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The Hatsugai-Kohmoto interaction model has gained a lot of attention in recent years, due to the fact it is
exactly solvable in momentum space in any dimension while capturing some key features of the Mott phase. Here
a one-dimensional lattice model with this interaction is approached from the real-space perspective, to explore
how breaking the translation invariance of a lattice affects the intuition built by studying the exact solution
in k space. The ground state properties of chains with periodic and open boundary conditions are calculated
and compared with both the exact solution in momentum space as well as with analogous solutions of the
Hubbard model. The results show that introducing hard edges enhances the ferromagnetic correlations and the
system undergoes a magnetic transition before reaching the strong coupling limit. Understanding the impact of
hard edges is a crucial step toward answering the looming question of the existence of edge states and other

topological phenomena in systems with this type of interaction.
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I. INTRODUCTION

Exactly solvable models play an important role in the
understanding of physical phenomena. They often provide
reference points and intuitions that one can use to understand
more accurate, but usually not solvable in general, models.
This is the case in strongly correlated electron systems, where
the Hubbard model [1] is the paradigmatic model describing
interacting fermions on a lattice. Despite great progress made
during its over 50-year-long history in understanding various
behaviors observed in this model [2,3], a general solution
remains elusive. So far, it has only been obtained in one spatial
dimension [4]. Hence there is a need for studies dedicated to
exactly solvable [5,6], but often artificial, models of correlated
electrons.

One such model, proposed by Hatsugai and Kohmoto [7],
of infinite-range interaction has been gaining a lot of atten-
tion recently. The interest in this Hatsugai-Kohmoto (H-K)
interaction was reignited by the observation that it is in the
same high-temperature and strong coupling universality class
as the coveted Hubbard model [8,9]. Thus it is capable of
reproducing key aspects of the Mott physics. The attractive-
ness of this model comes also from the fact that it becomes
diagonal in momentum space, vastly reducing the complexity
of calculating the exact solution. For a single band model
it is given by a simple formula [7]. Hence, in the past four
years, multiple studies explored various aspects of model with
this interaction, such as Friedel oscillations in a non-Fermi
liquid [10], superconductivity [11], multiband physics and its
relation to the Hubbard model [12], and the interplay between
Mottness and topology [13]. Few of those papers have also
pointed out, that in the various models where H-K interac-
tion and topology are intertwined, the system undergoes a
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topological phase transition without closing the bulk gap in
the single particle spectrum [14—16]. This phenomenon origi-
nates from the fact that around the topological phase transition
the system was changing its ground state and a single particle
was not capable of capturing the trivialization of the gap
through its closure. Hinting that this could be a universal
behavior in models with this interaction. This raises a natural
question concerning the existence and possible behavior of
topological features, i.e., edge states [17] before the onset
of correlation-driven insulating state. A topic that was ac-
tively studied for the Hubbard model [18-20] and topological
Kondo insulators [21], which also have local Hubbard-type
interaction.

So far, all studies of the H-K model have focused on the
solution in the momentum space. Which is the natural basis
for this model. In this manuscript, a different approach is
taken and the properties of the H-K model are analyzed in
real space, which is a more natural basis for the Hubbard-type
interaction. This allows one to take the first steps towards
understanding the real-space correlation effects produced by
the H-K interaction as the system evolves from a metal to an
insulator. This should pave the way for future studies on the
interplay between topological effects and H-K interaction. In
addition, the large number of real-space studies of the Hub-
bard model and concepts developed in them [22-24] will serve
as a perfect benchmark to explore the similarities between the
two models of correlated electrons.

This work aims to address two main questions. (i) How
does the infinite range of the H-K interaction manifest it-
self in the real-space properties of the finite chain’s ground
state ? (ii)) How is the presence of hard edges, and thus the
lack of transnational invariance, altering in the solution? The
latter question is crucial, since the exact solution, discussed so
far, silently relied on the translation invariance of the system
to introduce the momentum-space. In the context of exploring
the fate of topological effects, this cannot be done and hence
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there is need for a real-space approach. Due to computational
complexity, in this manuscript, solely the one-dimensional
topologically trivial lattice is concerned. The main finding
of this work is that breaking the translation invariance has
strong implications for the ground state properties of a chain
with H-K interaction. As a function of interaction strength, a
chain with hard edges undergoes a transition from a low-spin
to a high-spin ground state. This precedes the transition to
the strong-coupling limit, in which spatial correlations decay
exponentially fast with distance. This result is independent
on the system sizes considered in this work. In the periodic
system, the same formation of ferromagnetism is shown to be
only a finite size effect.

II. MODEL HAMILTONIAN

The H-K interaction [7] in a particle-hole symmetric form
is given by

U . U
HHK = ﬁ Z C‘;,UCQ_FA_(;C;&CV_A,& - E Zna,av
o,a,y,A a,0
(1)

where cl'g(ca,a) is the creation (annihilation) fermionic op-
erator of a particle at site « with spin o. In Hamiltonian (1)
(and throughout this text) the four Greek letters: «, v, A, 8,
will symbolize the site indices and can have values rang-
ing from O to N, which denotes the number of sites in the
system. The summation over «, y is unrestricted over each
lattice site, while A € [—a, N — «[. This restricted sum is
introduced in such a form to highlight the conservation of the
center of the mass of interacting particles. This is the defying
property of H-K interaction [7] in addition to the infinite
range. The & symbolizes the opposite spin to o. The strength
of the interaction is controlled by U and does not depend on
the distance between the interacting particles.

