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Solving inverse problems using normalizing flow prior: Application to optical spectra
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We introduce a machine learning approach for solving ill-posed inverse problems, specifically addressing
the Fredholm integral equation of the first kind. Harnessing the powerful capabilities of normalizing flows
to approximate data distributions, combined with a robust probabilistic framework, our approach stands out
by delivering robust solutions capable of handling high-level noises and out-of-distribution data and providing
uncertainty estimation. A distinct feature lies in the unsupervised learning framework inherent in deep generative
models, providing our approach with unparalleled flexibility across diverse experimental setups. This flexibility
is exemplified through the successful application of our method to measured optical spectra.
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I. INTRODUCTION

In the last decade, machine learning approaches have
gained widespread acceptance across diverse scientific fields
[1–4]. This is mainly driven by potential of deep neural
networks to approximate almost any function based on a
principle established by the universal approximation theorem
([5] and references therein). When training data are abundant,
the theorem ensures that deep neural networks possess the de-
sired expressive capacity, enabling them to deliver competitive
results in applications ranging from materials discovery and
quantum phase classification to genomic data mining.

This study focused on addressing the inversion of the Fred-
holm integral equation of the first kind using deep neural
networks. This equation is expressed as

y(t ) =
∫ b

a
dτ x(τ ) k(t, τ ), (1)

where k(t, τ ) is called a kernel. The primary objective of our
study was to recover a function x(·) from the observed data
y(·) typically obtained experimentally. Notably, such inverse
problems are well known to be ill posed [6] and frequently
occur in many areas of physics [7–9]. Based on the univer-
sal approximation theorem, several methodologies, including
those proposed in [10–12], employ supervised learning to
address these challenging problems.

More specifically, this study focused on retrieving of the
electron-boson spectral density (EBSD) function, denoted as
I2χ (·), from the optical scattering rate spectra, represented
by 1/τ op(·), acquired from experimental observations. The
relationship between these two quantities is governed by the
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generalized Allen formula [7,13], which is expressed as

1

τ op(ω; T )
=

∫ ∞

0
d� I2χ (�; T ) K (ω,�; T ), (2)

where K (ω,�; T ), known as the Shulga’s kernel [13], is ex-
pressed as

K (ω,�; T ) =π

ω

[
2ω coth

(
�

2T

)
− (ω + �) coth

(
ω + �

2T

)

+(ω − �) coth

(
ω − �

2T

)]
.

Temperature T is a parameter in this relationship. Direct com-
parison shows that Eq. (2) has the form of Eq. (1). Considering
the presence of noise, which occurs commonly in experimen-
tal setups, the inverse problem of obtaining the EBSD function
can be written as

y = Ax + η, (3)

where x ∈ Rn and y ∈ Rm represent the discretized versions
of I2χ (·) and 1/τ (·), respectively. The integral in Eq. (2)
is discretized to obtain an m × n matrix A. The observation
noise, η, has a normal distribution, N (0, σ 2I ) with zero mean
and σ 2 variance.

Given the observation, y, the above problem may be solved
by finding an x that maximizes the likelihood, or equivalently,
the log likelihood, log p(y|x) = logN (Ax, σ 2I ). However,
because the problem is ill posed, identifying this unique x
is difficult, which potentially leads to several comparable so-
lutions. The maximum a posteriori (MAP) approach is an
effective framework for solving inverse problems. It is ex-
pressed as

x̂ = arg max
x

{log p(y|x) + log p(x)}. (4)

In the MAP, the log prior term, log p(x), enables solutions that
align with the prior criteria, effectively narrowing the solution
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space for the original ill-posed problem. Prior information is
not explicitly considered in existing studies based on super-
vised learning [10–12]. It is primarily employed implicitly
during the generation of training data x to ensure physically
plausible shapes. During training, a neural network learns to
minimize the loss, which is the distance between the predicted
x̂ and the true x data. Although post training, these networks
deliver competitive results; they remain blackbox models,
lacking explanatory capabilities and being susceptible to the
biases inherent in the training data.

The recurrent inference machine (RIM) approach [14–16]
addresses inverse problems through an iterative application
combining likelihood criteria and prior information. Although
an RIM is still based on supervised learning, its implicit
incorporation of a prior via iteration yields an improved
performance. Moreover, its basis in the iterative Tikhonov
regularization enhances its explainability and reliability [16].

