us the instanton charge. By dimen-
sional analysis, we see that a local nonzero instanton charge
generates a gauge field A, ~ 1/r a (large) distance away from
the source. This disturbance cannot be compressed into a finite
volume because we need both a nonzero gauge field and its
magnetic flux at any distance r. So, in the best case scenario,
the Maxwell energy cost of a single Hopf instanton scales as

1
Ea@@ﬁﬁ+@ﬁf~ﬁ, (B4)

R

S(R) = S +/ dr/ d’x L~ Sp+1n <5> (B5)

Ry $3(r) Ry

with the system radius R. Therefore Hopf instantons interact
at least via a logarithmic potential In(r/Ry). We found in
Sec. III B that this interaction cannot apply to every pair of
instantons in D = 4 space-time dimensions. Instead, it evolves
into an exclusive interaction at large distances, linear in the
distance between the instantons. Consequently, Hopf index is
globally conserved at sufficiently low temperatures despite the
quantum tunneling fluctuations.

This conclusion holds for the Abelian gauge field A,,. How-
ever, the Hopf index can be also introduced for non-Abelian
gauge fields A, = A7 y“, where y“ are the gauge group gen-
erators. Defining

~

Fu = 0,A, — A, — i[Au. AVl . Fuv = YeuapFup

(the square brackets are a commutator), we evaluate the Hopf
index on the closed “surface” S by integrating over the space-
time volume B* bounded by it [89]:

1 ~
o /B ! d*x F{F! € L. (B6)
Even though smooth transformations of the gauge field protect
this integer, there are singular instanton configurations which
alter it with only a finite action cost-at least in the D =4
Yang-Mills gauge theory [21,22,31,36,52]. Their interaction
potential is short-ranged in the best case scenario, and the
ensuing instanton deconfinement is responsible for quark con-
finement in QCD.
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