In the text, three quantities will be analyzed, as real-space
probes of the properties of the system. The first one is the
local density of states A, (@) (LDOS), which provides infor-
mation about the spectrum of the single particle excitations. It
is defined as the imaginary part of the retarded local Greens
function

1
A, () = —;SmG’;J(a)), ()

where G’;’J (w) is the Lehman representation given by

1 (nlcy o ln')(n'|c] In)
GF _ 1 , y.o ~BE. 4 g=BEs,
ro(@)=7 2 w0t (B, —E)¢ TeT)

’ 3)

The indices n, n’ enumerate the eignestates of a Hamiltonian,
Z is the statistical sum and § = 1/T is the inverse tempera-
ture. From the exact solution of the H-K model, it is known
that in the strong coupling limit, the ground state shows large
degeneracy [7,9], which leads to the breaking of the third
law of thermodynamics [25]. To circumvent possibly simi-
lar issues in this analysis finite temperature T = 0% will be
assumed. It is equivalent to calculating the excitations from
all possible ground states and averaging the results. A similar
route was taken in the original H-K paper [7]. In the following,

U=42 Aw.k
4 <u/7 %.0

e
|
o

—4 ¥, 0.0
T 0 m s 0 T s 0 s
k k k

FIG. 1. Dispersion relation for a one-dimensional single band
Hatsugai-Kohmoto model for three interaction strengths U repre-
senting weakly interacting metal (left), strongly correlated metal
(middle), and insulating (right) states. The colors of the bands
represent their spectral weight, which has only three values: zero,
one-half, and one.

only the o =1 channel will be showcased, which due to
time-reversal symmetry has to be the same as o = . Also, the
focus of this work is on the bulk (y = N/2) and edge (y = 0)
sites. The analysis of the spatial dependence of LDOS is not
within the scope of this manuscript. The two other quantities
used in this analysis are the equal-time correlation functions:
the two-point (2-p) correlator and the 2-p spin-spin correlator.
They are defined, respectively, as

(cy.1ch ) and (S, - Sf). )

In the latter g,, is the spin operator at site y. As a ref-
erence point of the 2-p correlators, a site at one end of a
chain § =0 will be used and the spatial () dependence
of these two correlation functions will be investigated. All
correlation functions defined above are given through the
expectation value, and the same T = 0" assumption will be
used as for the spectral function. All numerical results in
this paper were obtained using the exact diagonalization (ED)
method. The software used to run the ED calculation was
written based on the routines implemented in the libcommute
library [26].

As mentioned above, the Hamiltonian (1) becomes diago-
nal in the momentum-space and is thus exactly solvable. From
this solution, it was shown that the system turns insulating for
U equal to the bare bandwidth of the noninteracting electrons
[7]. In the metallic phase, the dispersion possesses discontinu-
ities in the spectral weight, when it jumps from one to one-half
and to zero, which is originating from the mixed state ground
state with large degeneracy [11]. As illustrated in Fig. 1 for the
half-filled one-dimensional chain, the region with unit spectral
weight is centered around the Fermi level and shrinks with U
(cf. two leftmost panels). It vanishes at the onset of the insu-
lating phase, where the spectrum consists of two subbands of
the same bandwidth as the noninteracting electrons, centered
at +U /2 and with the same spectral weights equal to one-half.
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The translation invariance in the system is only possible
if the periodic boundary condition (PBC) is assumed. Then
each site experience interaction is composed of the same
terms. Introduction of hard edges, open boundary condition
(OBC), breaks this property because the conservation of the
center-of-mass property of the H-K interaction does not allow
certain terms to appear in the summation in Hamiltonian (1),
i.e., the ones for which o + A or y — A falls outside of the
system’s boundaries. In principle, for the H-K Hamiltonian,
the limit of an infinite number of sites does not mean that the
edge effect becomes negligible. If one considers a chain of
length N, then the number of interaction terms that each site of
the chain is experiencing with other sites, assuming the PBC,
is N2, all with the same strength U. As each site index y and
A is free to have all N values. Introducing edges means that
o + A as well as y — A cannot point outside the [0, N[ range.
For example, for the middle site (« = N/2) A € [-N/2, N/2[
the restriction on the system size does not allow for y to be in
its full range. One can count these discarded terms, grouping
them by A values. Assuming A = —N/2, all N/2 terms for
which y > N/2 has to be dropped. For A = —N/2 + 1, there
will be N/2 — 1 terms that give a site index out of bounds.
Following the same reasoning until A = 0, one gets that the
number of dropped terms in a finite system, ordered by the
value of A is

B3 E)

A similar result can be obtained for A > 0, with the exception
of A = N/2, which is outside the allowed range. The A =0
case does not add any restrictions in the y range. Adding these
contributions gives the ratio of dropped terms in the finite
system size to the number of terms in a periodic system is

O
N2 4

(6)

This ratio does not go to zero in the limit of infinite
system size, and thus the boundary effects for the H-K
interaction stay relevant (in terms of the Hamiltonian) even
in the thermodynamic limit. For that reason, in the follow-
ing, the real-space analysis of the H-K interaction for the
system with hard edges and with PBC will be conducted
in parallel and the difference between the two cases will be
highlighted.

III. DIMER SOLUTION

To gain some first intuitions, a dimer model (N = 2) with
PBC and with OBC (standard dimer) is considered. The pe-
riodicity means that an electron on either site of the dimer
can hop to its left and right, with the same amplitude. It is
the simplest nontrivial case, which can be solved analytically
in real-space and provide some first insights into the systems
dynamic. The solution with PBC should also reproduce some
results of the exact solution, as for this case a Fourier transfor-
mation can be done, but with k = 0, 7 only. The Hamiltonian

(1) for a dimer with PBC is given by

_ U
,HII:;IZZ = Z Z (Z(zna,(rna,a - zna,a + 2”0(,(7”&,6)
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If the translation invariance is broken, the last line in
Eq. (7) has to be removed. It comes from terms that have
y —A =—1 and y — A = 2, respectively, which are only
allowed in the modulo system size algebra of the site indices
for a periodic system. One can refer to them as “doublon
hopping” because they represent removing a doubly occupied
site at one site and creating it on the other.