The prior required in the MAP framework can be mod-
eled using deep generative models (DGMs), which include
generative adversarial networks (GANs) [17], variational au-
toencoders (VAEs) [18,19], diffusion models [20,21], and
generative pretrained transformers [22]. DGMs have gained
significant attention in the machine learning community and
various fields such as economics, social sciences, and edu-
cation. The key feature of these models is their ability to
approximate data distributions, thereby enabling the genera-
tion of realistic samples through random drawings.

Inverse problems were solved for the first time using
DGMs, such as GANs or VAEs, in a seminal study by Bora
et al. [23], inspired by the concept of compressed sensing.
In this approach, a generator G learns a mapping from a
randomly drawn z in a latent space, Z ⊂ Rk to x in the
data space, X ⊂ Rn. The generator produces x = G(z) that
closely resembles the given data. The inverse problem is then
addressed by finding a ẑ that minimizes ||y − AG(z)|| and then
substituting it into the generator to obtain x̂ = G(ẑ). However,
because the latent space in these models is typically smaller
than the data space, i.e., (k � n), the range of G does not cover
the entire data space, X , leading to an intractable convergence
problem, as observed in [23]. Although Shah and Hedge [24]
addressed this issue by refining the GAN algorithm with a
projective gradient descent and a GAN prior, GANs still suf-
fer from mode collapse and are unsuitable for probabilistic
frameworks [25].

In this study, we developed a method for addressing ill-
posed inverse problems based on the MAP framework by
leveraging an explicit prior modeled using a DGM called a
normalizing flow (NF). NFs establish an invertible mapping
from Z ⊂ Rn to X ⊂ Rn, eliminating the coverage issue of
GANs and VAEs owing to their smaller latent spaces. The
computational burden arising from the invertibility of NFs is
addressed using various methods, such as creative network
architectures (elaborated in the Methods section). The method
developed in this study is similar to that in [26], among the
numerous NF-based approaches for solving inverse problems
[26–28]. It focuses on uncertainty estimation through varia-
tional inference (VI) [29] in the context of solving inverse
problems.

Our study deviates from previous work that primarily fo-
cused on image-related tasks like denoising and inpainting, as

we address the inversion of the Fredholm integral equation of
the first kind. Leveraging NFs’ ability to estimate probabilities
and generate out-of-distribution (OOD) data [30], our ap-
proach proves advantageous for addressing ill-posed inverse
problems across scientific disciplines. The explicit integration
of prior and likelihood in our method establishes an ideal
platform for tackling such problems effectively. Our approach
also demonstrated robustness to noise, estimated uncertainty
estimation for solution reliability, and yielded results compa-
rable to those of maximum entropy methods (MEMs) when
obtaining EBSD functions from optical spectra. More im-
portantly, the unsupervised learning framework inherent in
deep generative models imparts enhanced flexibility to our
approach. A single training of our model proves sufficient to
obtain EBSD functions from various experiments with dif-
ferent temperature setups, showing another advantage over
supervised machine learning approaches.

II. METHODS

An NF approximates a data distribution pX (x) using a
sequence of invertible transformations. The fundamental con-
cept is that complex distributions can be constructed by
applying simple transformations sequentially. Let z ∈ Rn be
a random vector with a standard normal distribution, i.e.,
pZ (z) = N (0, I ), where I is an n × n identity matrix. An
invertible function g : z → x modifies the distribution of z
according to the following formula:

pX (x) = pZ (z)

∣∣∣∣det
∂z
∂x

∣∣∣∣ = pZ (g−1(x))

∣∣∣∣det
∂g−1(x)

∂x

∣∣∣∣.
The composition of these transformations is represented as

G := gK ◦ gK−1 · ◦g2 ◦ g1,

and the change in the variable formula (in a logarithmic form)
can be expressed as

log pX (x) = log pZ (G−1(x)) + log

∣∣∣∣det
∂G−1(x)

∂x

∣∣∣∣, (5)

where G−1(x) = (g−1
1 ◦ g−1

2 ◦ · · · ◦ g−1
K−1 ◦ g−1

K )(x). The log of
the Jacobian determinant (second term) on the right-hand side
can be expressed as

log

∣∣∣∣det
∂G−1(x)

