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Exceptional points (EPs), which refer to degeneracies in non-Hermitian systems, have garnered significant
attention in the last few years due to their potential applications in the fields of sensing, single-mode lasing,
and others. Recently, the complete classification of isolated EPs based on homotopy theory has been proposed,
where the topology of energy spectra around EPs can be fully characterized by the braiding group and knot
topology. However, there have been few experimental observations of EPs with different knot topologies due to
the need for tunable, nonlocal, and nonreciprocal couplings in the proposed non-Hermitian lattice model. Here,
we report experimental observation of EPs with different types of knots/links by non-Hermitian electric circuits
with voltage-tunable node couplings. Specifically, a second-order EP with trefoil knot topology and a third-order
EP with 63

3 link topology (according to Rolfsen’s table) are achieved. Moreover, we also provide a method on the
construction of higher-order Dirac EPs with nested-link topologies, and experimentally construct a sixth-order
Dirac EP. Our work provides an artificial platform for exploring EPs with knot and link topologies, offering
potential applications in designing EP-based electronic devices.
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I. INTRODUCTION

Non-Hermiticity is prevalent in various branches of
physics [1–4] and can give rise to diverse unique phenomena
without any Hermitian analogs. The concept of an excep-
tional point (EP) was initially proposed in the perturbation
theory of linear non-Hermitian operators, where eigenvalues
and corresponding eigenvectors merge, rendering the non-
Hermitian operators defective at the EP [5]. Although EPs
were first explored in mathematical physics, subsequent stud-
ies have confirmed their existence in classical-wave, cold
atom, and quantum systems [6–27]. Previous investigations
have unveiled a plethora of intriguing properties at EPs, in-
cluding unidirectional invisibility [6,7], enhanced sensitivity
of higher-order EPs [8,9], and single-mode lasing [10], among
others [11–27], offering novel avenues for wave control. In-
terestingly, it has also been demonstrated that the spectral
topology of EPs, such as the Riemann surface surrounding
them in two-dimensional (2D) parameter space, can give rise
to fascinating phenomena involving mode-switching modula-
tions [28–33]. These modulations have been experimentally
observed in various artificial systems like optomechanical
structures and coupled optical waveguides [34,35].

On the other hand, the classification of EPs with different
spectral topologies has recently attracted significant attention.
Previous studies have demonstrated that EPs can be character-
ized by an integer invariant known as the eigenvalue vorticity
[36] or discriminant number [37]. However, this method for
classifying EPs still faces several inherent challenges, as EPs
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with distinct types of spectral topologies may possess the
same integer invariant. This difficulty in labeling EPs using an
integer invariant, that is suitable for classifying different de-
generate points in Hermitian systems, arises from the complex
eigenspectra of non-Hermitian systems, where eigenvalues
can wind and braid around each other in complex energy space
[3,38–46]. In this case, a more comprehensive description of
EPs requires additional information on their nearby braiding
patterns. Recently, a completely mathematical scheme for
classifying EPs has been established using braiding groups
and knot topology [47]. It is shown that an nth-order EP (EPn)
in the 2D parameter space can be described by a braid group
with n elements, where eigenenergies of the non-Hermitian
model are intertwined into a geometric knot along a closed
path enclosing EPn. However, until now there has been a
lack of comprehensive experiments directly observing EPs
with different spectral knots and links due to requirements
for tunable, nonlocal, and nonreciprocal couplings of previ-
ously proposed non-Hermitian lattice models. Furthermore,
the exploration of constructing non-Hermitian Hamiltonians
supporting other exotic EPs, such as higher-order Dirac-type
ones [48], through the application of knot topology theories
remains unexplored.

In this work, we present the experimental realization of
non-Hermitian EPs with diverse knot and link topologies us-
ing non-Hermitian electric circuits. By precisely manipulating
the voltage-tunable amplitude and phase for node couplings,
we have successfully observed an EP2 exhibiting the trefoil
knot topology as well as an EP3 displaying the 63

3 link topol-
ogy. Furthermore, we have theoretically developed a method
to construct higher-order Dirac EPs featuring distinct nested-
link topologies and experimentally demonstrated a Dirac EP6.
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FIG. 1. The theoretical results on the implement of knot topolo-
gies of EPs by electric circuits. (a) The illustration of the knot
topology related to the braid group Bn for an EPn. (b), (c) The
schematic diagrams of designed electric circuits to fulfill the trefoil
knot EP2 and the 63

3 link EP3, respectively. Red and blue dashed
blocks enclose the circuit structures of the voltage follower and the
multiplier module. (d), (e) The real parts of eigenspectra for the
circuit Laplacian of L(2,3) and L(3,3) in the 2D momentum space. (f),
(g) Numerical results of the real part of eigenspectra for L(2,3) and
L(3,3) with the 2D k vector (kx, ky) evolving along a closed path �(θ ).
Two insets plot 3D structures of energy strands in the form of a trefoil
knot and a 63

3 link, respectively.

Our work provides an artificial platform for exploring intricate
knot/link topologies in EPs and holds tremendous potential in
designing highly sensitive electronic sensors.