The particle-hole symmetry of the model means that the
ground state will be in the two-electron subspace. The H-K
interaction conserves charge and spin, as the Hubbard inter-
action does, so one can use the same basis states known from
the analysis of Hubbard dimer [27]. These states are

1 T T
1, £) = ﬁ(cmcw + Co,¢"1,¢)|0>’ )
LIPS
12, ) = E(CO’TCO’l =+ Cl’TC1,¢)|O>v 9
13,0) = ¢ ¢} ,10). (10)
Usin the standard orderin of this basis:
g g
{11, =), 12,4), 12, =), [1,+), 13, 1), 13, })},  which  splits

Hamiltonian (7) into spin-singlet and spin-triplet subspaces
respectively, the Hamiltonian of a H-K dimer with PBC has
the following form:

0 —4 0[]0 0 0
4 0 0|0 0 0
0 0 -Uulo0o 0 0
0 0 0 |-U 0 0 (i
0 0 0] 0 -U o0
o 0 o]0 0 -U

The horizontal and vertical lines in the matrixes (11) and
(12) highlight the separation of the Hamiltonian matrix in the
two-electron subspace into disjoint blocks consisting of S = 0
spin singlet states (upper left) and S = 1 spin triplet states
(bottom right). From this matrix form, one can see that the
periodic H-K dimer undergoes a change in the ground state
upon increasing U. At weak U, it is the bonding state of two
spin-singlet states |1, —) and |2, 4), with energy E = —4t¢.
The same is true for the Hubbard dimer with PBC. The dif-
ference between the two is, that Hubbard interaction favors
the contribution from |1, —), while H-K interaction does not.
At U = 4t = U,, all states, apart from the antibonding state
in the spin-singlet subspace become degenerate. The five-
fold degeneracy is later reduced to a fourfold degeneracy for
U > U,, with all three spin-triplet states and one spin-singlet
state (|2, —)) becoming the ground states. This is in stark
contrast to the Hubbard model, where the ground state is never
degenerate and always has S = 0. Here, the H-K interaction
clearly promotes ferromagnetic alignment of the two spins.
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The ground state subspace is not only spanned by the S = 1
states, whose degeneracy is a consequence of the conservation
of the S, component of the spin by the Hamiltonian (7), but
there is also a contribution from a state with § = 0. A similar
conclusion, that H-K shows a ferromagnetic instability, was
reported for the QSH systems [13] and for k-dependent inter-
action strength version of the H-K model [28]. This analysis
shows that it can be a generic feature of this interaction in
finite systems. This is even enhanced by the breaking of the
translation symmetry, as will be shown now.

The H-K dimer (with OBC) Hamiltonian, in the same basis
as previously, has the following form

0 -2 0 0 0 0 ]
-2t =% o0 0 0 0
0 0o -%1] o0 0 0
0 0 0 |-U 0 0 (12)
0 0 0 0 -U 0
0 0 0 0 0 -U |

On the level of the form of the Hamiltonian, the difference
to the periodic analog is the reduction of the kinetic energy
(—4t — —2t), due to reduced number of hoppings, and the
lack of the “doublon hopping” term. This later term was
lowering the energy of the |2, &) states, with doubly occupied
sites. Removing it turns out to be sufficient to give rise to a
clear magnetic transition in the system. From the Hamiltonian
matrix (12), one can see that at large U the ground state is only
within the triplet subspace with threefold degenerate energy
Egs = —U in the bottom right corner. The degeneracy with
the spin-singlet state, present in the periodic model, is lifted.
On the other hand, at small U the ground state is only within
the spin-singlet subspace. As a consequence, in a dimer as U
decreases the ground state jumps from (just) the spin-triplet
subspace to (just) the singlet subspace, where it has the energy

_ e s (YUY ZY

Egs = — [ (2t) +(4> T (13)
Through comparison of the energies of the Hamiltonian ma-
trix (12), one obtains the critical interaction strength U =
U, = 2+/2t ~ 2.83¢ for the transition between different mag-
netic states. This result is below the critical U of the periodic
case. In addition, although the ground state in the small-U
limit consists of the same states as in both the H-K dimer with
PBC and the Hubbard dimer the weight of each contributing
state is different for all three cases. The lack of the “dou-
blon hopping” results in the ground state for U < U,, which
favors the |2, +) state, as opposed to equal contribution in
the bonding state, discussed previously. A similar comparison
between a dimer with PBC and OBC in the case of the Hub-
bard interaction, does not show any qualitative changes upon
changing the boundary condtions. It is understandable, as it is
purely local interaction, unlike the H-K interaction which can
have infinite range. The root of the spin alignment in a dimer
for large U in the H-K model can be traced back to the last
density-density term in the second line of Hamiltonian (7).
This term is not the usual density-density term as in, e.g., the
extended Hubbard model [29], where large densities in the ad-
jacent sites are penalized. Here the energetically unfavorable

situation is when spins at the neighboring sites antialigned.
Hence the high-U state prefers their ferromagnetic alignment,
instead of antiferromagnetic as in the Hubbard model. This
effect is even more amplified if one omits all terms in the last
two lines of the Hamiltonian (7) altogether, and keeps only
the density-density terms. Then, the large-U ground state is
only doubly degenerate and belongs to the subspace of |3, o)
states, irrespective of the boundary conditions.

To analyze the spectral properties one has to also look at the
Hamiltonian matrices in the one- and three-electron subspace.
The p-h symmetry means they will have the same form with
doubly degenerate states with energies

U
Egics = =5 %1 (14)
for the dimer with OBC and
U
@&iz—iim (15)

for the periodic case. As these states correspond to the
effectively noninteracting model, these energies and their cor-
responding eigenstates are the same as in the Hubbard model
for a dimer with OBC and PBC, respectively.

From this one can calculate the location of poles in the
single particle spectrum from Eq. (3). For simplicity, the focus
will be on the particlelike excitations, from the two-electron to
three-electron subspace. The p-h symmetry secures, that the
holelike excitations will have exactly opposite energies but
the same spectral weights. For a dimer with PBC below, the
critical U

AVKPBC _ g3 pro _% +2t + 4t (16)
and for U > U,
AEK-PBC — Ei —(=U) = % =+ 2t. a7
Similarly, for a dimer with OBC below the critical U
U\> u
ANKOBC _ [y 4 (Z) -7 E! (18)

and for U > U, the single particle excitation will have
energies

U
AKOBC _ g3 (g7 = 5 E (19)

For comparison, the Greens function of a Hubbard dimer has
poles at

U 2
AilIb_OBC — (2l)2 + <5> +t. (20)

and assuming PBC in a Hubbard dimer gives

U\
AMOPRC _ [ (42 4 (3> +21. 2

From Egs. (20) and (21), one can see that the poles of the
Hubbard dimer Greens function, independently of boundary
conditions, start to shift away from the Fermi level as soon as
the interactions are switched on. For the H-K dimer initially

165129-4



REAL-SPACE ANALYSIS OF HATSUGAI-KOHMOTO ...