∂x

∣∣∣∣ = log
K∏

k=1

∣∣∣∣∣det
∂g−1

k (x)

∂xk

∣∣∣∣∣
=

K∑
k=1

log

∣∣∣∣∣det
∂g−1

k (x)

∂xk

∣∣∣∣∣.
The first equality originates from the chain rule and the
factoring property of the determinant. Assuming a training
set {x1, x2, . . . , xN } with an independent and identical dis-
tribution, a parametric model can be established for the data
distribution and finding the optimal parameter that maximizes
the log likelihood,

ψ̂ = arg max
ψ

N∑
n=1

log pX (xn; ψ ), (6)

using any suitable optimization algorithm.
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To implement this algorithm using a deep neural network,
two design criteria must be satisfied: the network must be
invertible, and the computation of the determinant of the Jaco-
bian term should be computationally feasible. In general, the
calculation requires O(D3) operations, which are prohibitively
expensive for a reasonable data dimension D. Since the in-
ception of NFs, various procedures have been derived for
fulfilling these criteria. Examples include planar and radial
flows [31,32], nonlinear independent component estimation
[33], real-valued nonvolume-preserving flows [34], glow [35],
neural spline flows [36], and others (see [37]). In this study,
we adopted a neural spline flow [36] for modeling the data
distribution because it demonstrates competitive flexibility
while being analytically invertible.

Owing to the invertibility of this network, we could
evaluate the probability of any given datum x using the
parametrized version of Eq. (5),

log pX (x; ψ ) = log pZ
(
G−1

ψ (x)
) + log

∣∣∣∣∣det
∂G−1

ψ (x)

∂x

∣∣∣∣∣, (7)

and generate a new sample using

x = Gψ (z),

where z ∼ pZ (z), which is typically assumed to be a multi-
variate Gaussian. These two capabilities of an NF play crucial
roles in solving inverse problems.

In this study, the inverse problem considered was solved
using the following procedure. First, we trained the generator
using Eqs. (6) and (7) to obtain Gψ̂ , which is called the pre-
trained generator hereafter. Second, we solved the following
optimization problem:

ẑ = arg min
z

‖AGψ̂ (z) − y‖2
2. (8)

Finally, we substituted its solution ẑ into the pretrained gener-
ator as follows:

x̂ = Gψ̂ (ẑ), (9)

which yielded the solution of the inverse problem. Notably,
the solution, x̂, satisfies the likelihood maximization as well
as the prior because it was in the range of the generator
while fulfilling Eq. (8). Note also that Eq. (8) is an op-
timization problem over z with a fixed network parameter
ψ̂ . Empirically, it can be solved using the gradient descent
approach, although it is nonconvex owing to the generator,
Gψ̂ . The pseudocode outlining this approach is presented in
Algorithm 1.

Although Algorithm 1 provides solutions to inverse prob-
lems, it does not quantify uncertainties of these solutions.

ALGORITHM 1. Inverse problem.

Input: Gψ̂ , y, A, T
Output: x̂

Initialize z0

while t � T do
zt ← zt − γ ( ∂G

∂z (zt ))T AT (AGψ̂ (zt ) − y)
t ← t + 1

end while
x̂ ← Gψ̂ (zT )

Quantifying uncertainties is crucial for the reliability of ob-
tained solutions and for serving as the starting point for
various downstream tasks. Uncertainty estimation can be per-
formed using the posterior density as follows:

p(x|y; ψ̂ ) = p(y|x)pX (x; ψ̂ )∫
p(y|x)pX (x; ψ̂ )dx

.

In this study, we used the prior obtained from the pretrained
generator. Obtaining the posterior density is typically chal-
lenging owing to the high dimensional integration in the
denominator. Therefore, we approximated the posterior using
VI [38], where the variational density, qX (x; φ), was obtained
to minimize the difference between p(x|y; ψ̂ ) and qX (x; φ).
The goal of VI can be expressed as

φ̂ = arg min
φ

KL(qX (x; φ)||p(x|y; ψ̂ )), (10)

where KL is the Kullback-Leibler divergence defined as

KL( f ||g) := E f (x)

[
log

f (x)

g(x)

]
=

∫
f (x) log

f (x)

g(x)
dx.