II. THEORETICAL REALIZATION OF EPs
WITH DIFFERENT KNOT AND LINK

TOPOLOGIES BY ELECTRIC CIRCUITS

Previous studies have demonstrated that an EPn in the 2D
parameter space can be classified by distinct topological knots
and links [47], which exhibit a one-to-one correspondence
with conjugacy classes of the braid group Bn. Figure 1(a)
illustrates the braiding behavior of three energy bands [εi(θ ),

i = 1 to 3] along a closed path �(θ ) parametrized by kx =
k0cos(θ ) and ky = k0sin(θ ) (θ�[0, 2π ]), enclosing an EP3 at
the center of the 2D k space. It is shown that three energy
bands can intertwine in the three-dimensional (3D) parameter
space {Re(ε), Im(ε), θ}, and ultimately return to the initial
Re(ε)-Im(ε) plane, forming an EP-determined periodic braid.
These periodic braids with diverse braiding behaviors can be
mapped onto knots or links, thereby revealing the spectral
topology associated with EPs. It has been proposed that a
non-Hermitian Hamiltonian featuring an EPp related to a (p,
q)-torus knot can be expressed as [47]

H(p,q) =

⎛⎜⎜⎜⎝
0 0 0 (sinkx + isinky)q

1
0

0 0
. . .

. . .

0
0

0 0 1 0

⎞⎟⎟⎟⎠
p×p

, (1)

where there exists a constant nonreciprocal coupling between
adjacent sites and a k-dependent nonreciprocal coupling
between the end points. It is noted that Eq. (1) can be decom-
posed into a transposed Jordan block matrix, which possesses
a pth-order EP, and a perturbative coupling term that is only
dependent on kx and ky. Hence, we can tune values of kx and ky

to construct EPs with (sinkx + isinky)q = 0. In this case, the
EPp with a (p, q)-torus knot can emerge at momentum points
of (kx, ky ) = (mπ, nπ ) with m, n ∈ 0, 1. It is worth noting
that an EPn with the spectral knot, which is characterized by
a single curve formed by all energy bands, should possess
a Riemann surface of the eigenspectrum in the 2D param-
eter space. Conversely, an EPn with a link topology, where
each linked energy circle corresponds to an individual energy
band, can exhibit the linear dispersion of the eigenspectrum
resembling Dirac EPs (see Appendix A for details). The
Dirac EPs and higher-order Dirac EPs refer to second-order
and higher-order EPs with linear dispersions around them in
(kx, ky) space. The linear dispersion around Dirac EPs can be
understood analytically. As for the Hamiltonian of Eq. (1),
the analytic solutions of its eigenvalues are proportional to the
pth complex roots of (sin kx + isinky)q. This indicates that
the energy dispersion near the (p, q)-knot EP is proportional
to E ∼ |k|q/p. Therefore, the EP with p = q can exhibit the
linear dispersion. In addition, we can also derive the analytical
formula for the phase rigidity rn = 〈ψ̃R

n |ψ̃R
n > (|ψ̃R

n 〉 is the
right eigenvector), which is in the form of rn ∼ 2|k|q

|k|q+1 near
the (2, q)-knot EP (see Appendix B for numerical results).
Moreover, the (p, q)-knot EPs also satisfy the non-Hermitian
doubling theorem [37,40,49] (see Appendix C).

The experimental realization of the non-Hermitian lattice
model described by Eq. (1) in full k space poses a formidable
challenge, as it necessitates the incorporation of nonlocal,
nonreciprocal, and tunable site couplings between distinct
lattice sites. Leveraging the correspondence between circuit
Laplacians and lattice Hamiltonians [50–71], electric circuits
offer an ideal platform to simulate EPp with (p, q)-torus
knot topologies. In the following, we focus on implementing
two models with (p = 2, q = 3) and (p = 3, q = 3), which
yield the EP2 with a trefoil knot and EP3 with a 63

3 link
(according to Rolfsen’s table [72]). To simulate the braiding
among all non-Hermitian energy bands, we design an electric
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circuit featuring tunable site couplings that directly realize
the Bloch Hamiltonian outlined in Eq. (1) along curve �(θ )
within 2D k space. Figures 1(b) and 1(c) depict schematic
diagrams of designed electric circuits capable of achieving
the trefoil knot EP2 and the 63

3 link EP3, respectively. The
constant nonreciprocal coupling between two circuit nodes is
achieved by connecting a voltage follower in series with an
inductor. The tunable nonreciprocal couplings from node 2
to node 1 in the EP2 circuit and from node 3 to node 1 in
the EP3 circuit are implemented through a suitably designed

module, which comprises two parallel-connected multipliers
with an inductor (L) and a resistor (R) acting as loads. By
adjusting the external input voltages (Va and Vb), tunable
nonreciprocal coupling can be achieved, where Va controls
the real part of the coupling and Vb controls the imaginary
part. Each node is complemented by either a capacitor (C) or
a grounded resistor (R) to account for diagonal elements in
the circuit Laplacian matrix. Based on Kirchhoff’s equation,
we can express the circuit Laplacian of two designed electric
circuits as