PHYSICAL REVIEW B 109, 165129 (2024)

U =5.00
U=4.10t
U = 4.00¢ 9
U =3.99
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FIG. 2. Comparison of the LDOS of the H-K dimer with OBC
(color) and with PBC (grey) for various interaction strengths across
the transition from the weak (U = 0) to strong coupling limit
(U = 5t). Both models undergo a change in the ground state as a
function of U. For the periodic dimer U, = 4¢ and the dimer with
OBC has the transition at U ~ 2.83¢. In both cases, the transition is
accompanied by a rapid change in the spectrum.

(U < 2t), the excitations start to approach the Fermi level [cf.
Eq. (18)] nearly linearly with U. Only after the ground state
jumps to the triplet subspace, and its energy becomes —U, the
excitations start to gain energy and drift away from the Fermi
level. To illustrate the above-discussed spectra of the H-K
dimer with OBC and PBC, in Fig. 2 the two are put on top of
each other for various U values ranging from weak to strong
coupling. In color are the spectra of the OBC case and in grey
are the results assuming PBC. At U = 0 (bottom panel), the
two models have peaks at different locations due to different
kinetic energy. For a dimer assuming periodicity effectively
just doubles the hopping amplitude. Until U < 2.28¢, the
qualitative behavior of the two models is similar, with peaks
approaching the Fermi level and following the Eqgs. (18) and
(16). What is different is that the dimer with OBC has a small
but finite spectral weight in the secondary peaks with energies
higher by 2¢ than the main. The analogous peaks in the peri-
odic model do not carry any spectral weight. This is the same
feature that the infinite (periodic) system solution has. To see
that, one has to consider the Fourier transformation of the op-
erators used to calculate the LDOS shown in Fig. 2. They have
contributions from two momenta 0, r. Since the two momen-
tum blocks are disconnected for the H-K interaction the local
density of states is just a simple sum of the two contributions
from the k-resolved spectrum. From Fig. 1, one can see that
at these k values only one branch of the dispersion contributes
and it has unit weight. The other has exactly zero weight and
is not visible. Which is what was observed in the periodic
dimer solution. Following this relation with the continuous k
solution, after the transition to an insulating phase (U > 4t),
the spectral weight is redistributed equally between the two
branches at k = 0 and k = . This is also seen in the periodic
dimer solution, where for U > 4¢, the height of the peaks
drops by half. At exactly U = 4¢, the middle peak is a sum of
contributions from two subbands, thus its weight is not halved.

U =5.00¢
U = 4.00t
U = 3.00t
1 | | 1
_— |U =283t
= 1 1
3 |U =282
i
< (U =250
U = 2.00t
U = 1.00t
U = 0.00¢ 1 1
2 O 0 2 1
w/t

FIG. 3. Comparison of the LDOS of the H-K dimer with OBC
(color) and the corresponding Hubbard dimer (grey) for various
interaction strengths U. The former shows a rapid change around
U =~ 2.83t, where the ground state moves from the spin-singlet to
the spin-triplet subspace.

The transition from a nondegenerate to a degenerate ground
state is nonetheless already visible in LDOS in the form of
suddenly appearing high energy excitations at w = +4¢, with
half of the spectral weight as the main peaks for U < U,. Such
a discontinuous evolution of the excitation spectra would not
be possible if the ground state stayed nondegenerate. In addi-
tion, the fourfold degeneracy of the ground state of the dimer
with PBC in large-U limit is matching the 2V spin degeneracy
of the N-electron ground state of the exact solution [25]. This
connection between the dimer with PBC and the k-resolved
solution shows the relevance of the former for analysis of the
opening of the gap in the one-dimensional chain, due to the
opening happening at k = 0 and 7. Another picture emerging
from the analysis of a dimer is that finite system size can
reduce the ground state degeneracy in the correlated metal
phase, without any additional terms in the Hamiltonian. The
degeneracy in this interaction strength regime comes from
the spin degree of freedom of the singly occupied k states.
Since the finite system size controls the allowed k values it
can be tuned to remove all the singly occupied k states from
the system. This is the case for the dimer with PBC, as shown
above. The property of tuning the ground state degeneracy of
local in k interaction could be of interest for the cold atom
community, where similar systems could be realized [30,31].

As shown in Fig. 2, the dimer with OBC undergoes a
magnetic transition at U =~ 2.83¢. Similarly to the periodic
case, the half of spectral weight suddenly jumps to higher
energy poles as U crosses the U.. From this point on the
local density of states evolves monotonically with U and pairs
of excitations above and below the Fermi level are drifting
apart. The excitations at large U with OBC and with PBC
behave qualitatively the same, but they are located at slightly
different positions, due to the difference in the kinetic energy
term. Figure 3 shows how the same spectra of a dimer with
OBC compare to the analogous Hubbard dimer. The biggest
difference is naturally for U < 2.83¢. The attraction between
the excitations in H-K model is in contrast to the repulsion
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FIG. 4. Finite size scaling of the two-point spin-spin correlator
between the nearest neighboring sites as a function of system size
N for the H-K chain with OBC and PBC. All results are for U = 5
which is large enough to secures that the system is in the high-U
solution.

of the analogous excitations in the Hubbard model. After, the
magnetic transition in the H-K model the two solutions behave
qualitatively the same. Following Eqgs. (19) and (20), one can
see that in the limit of U > ¢, the two spectra approach each
other deep in the strong coupling limit. What is different
between the two, is that the ground state favors different spin
alignments. The natural question is, whether this magnetic
instability of the high-U phase of the H-K model is enhanced
by the extremely small system size of a dimer or it will survive
in larger systems as well. If so, what is its spatial dependence?