Minimizing the KL divergence is equivalent to maximizing
the evidence lower bound (ELBO) (see Appendix A), i.e.,

L(φ) = EqX (x;φ)[log p(y|x)] − KL(qX (x; φ)||pX (x; ψ̂ )).
(11)

Maximizing the ELBO is identical to finding a qX (x; φ) that
maximizes the expected log likelihood (first term) and min-
imizes the KL (second term). This is equivalent to finding a
variational density that is close to the prior, pX (x; ψ̂ ).

The performance of VI depends on the expressiveness of
the variational density, qX (x; φ); therefore, we adopted an-
other NF based on affine coupling layers [34]. We combined
the new NF, denoted as Gφ : ε → z, with the pretrained gen-
erator, Gψ̂ . The VI framework is represented as a mapping
sequence as follows:

Gφ Gψ̂

ε �−→ z �−→ x.

The implementation of this procedure was a type of the
blackbox VI [39]. However, owning to its ill-posed nature,
a simple implementation did not produce moderate results.
To address this problem, we adopted a concept from the it-
erative Tikhonov regularization. Specifically, we utilized the
following gradient, derived from the preconditioned Landwe-
ber iteration [40]:

∇ log p(y|x) = (AT A + h2I )−1AT (y − Ax), (12)

where h is the regularization parameter. Combining all results,
we developed Algorithm 2 (see Appendix B for the deriva-
tion).

III. RESULTS AND DISCUSSIONS

We first trained the NF, Gψ , to approximate the data dis-
tribution, pX (x), which was the prior in the MAP estimate
[Eq. (4)]. The generator Gψ is modeled using a sequence of
neural spline flows [36] with a total sequence length of three.
The specific configuration includes 64 rational quadratic func-
tions, and the boundary value is set to five. The training
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ALGORITHM 2. Variational inference.

Input: Gψ̂ , y, A, L, T
Output: qX (x; φ̂)

Initialize φ0

while t � T do
for l = 1, . . . , L do

ε(l ) ∼ N (0, I )
z(l ) ← Gφt (ε

(l ) )
x(l ) ← Gψ̂ (z(l ) )
p(l ) ← − 1

2 (AT A + h2I )−1‖y − Ax(l )‖2
2

end for
L(φt ) ← 1

L

∑L
l=1 p(l ) − 1

2 ‖z(l )‖2
2 + log |det ∂z(l )

∂ε
|

φt ← φt + γ∇L(φt )
end while
φ̂ ← φT

aimed to maximize the log likelihood expressed in Eq. (6)
using the Adam optimizer [41] with a learning rate γ =
1 × 10−3. We utilized 100 000 data that were mixtures of
Gaussians resembling I2χ . When the number of training data
was insufficient, for example, 1000 in this study, nonphys-
ical artifacts like intermittent abrupt jumps were prevalent
in the generated samples. As the number of training data
increased, these artifacts gradually diminished. The dataset
was partitioned into training, validation, and test sets with
ratios of 0.8, 0.1, and 0.1, respectively. Once the training was
completed, various samples were generated from the prior
simply using x = Gψ̂ (z), where z ∼ pZ (z). Here, pZ (z) =
N (0, I ). The mapping from z to x was deterministic, and
the randomness originated from sampling only. Figures 1(a)
and (b) show 100 training data and 100 generated samples
from pX (x; ψ̂ ), respectively. Notably, the generated samples
exhibit more diversity than the training data, and some of
the generated samples are not physically plausible, i.e., they
become negative. The former shows the NF’s capability of
generating OOD samples, whereas the latter indicates that the
NF does not make assumptions about the inherent structure
of the data, such as smoothness. We acknowledge that ap-
plying ReLU activation at the end could prevent nonnegative
samples. However, we chose not to apply this, as it might
risk accepting incorrect solutions to the inverse problem by
modifying unphysical ones into physical ones. In this section,
we present the use of functions I2χ and 1/τ op interchangeably
with their discretized versions x and y, respectively.

Given observation y, the solution to the inverse problem
was obtained using Algorithm 1. As mentioned earlier, opti-
mization was performed with respect to the z variable using
the Adam optimizer. Figures 1(c) and 1(d) show solutions x̂’s
for certain y’s from a noiseless data set that is not used for
the training of Gψ . To ensure numerical stability, the data are
scaled by dividing y’s by 300. For comparison, the true x’s
and their reconstructions Ax̂’s are also plotted.

To assess the robustness of our approach to noise, we
selected an arbitrary data pair (x, y) from the test dataset
that was not used during the NF training. We then added
different levels of Gaussian noise to y to simulate observation
noises. The noise levels were determined from the standard
deviations, set to σ times at the maximum value of each y.
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FIG. 1. Hundred random samples from (a) training data and
(b) data distribution pX (x; ψ̂ ). (c) Some solutions x̂ of inverse
problem with true x’s using Algorithm 1 and (d) corresponding
reconstructions Ax̂’s and true y’s. (All 1/τ op ’s are scaled down by
300.)

Figure 2(a) shows resulting x’s obtained from y’s for the dif-
ferent noise levels as shown in Figs. 2(b)–2(e). Interestingly,
as the noise level varies from minimal to very strong values,
the corresponding solutions of the inverse problem do not vary
significantly, even with substantial noise (e.g., σ = 0.1), as
shown in Fig. 2(a).

The results of the uncertainty estimation are presented in
Fig. 3 for a randomly selected observation data y from the
test dataset with two different noise levels: σ = 0.01 and
σ = 0.1. The variational densities were obtained for each case
using Algorithm 2. We employ a sequential application of
affine coupling layers [34] with a length of six and hidden

0 200 400
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0.2
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I
2 χ

(a)

Frequency (meV)

(b)

0

1

1/
τ
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0 200 400

(d)

0 200 400
0

1
(e)

FIG. 2. (a) Solutions of the inverse problem using Algorithm 1
from observations with different noise levels: (b) σ = 0.0001,
(c) σ = 0.001, (d) σ = 0.01, and (e) σ = 0.1. (All 1/τ op ’s are scaled
down by 300.)
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0 200 400

0.0

0.1

0.2

I
2 χ

(a)

Frequency (meV)

0 200 400

(b)

FIG. 3. Sample means (blue solid) and error bars of two standard
deviations (filled region) are shown with true x’s (red dashed) for
noise levels (a) σ = 0.01 and (b) σ = 0.1.

dimensions of 1024 to model Gφ . The total number of Monte
Carlo samples was set to L = 20, with a regularization param-
eter of h = 0.001. For optimization, we used RMSprop with a
learning rate of 5 × 10−6 and a momentum value of 0.9. The
figures depict the sample means and error bars (filled areas)
based on 100 samples generated from the variational densities.
For comparison, the true x’s are also plotted. The relatively
narrow filled regions in both figures indicates the reliability
of our approach, even in the presence of uncertainties denoted
by the relative thickness. The error bars represent two sample
standard deviations above and below the sample mean.

Finally, we applied Algorithm 1 to real experimental data
consisting of measured optical spectra, 1/τ op(ω, T ): one opti-
mally doped sample (Tc = 96 K) and two overdoped samples
(Tc = 82 and 60 K) of Bi2Sr2CaCu2O8+δ (Bi-2212). Tc is the
superconducting transition temperature. The three samples are
denoted as OPT96, OD82, and OD60, respectively, and rep-
resented in different colors in Fig. 4. These experiments were
performed at three different temperature setups: T = 100 K,
200 K, and 300 K.

These experimental spectra were used as input for Al-
gorithm 1 for inference determination. The results for each
temperature setup are shown in Fig. 4 in the top (T = 100 K),
middle (T = 200 K), and bottom (T = 300 K) panels. We
denote the result of Algorithm 1 as “flow” in the figure. In
the left column of Fig. 4, the results of the NF (dashed lines)
are compared with those of the MEM (dotted lines) reported
in [42]. In the right column, the reconstructed optical spectra
obtained using the NF (dashed lines) are compared with those
using the MEM (dotted lines) and the experimental results
(solid curves). The resulting I2χ (ω)’s obtained using NF and
MEM are comparable to each other.