IV. FINITE SIZE SCALING OF SPIN-SPIN CORRELATOR

As the system size increases beyond N = 2 providing an
analytical evidence for ferromagnetic correlations in H-K
model becomes not feasible. To overcome this problem one
can do a finite size scaling analysis of a the 2-p spin-spin
correlator, defined in Eq. (4), between the neighboring sites,
which is obtained using the exact diagonalization.

Results comparing the H-K models with OBC and PBC for
the high-U state (U = 5) are displayed in Fig. 4. They show
that the ferromagnetic correlations, nonzero for a dimer, in a
system with OBC are unaffected by the increase of the system
size N. Exactly the same value of 0.25 was obtained for all
N studied, and thus its likely that it should survive the limit
of N — 00. On the other hand, the spin-spin correlations for
the periodic model do show a rapid decay. Already at N = 8
they are almost order of magnitude smaller then for N = 2.
This trend suggests that the ferromagnetic correlations in the
high-U phase could be strongly damped if not completely
destroyed by the thermodynamic limit. Nonetheless, their rel-
atively large nonzero value in the periodic dimer analysis was
a finite size effect. The discrepancy in the finite size scaling
between the H-K model with OBC and PBC illustrates how
sensitive the model is to the boundary conditions. Their role
should not be neglected in future studies, as they leads to
distinct and measurable change in the properties of the system.
Because the ferromagnetic correlations of the high-U phase
of the system with OBC showed no dependence on N, in
the next section the results for the chain with N = 8 will be
analyzed in more details to unveil the spatial dependence of
the 2-p correlators and the impact of increased number of

U =0.5t

— H-K
---- Hubbard

________

—0.5 1 hSe
T

FIG. 5. Two-point spin-spin correlator for a chain with OBC of
N = 8 sites with H-K (solid line) and Hubbard (dashed line) inter-
actions, for various interactions strengths U. The area between the
two curves is colored to highlight the differences between them. The
U values show the transition of the spin-spin correlations in the H-K
model from antiferromagnetic (top) to ferromagnetic (bottom).

single particle excitations on LDOS. Since the goal of this
work is to highlight the qualitative differences in the H-K
model with hard edges the exact value of N is less important.
The results from Fig. 4 show that the long-range nature of the
H-K interaction cancels even (eventual) odd-even effects that
could impact the high-U limit solution in small systems. On
the other hand, since the asymptotic value of the spin-spin
correlations in N — oo of a periodic chain is not possible
to determine from this study, the N = 8 represents the case
where these correlations are still present yet are much smaller
then in a similar system with OBC.

V. THE CHAIN WITH N = 8 SITES

Figure 5 displays the spatial-dependenc of the 2-p spin-
spin correlator for various interaction strengths from weak to
strong couplings for a chain with OBC. The Hubbard model at
half-filling is used as a reference, since it is famously having
short-range antiferromagnetic correlations [23,32,33].

The solid lines are the results for a chain with H-K inter-
action and the dashed lines are the result for the analogous
Hubbard model. The colored region between the curves is
added to highlight the discrepancies between the results for
the two models. The Hubbard model results show an oscil-
latory behavior around zero as a function of distance from
the Oth site. The alternating sign of the spin-spin correlator,
with negative values at odd distances and positive and even
distances (y) from the reference spin, signals the antiferro-
magnetic nature of the coupling between the spins at adjacent
sites. The amplitude slightly increases with the interacting
strength U, reflecting the enhanced correlations, and decays
with distance showing the lack of long-range correlations in
the spin-spin channel of the Hubbard model. Similar behavior
is also present in the H-K model, but only up to a certain small
U value. In agreement with the dimer analysis, where the
ground state did hold a resemblance to the Hubbard model as

165129-6



REAL-SPACE ANALYSIS OF HATSUGAI-KOHMOTO ...

PHYSICAL REVIEW B 109, 165129 (2024)

0.5

o U = 0.5t
=5
= 00 B
&
~ — HK
05 |
—~ \ ----Hubbard U = 2.0t
_ —— ’
D D T ——
R e e e PR
- -
<o
< \"/
0.5
7~
« \ U =25t
=5 N, P—
2 00 D Y T e e
= N T
S N =-
~—— N ’,’
v
05
7~
o N U =4.0t
%b:: \,
s \\ —————————
& oo N — —_—
~ AN ’,z’
:
0 2 3 4 5 6 7
site y

FIG. 6. Two-point correlator for a chain with OBC, N = 8 sites
with H-K (solid line) and Hubbard (dashed line) interactions, for
various interaction strengths U. The region between the two curves
is colored to highlight the differences between them.

far as spin-degree of freedom is concerned. Between U = 2¢
and U = 2.5¢, two middle panels of Fig. 5, the antiferromag-
netic correlations give way to the ferromagnetism. The 2-p
spin-spin correlator for U = 2.5 is already showing only pos-
itive values independently of the distance y. Initially, small
oscillations of the spin-spin correlator are observed in the H-K
model at U = 2.5. But, as shown in the bottom panel of Fig. 5,
for U = 4 these correlations do not decay with y anymore.
Instead, they saturate at one-quarter for all y > 0. This lack
of any decay with y of ferromagnetic correlations show that
it is not just an edge effect but also appears in bulk. This
supports the idea that the ground state of a H-K model with
OBC in the high-U limit is neither an antiferromagnetic as
it would be in the case of the Hubbard model [24,34] nor a
nonmagnetic as the momentum-space solution would suggest
[35]. Instead it is a ferromagnet, with nonvanishing long-range
positive spin-spin correlations.