The coupling constant (λ) is defined as λ(T ) ≡
2

∫ ωc

0 [I2χ (ω, T )/ω]dω, where ωc is the cutoff frequency,
which was 500 meV in our study. The coupling constant is
closely related to the strength of the interactions between
electrons in a material. The coupling constants derived using
NF (solid symbol) and MEM (open symbol) from the result-
ing I2χ (ω)’s are shown in Fig. 5. Both coupling constants
exhibit similar doping (or Tc) and temperature dependencies.
Therefore, the interactions may be associated with the anti-
ferromagnetic fluctuations, based on the phase diagram of the
Bi-2212 cuprate system.
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FIG. 4. Left column: comparison of inference results of I2χ

obtained using NF (dashed lines) and MEM (dotted lines). Right
column: experimental observations (solid curves) and reconstruc-
tions using results of NF (dashed lines), and MEM (dotted) of 1/τ op.
Each experiment is performed in different temperature setups: top
(T = 100 K), middle (T = 200 K), and bottom (T = 300 K). Sam-
ples (OD60, D82, and OPT96) are differentiated using the same color
code in all figures.

FIG. 5. Comparison of coupling constants obtained from infer-
ence results of I2χ using NF and MEM are compared at different
temperature setups: T = 100 K, 200 K, and 300 K.
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IV. CONCLUSIONS

We have investigated a machine learning approach to solve
the inverse problem of the Fredholm integral equation of the
first kind. In contrast to previous approaches based on super-
vised learning, our method leverages deep generative models
and offers a more transparent perspective on the solution pro-
cedures. This enhances the reliability and explainability of the
solution within an appropriate probabilistic framework.

While delivering results comparable to those achieved by
MEM, our approach shows significant robustness to noise.
The prior distribution obtained from the NF provides more
diverse samples than the trained data. This diversity is ad-
vantageous for handling OOD data and offers a degree of
flexibility beyond the inductive bias of domain experts. The
reliability of the solutions, as assessed through uncertainty
estimation, offers an additional insights for solving inverse
problems. Importantly, our method is versatile across vari-
ous experimental temperature setups, distinguishing it from
supervised learning-based approaches, which are frequently
constrained to specific temperature setups.

Although we have demonstrated the capacity of NFs to
generate OOD samples, a comprehensive quantification of
this capability has not been provided in the current work.
Recognizing the importance of NFs’ generalization capability
for handling OOD data, we plan to explore and address this
aspect in future work.
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APPENDIX A: VARIATIONAL INFERENCE (VI)
AND EVIDENCE LOWER BOUND (ELBO)

In variational inference (VI) [38], the posterior, p(x|y), is
approximated by a variational density q(x; φ) that minimizes
the KL divergence from q(x; φ) to p(x|y) is minimized, i.e.,

φ̂ = arg min
φ

KL(q(x; φ)||p(x|y)).

Notably, the density estimation of pX (x|y) becomes an opti-
mization problem through VI. From the definition of the KL
divergence, we obtain

KL(q(x; φ)||p(x|y)) =
∫

q(x; φ) log
q(x; φ)

p(x|y)
dx

=
∫

q(x; φ) log
q(x; φ)p(y)

p(y|x)p(x)
dx,

from which, one can show that

log p(y) = L(φ) + KL(q(x; φ)||p(x|y)), (A1)

where

L(φ) = Eq(x;φ)[log p(y|x)] − Eq(x;φ)

[
log

q(x; φ)

p(x)

]
. (A2)

Given that the KL divergence is nonnegative, Eq. (A1) indi-
cates that minimizing it is equivalent to maximizing L(φ).
Note that L(φ) is frequently referred to as the negative varia-
tional free energy or evidence lower bound (ELBO).

Traditionally, Eq. (A2) is solved using a mean-field as-
sumption, where q(x; φ) is factored into

∏
qi(xi; φ) and

solved for each qi(xi; φ) while keeping other q j �=i(x j ; φ)’s
fixed. Mean-field-based approaches are advantageous because
they are analytically solvable. However, they are limited
in dealing with complex posterior distributions owing to
the incorrect independence assumption of qi(xi; φ)’s. In re-
cent decades, numerous studies have explored methods for
generating more expressive variational densities than the
mean-field approach, making them scalable for dealing with
large datasets [39,43–45].

APPENDIX B: UNCERTAINTY ESTIMATION USING
VARIATIONAL INFERENCE (VI)

For uncertainty estimation, VI was utilized to obtain a
variational density to approximate the hard-to-obtain posterior
density, p(x|y). We achieved this by combining the pretrained
generator, Gψ̂ , with an additional normalizing flow, Gφ such
that

Gφ Gψ̂

ε �−→ z �−→ x,

where ε ∼ qε (ε; θ ). On changing the variable formula, we
obtain

qZ (z; θ, φ) = qε (ε; θ )

∣∣∣∣det
∂Gφ (ε)

∂ε

∣∣∣∣
−1

(B1)

and the variational density can be written as

qX (x; θ, φ, ψ̂ ) = qZ (z; θ, φ)

∣∣∣∣det
∂Gψ̂ (z)

∂z

∣∣∣∣
−1

. (B2)

The corresponding ELBO becomes

L(ω) = EqX (x;ω,ψ̂ )[log p(y|x)]

−EqX (x;ω,ψ̂ )

[
log

qX (x; ω, ψ̂ )

pX (x; ψ̂ )

]
, (B3)

where ω := {θ, φ} represents the trainable parameters.
From Eq. (B2) and the pretrained prior,

pX (x; ψ̂ ) = pZ (z)

∣∣∣∣det
∂Gψ̂ (z)

∂z

∣∣∣∣
−1

,

the above ELBO [Eq. (B3)] can be simplified to

L(ω) = EqZ (z;ω)[log p(y|Gψ̂ (z))] − EqZ (z;ω)

[
log

qZ (z; ω)

pZ (z)

]
= Eqε (ε;θ )[log p(y|Gψ̂ (Gφ (ε))]

−Eqε (ε;θ )

[
log

qZ (Gφ (ε); ω)

pZ (Gφ (ε))

]
. (B4)
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In this study, we set ε ∼ N (0, I ); therefore, q was indepen-
dent of the parameters, making Eq. (B4)

L(φ) = Eqε (ε)[log p(y|Gψ̂ (Gφ (ε))]

−Eqε (ε)

[
log

qZ (Gφ (ε); φ)

pZ (Gφ (ε))

]
. (B5)

Based on the forward model [Eq. (3) in the main text], the
first term in the right-hand side becomes

−Eqε (ε)

[
1

2σ 2
‖y − AGψ̂ (Gφ (ε))‖2

2 + C

]
,

where C represents all the terms that are independent of
the trainable parameter, φ. Given that qε (ε) = N (0, I ) and
Eq. (B1), the second term can be written as

Eqε (ε)[log pZ (Gφ (ε)) − log qZ (Gφ (ε); φ)]

= Eqε (ε)

[
−1

2
‖Gφ (ε)‖2

2 − n

2
log 2π

]

− Eqε (ε)[log qε (ε)] + Eqε (ε)

[
log

∣∣∣∣det
∂Gφ (ε)

∂ε

∣∣∣∣
]
.

The gradient of the ELBO becomes

∇φL(φ) = Eqε (ε)

[
∇φ

{
− 1

2σ 2
‖y − AGψ̂ (Gφ (ε))‖2

2

−1

2
‖Gφ (ε)‖2

2 + log

∣∣∣∣det
∂Gφ (ε)

∂ε

∣∣∣∣
}]

,

and its Monte Carlo approximation can be expressed as

∇φ

[
1

L

L∑
l=1

{
−1

2
(AT A + h2I )−1‖y − AGψ̂ (Gφ (ε(l ) ))‖2

2

− 1

2
‖Gφ (ε(l ) )‖2

2 + log

∣∣∣∣det
∂Gφ (ε(l ) )

∂ε

∣∣∣∣
}]

,

where ε(l ) ∼ N (0, I ) and L is the number of samples. We
adopted a preconditioning factor [40] to address inherently
ill-posed problems. The regularization parameter, h, includes
σ . Algorithm 2 in the main text was derived by drawing L
samples with sequential substitutions as follows:

ε(l ) ∼ N (0, I ) z(l ) = Gφ (ε(l ) ) x(l ) = Gψ̂ (z(l ) ).
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