Entering the high-U phase is also signalled by raise of
the degeneracy of the ground-state. Interestingly, the high-U
(U > 4) ground state of a N = 8 chain with PBC is exactly
256 = 28 times degenerate, which is the behavior reported in
the dimer and the feature of the exact continuous k solution.
On the other hand, the ground state of the system with open
boundaries do not approach the degeneracy that exponentially
depends on the number of electrons. This difference combined
with the analogous behaviors in the finite periodic system and
the continuous k solution, leads to believe that the presence
of boundaries effectively introduces an interaction between
the spins in the momentum space. As a result the magnetism
in finite H-K model appears naturally, in contrast to the k-
space solution, in which one had to add artificial terms to the
Hamiltonian that favored one of the spin orientations, and thus
removed the huge degeneracy of the exact (periodic) solution
[9,25,28]. For completeness, the 2-p correlator is displayed
in Fig. 6, which was recently reported [10] to show a sur-
prisingly quick decay with distance in the high-U solution
of the H-K model, which could be used as criterion for the
strong-coupling limit. The results presented here for the 2-p

U=5.0t
. I\ I\ | I\
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A R A A MA 4 A
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FIG. 7. Comparison of local density of states at the middle of
N = 8 site chain (y = 4), referred to in the text as bulk, for various
interaction strength U. The grey peaks represent the poles of the
Greens function of the chain with H-K interaction and PBC. The
colored peaks are the excisions of a system with OBC. The interac-
tion strength spans from U = 0 (noninteracting) to U = 5¢ (strong
coupling limit).

correlation reproduce this behavior, cf. bottom panel. The
comparison with the Hubbard model shows, that this rapid
decay is even faster for the long-range H-K interaction than
for the purely local Hubbard interaction. Despite the fact, that
the contribution of the Hubbard terms in the H-K interaction
decays with N, cf. Eq. (1). For N = 8 sites, the Hubbard
model, even though it has strong local terms that favor charge
localization, has correlations that can spread even to the other
end of the chain. This decay is not directly connected to the
formation of ferromagnetism in the H-K model with OBC.
Comparing results for all four values of U displayed in Fig. 6,
the damping of the spatial dependence of 2-p correlator with
U does not match the magnetic transition shown in Fig. 5.
In the two middle panels, for U values around the magnetic
transition point, the 2-p correlator still extends across the
whole chain. Nonetheless, the role of the tendency of the H-K
interaction to promote high spin state cannot be overlooked in
the damping of 2-p correlator. The quantity, which describes
moving one electron from one site to another, in a high spin
state has strong restrictions due to Pauli principle. At small-U
the close resemblance between the low-U ground states of
Hubbard and H-K models is also reflected in the 2-p correla-
tor. In the top panel, the two models produce almost identical
behaviors. Lastly, the spectral properties of a larger chain of
length N = 8§ are compared, similarly as it was done for the
dimer case. In Fig. 7, local density of states at the bulk (y = 4)
of a chain with OBC (color) with its periodic analog (grey) are
contrasted. The figure shows a qualitatively similar evolution
of LDOS with U as observed for the dimer. At smaller U
values, the overall bandwidth (distance between outermost
peaks) of the excitations shrinks with the increase of the in-
teraction strength, cf. two bottom panels of Fig. 7. At larger U
this trend is reversed as peaks with very small spectral weight
start to appear at higher energies. As a result, the spectral
weight becomes more spread across a larger energy range.
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For the solution with PBC, this could be again understood in
terms of the exact solution with the continuous momentum k.
For N = 8, the local operator, used in calculating the LDOS,
has a contribution from eight discrete values of k(k = 2?” X n
with n € [0, 8[), all with an appropriate phase factor. This
discretization of k is the reason why the U = 0 solution with
PBC (grey peaks in the bottom panel of Fig. 7) does not look
like the LDOS of an infinite chain. The k values creating the
outermost peaks (k = 0, k = ) are taken only once, whereas
the peaks inside the band are taken twice, e.g., k = % and 77”.
Hence, the peaks at the edges carry half of the weight of the
peaks around the Fermi level. At small U most contributions
come from the part of the band with unit spectral weight. As
it shrinks with U the distance between the outermost peaks
of LDOS is also reducing, cf. four bottom panels in Fig. 7.
At certain U the discrete k values start to capture the parts of
the bands with one-half spectrum. As a result, the excitations
with smaller weights but at higher energy start to appear. This
breaks the trend of narrowing the support of the LDOS. The
spectral weight carried by them is not simply either one-half
or one anymore. It is changed by the interference between the
spectra of different k points. For N = 8, the Fourier transfor-
mation of an operator creating an electron at a given site has
also contributions from operators with complex amplitude.
This allows for interference between the spectrum at different
k. A similar redistribution of spectral weight from just a few
main peaks to much smaller peaks spread over a larger energy
range is observed in the system with OBC, already at U = 2.
The lack of periodicity does not allow to simply interpret it in
terms of the exact solution in k. Nonetheless, the similarities
between the solutions of the chain with PBC and OBC lead
to believe the key aspects of the exact solution are present
in both cases. Above U = 4¢, the k-space solution has two
separate bands with a gap of U — 4t at k = 0. These lower
band edges for U = 5t should appear at w = £0.5¢ and the
PBC model captures it, as shown in the top panel of Fig. 7.
The position of the outermost edges is also recovered. To
limit the computational time in case of the huge degeneracy of
the ground state of the system with PBC in the large U limit
(U = 4), the calculation of the spectral function was limited
to up to 60 lowest energy excited states within each invariant
subspace of the Hamiltonian. This number was established
through scaling analysis of the LDOS as the lower bound
on the number of states kept do not produce any significant
changes to the final result.

Figure 8 shows the local density of states in the middle of a
one-dimensional chain with OBC and H-K interaction (color)
and compares it against the solution of an analogous Hubbard
model (grey). Once again one can see in this comparison a
resemblance to the results obtained in the analysis of a dimer.
Namely, the lowest laying poles of the H-K local Greens
function attract, while the Hubbard model shows an opposite
trend. The same trend is reflected by the strong peaks (with
large spectral weight) at higher energies of the H-K LDOS and
is reversed only around U = 4¢. Another difference between
the two models is seen in the formation of the small peaks
at higher energies. For the Hubbard model, these start to
form outside the U = 0 band edges already at small U, cf.
|w/t] > 2. As the interaction becomes stronger these accumu-
late more weight and spread over a larger energy range. For
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FIG. 8. The bulk LDOS (in the middle) of a chain with OBC of
length N = 8 with H-K interaction(color) and Hubbard interaction
(grey) for various strengths U from weakly to strongly interacting
limit.

the H-K model, these features form at a smaller rate with U
and mostly within the initial energy range of the U = 0 LDOS
(w € [—2¢, 2t]). They become visible for U = 2t and higher.
Assuming that the similarity to the exact solution holds in the
system with OBC, the largest peaks in the LDOS of the H-K
chain would follow the band edges of the unit spectral weight
part of the dispersion, and the small peaks outside of them
come from the band with one-half weight.

VI. SUMMARY

This manuscript was dedicated to the analysis of the
real-space properties of the ground state of a chain with
Hastugai-Kohmoto interaction, which by definition has infi-
nite range and conserves the center-of-mass of the interacting
particles. It was shown that the form of this interaction is
sensitive to the presence of boundaries irrespective of the
size of the system, due to the latter property. By analyzing
first the solution of a dimer with open and periodic boundary
conditions, it was shown that the system can have a transition
from a spin-singlet to a spin-triplet ground state, as a function
of interaction strength U in the case of OBC. The favoring
of § = 1 ground state stems from the unusual density-density
term in the H-K interaction, which penalizes the antialignment
of the neighboring spins. This interaction is partially screened
by the doublon hopping term, present in the case of PBC.
The ferromagnetic spin correlations are also present in the
periodic dimer, but are hindered by the degeneracy between
one spin-singlet state and the S = 1 states. This is in stark
contrast to the Hubbard model, where the antiferromagnetic
correlations in the S = 0 ground state are promoted at all
interaction strengths U. In order to rule out finite size ef-
fects as main cause of this observation a scaling analysis of
spin-spin correlator between the neighboring sites was made
for a system with open and periodic boundary conditions. It
showed that the system with hard edges indeed promotes a
high spin ground state, as this function showed no change with
the system size. In contrast, the ground state of a periodic
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chain with H-K interaction had this correlation function de-
caying with increasing number of sites. To illustrate the effects
stemming from increased systems size, a more in-depth anal-
ysis of a chain with N = 8 sites was made. The 2-p spin-spin
correlator for N = 8 confirmed the presence of ferromagnetic
correlations even at larger distances from the edge and also for
moderate interaction strengths U < 4¢. The emergence of a
ferromagnetic correlation did not come with an immediate de-
cay (with distance) of the two-point correlator. This property
of the strong coupling solution of the H-K model happens at
higher interaction strength. Unexpectedly, a comparison with
the analogous Hubbard model showed that the 2-p correlator
decays much faster in the H-K model for the same U. This
means that correlations in an (in principle) infinitely long
interacting model decay faster than in the case of purely local

interactions. Lastly, analysis of the spectral functions showed
the same narrowing of the spectra upon increasing U for either
boundary condition and the resemblance of PBC the exact
k-space solution was further confirmed.

ACKNOWLEDGMENTS

The author would like to thank W. Brzezicki, M.
Wysokinski, C. Mejuto Zaera, K. Byczuk, and K. Jablonowski
for the useful discussions. The work was supported by the
Foundation for Polish Science through the International Re-
search Agendas Programme co-financed by the European
Union within the Smart Growth Operational Programme
(Grant No. MAB/2017/1) and by Narodowe Centrum
Nauki (NCN, National Science Centre, Poland) Project No.
2019/34/E/ST3/00404.

[1] J. Hubbard and B. H. Flowers, Electron correlations in
narrow energy bands, Proc. R. Soc. London A 276, 238
(1963).

[2] D. P. Arovas, E. Berg, S. A. Kivelson, and S. Raghu, The
Hubbard model, Annu. Rev. Condens. Matter Phys. 13, 239
(2022).

[3] W. Metzner and D. Vollhardt, Correlated lattice fermions in
d = oo dimensions, Phys. Rev. Lett. 62, 324 (1989).

[4] E. H. Lieb and F. Y. Wu, Absence of Mott transition in an exact
solution of the short-range, one-band model in one dimension,
Phys. Rev. Lett. 20, 1445 (1968).

[5] S. Sachdev and J. Ye, Gapless spin-fluid ground state in a
random quantum Heisenberg magnet, Phys. Rev. Lett. 70, 3339
(1993).

[6] G. Baskaran, An exactly solvable fermion model: Spinons,
holons and a non-Fermi liquid phase, Mod. Phys. Lett. B 05,
643 (1991).

[7] Y. Hatsugai and M. Kohmoto, Exactly solvable model of corre-
lated lattice electrons in any dimensions, J. Phys. Soc. Jpn. 61,
2056 (1992).

[8] E. W. Huang, G. L. Nave, and P. W. Phillips, Discrete symmetry
breaking defines the Mott quartic fixed point, Nat. Phys. 18, 511
(2022).

[9] D. Manning-Coe and B. Bradlyn, Ground state stability,

symmetry, and degeneracy in Mott insulators with
long-range interactions, Phys. Rev. B 108, 165136
(2023).

[10] M. Zhao, W.-W. Yang, H.-G. Luo, and Y. Zhong, Friedel
oscillation in non-Fermi liquid: lesson from exactly solv-
able Hatsugai—Kohmoto model, J. Phys.: Condens. Matter 35,
495603 (2023).

[11] P. W. Phillips, L. Yeo, and E. W. Huang, Exact theory for su-
perconductivity in a doped Mott insulator, Nat. Phys. 16, 1175
(2020).

[12] P. Mai, J. Zhao, G. Tenkila, N. A. Hackner, D. Kush, D.
Pan, and P. W. Phillips, New approach to strong correlation:
Twisting Hubbard into the orbital Hatsugai-Kohmoto model,
arXiv:2401.08746.

[13] P. Mai, J. Zhao, B. E. Feldman, and P. W. Phillips, 1/4 is the new
1/2 when topology is intertwined with Mottness, Nat. Commun.
14, 5999 (2023).

[14] M. M. Wysokinski and W. Brzezicki, Quantum anomalous Hall
insulator in ionic Rashba lattice of correlated electrons, Phys.
Rev. B 108, 035121 (2023).

[15] K. Jablonowski, J. Skolimowski, W. Brzezicki, K. Byczuk,
and M. M. Wysokinski, Topological Mott insulator
in the odd-integer filled Anderson lattice model with
Hatsugai-Kohmoto interactions, Phys. Rev. B 108, 195145
(2023).

[16] P. Mai, J. Zhao, T. A. Maier, B. Bradlyn, and P. W. Phillips,
Topological phase transition without single-particle-gap closing
in strongly correlated systems, arXiv:2401.01402.

[17] C. L. Kane and E. J. Mele, Quantum spin Hall effect in
graphene, Phys. Rev. Lett. 95, 226801 (2005).

[18] N. Wagner, L. Crippa, A. Amaricci, P. Hansmann, M. Klett,
E. J. Konig, T. Schifer, D. D. Sante, J. Cano, A. J. Millis, A.
Georges, and G. Sangiovanni, Mott insulators with boundary
zeros, Nat. Commun. 14, 7531 (2023).

[19] A. Amaricci, A. Valli, G. Sangiovanni, B. Trauzettel, and M.
Capone, Coexistence of metallic edge states and antiferromag-
netic ordering in correlated topological insulators, Phys. Rev. B
98, 045133 (2018).

[20] C.-H. Chung, D.-H. Lee, and S.-P. Chao, Kane-Mele Hubbard
model on a zigzag ribbon: Stability of the topological edge
states and quantum phase transitions, Phys. Rev. B 90, 035116
(2014).

[21] J. Werner and F. F. Assaad, Dynamically generated edge states
in topological Kondo insulators, Phys. Rev. B 89, 245119
(2014).

[22] F. H. L. Essler, H. Frahm, F. Gohmann, A. Klimper, and V. E.
Korepin, The One-Dimensional Hubbard Model (Cambridge
University Press, 2005).

[23] K. Byczuk and J. Spatek, Statistical properties and statistical
interaction for particles with spin: The Hubbard model in one
dimension and a statistical spin liquid, Phys. Rev. B 50, 11403
(1994).

[24] K. Byczuk and J. Spatek, Universality classes, statistical ex-
clusion principle, and properties of interacting fermions, Phys.
Rev. B 51, 7934 (1995).

[25] I. A. Melissaki, Magnetism in an exactly solvable model
of correlated electrons, available at https://studenttheses.
universiteitleiden.nl/handle/1887/3204267 (2021).

165129-9


https://doi.org/10.1098/rspa.1963.0204
https://doi.org/10.1146/annurev-conmatphys-031620-102024
https://doi.org/10.1103/PhysRevLett.62.324
https://doi.org/10.1103/PhysRevLett.20.1445
https://doi.org/10.1103/PhysRevLett.70.3339
https://doi.org/10.1142/S0217984991000782
https://doi.org/10.1143/JPSJ.61.2056
https://doi.org/10.1038/s41567-022-01529-8
https://doi.org/10.1103/PhysRevB.108.165136
https://doi.org/10.1088/1361-648X/acf69f
https://doi.org/10.1038/s41567-020-0988-4
https://arxiv.org/abs/2401.08746
https://doi.org/10.1038/s41467-023-41465-6
https://doi.org/10.1103/PhysRevB.108.035121
https://doi.org/10.1103/PhysRevB.108.195145
https://arxiv.org/abs/2401.01402
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1038/s41467-023-42773-7
https://doi.org/10.1103/PhysRevB.98.045133
https://doi.org/10.1103/PhysRevB.90.035116
https://doi.org/10.1103/PhysRevB.89.245119
https://doi.org/10.1103/PhysRevB.50.11403
https://doi.org/10.1103/PhysRevB.51.7934
https://studenttheses.universiteitleiden.nl/handle/1887/3204267

JAN SKOLIMOWSKI

PHYSICAL REVIEW B 109, 165129 (2024)

[26] I. Krivenko, libcommute/pycommute: A quantum operator
algebra domain-specific language and exact diagonalization
toolkit, SoftwareX 17, 100937 (2022).

[27] F. Gebhard and F. Gebhard, Metal-Insulator Transitions
(Springer, 1997).

[28] K. Yang, Exactly solvable model of Fermi arcs and pseudogap,
Phys. Rev. B 103, 024529 (2021).

[29] H. Q. Lin, E. R. Gagliano, D. K. Campbell, E. H. Fradkin, and
J. E. Gubernatis, The phase diagram of the one-dimensional ex-
tended hubbard model, in The Hubbard Model: Its Physics and
Mathematical Physics, edited by D. Baeriswyl, D. K. Campbell,
J.M.P. Carmelo, F. Guinea, and E. Louis, Vol. 343 (Springer US,
Boston, MA, 1995), pp. 315-326.

[30] F. A. An, E. J. Meier, J. Ang’ong’a, and B. Gadway, Correlated
dynamics in a synthetic lattice of momentum states, Phys. Rev.
Lett. 120, 040407 (2018).

[31] F. A. An, B. Sundar, J. Hou, X.-W. Luo, E. J. Meier, C. Zhang,
K. R. A. Hazzard, and B. Gadway, Nonlinear dynamics in a
synthetic momentum-state lattice, Phys. Rev. Lett. 127, 130401
(2021).

[32] H. J. Schulz, Correlation exponents and the metal-insulator
transition in the one-dimensional Hubbard model, Phys. Rev.
Lett. 64, 2831 (1990).

[33] H. Frahm and V. E. Korepin, Critical exponents for the
one-dimensional Hubbard model, Phys. Rev. B 42, 10553
(1990).

[34] E. H. Lieb, Two theorems on the Hubbard model, Phys. Rev.
Lett. 62, 1201 (1989).

[35] M. A. Continentino and M. D. Coutinho-Filho,
Scaling close to a Mott transition in an exactly
soluble model, Solid State Commun. 90, 619
(1994).

165129-10


https://doi.org/10.1016/j.softx.2021.100937
https://doi.org/10.1103/PhysRevB.103.024529
https://doi.org/10.1103/PhysRevLett.120.040407
https://doi.org/10.1103/PhysRevLett.127.130401
https://doi.org/10.1103/PhysRevLett.64.2831
https://doi.org/10.1103/PhysRevB.42.10553
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1016/0038-1098(94)90533-9