L(2,3) = 1

iωL

[
−1 − i + ω2CL Va

10 + i Vb
10

1 −1 − iωL
R + ω2CL

]
, (2a)

L(3,3) = 1

iωL

⎡⎢⎣−1 − i + ω2CL 0 Va
10 + i Vb

10

1 −1 − iωL
R + ω2CL 0

0 1 −1 − iωL
R + ω2CL

⎤⎥⎦, (2b)

The Laplacians of the designed electric circuits L(2,3) and
L(3,3) exhibit identical forms to Hamiltonians H(2,3) and H(3,3)

with ω2 = 1
CL and R = ωL. By adjusting the external input

voltages Va and Vb, the nonlocal coupling term Va
10 + i Vb

10 be-

FIG. 2. Experimental results on the observation of trefoil knot
and 63

3 link topologies for exceptional points in electric circuits. (a)
The photograph image of the fabricated circuit sample of L(2,3). (b),
(c) The experimental impedance spectra of node 1 with external
voltages being (Va = Vb = −5 V), (Va = −Vb = −5 V), between the
closing paren and the opening square bracket and (Va = −Vb = 5
V) of the circuit sample with a trefoil knot EP2 and a 63

3 link EP3.
(d), (e) The marker points present the experimentally reconstructed
admittance eigenspectra for circuit samples with L(2,3) and L(3,3)

along a closed path in the 2D k-vector space. The colored lines plot
the simulation results of reconstructed admittance eigenspectra.

tween the first and pth nodes in the designed circuit can
achieve (sin kx + isinky)q with kx and ky traversing the path
�(θ ). Notably, the eigenenergy is directly associated with the
eigenvalue of the circuit Laplacian. In Appendix D, a detailed
derivation of the circuit Laplacian is provided. Herein, we
set the circuit parameters as L = 470 µH, R = 100 �,C =
47 nF, and ω2 = 1/CL. In this case, EP2 and EP3 can ap-
pear at (kx, ky) = (mπ, nπ ) with m, n ∈ 0, 1, corresponding
to Va = Vb = 0 V.

Figures 1(d) and 1(e) illustrate the real component of
eigenspectra for the circuit Laplacian of L(2,3) and L(3,3),
where the EP2 and EP3 emerge at the origin of the 2D k space.
It is evident that the eigenspectrum surrounding EP2 (EP3)
exhibits a Riemann surface (a linear dispersion), indicating
a knot (link) topology of adjacent admittance bands. To fur-
ther elucidate knot/link topologies, we compute the real part
of eigenspectra for the circuit Laplacian of L(2,3) and L(3,3)

at f = ω/2π = 33.863 kHz while varying the 2D k vector
(kx, ky) along a closed path �(θ ), as depicted in Figs. 1(f) and
1(g). The evolution path �(θ ) is represented by black lines in
Figs. 1(d) and 1(e). It is shown that two (three) strands within
the periodic braid are intertwined three times with each other.
By connecting top and bottom planes at θ = 0 and 2π , these
two periodic braids can transform into a trefoil knot and a
63

3 link, as shown in the insets of Figs. 1(f) and 1(g). These
findings demonstrate that our designed electric circuit enables
the generation of EPn with different knot and link topologies.
Similar to conventional EPs connected by bulk Fermi arcs
[4,25], the higher-order (p, q)-knot EPs are also connected by
the generalized Fermi arcs defined as the loci in the (kx, ky)
space when the real parts of any two energy bands have the
same value [47].

III. EXPERIMENTAL OBSERVATION OF KNOT
TOPOLOGIES OF EPs BY ELECTRIC CIRCUITS

In this section, we fabricate the designed electric circuits
to experimentally observe the knot/link topologies of EPs.
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Figure 2(a) illustrates a photograph image of the fabricated
circuit sample with L(2,3) (the image related to L(3,3) can be
found in Appendix E). Two nodes labeled by white circles
correspond to node 1 and node 2. The power supply interfaces
for the active devices are denoted as V+ and V_. The volt-
age follower module enclosed by the red square employs an
LM6171 OpAmp provided by Texas Instruments. To ensure
stability, the resistor R f and capacitor Cf are connected in
parallel between the reverse input and output of the OpAmp,
while inductor L is connected to its output. The analog-
multiplier module framed by the yellow square consists of
two AD633 analog multipliers from Analog Devices Inc.,

which have transfer functions Ui = (Xi−X
′
i )(Yi−Y

′
i )

10 V + Z with
i = 1 or 2. One output from each of these analog multipliers
is connected to inductor L, while the other is connected to
resistor R. External voltages Va and Vb are applied via two
pins to adjust the coupling term through voltage input. Filter
capacitors at OpAmp power supply pins effectively filter ac
noise and high-frequency interference signals, providing a
stable dc operating voltage. It should be noted that circuit
element tolerance is limited within only 1% to prevent de-
tuning of circuit responses. Furthermore, circuit parameters
including L = 470 μH, R = 100 �, C = 47 nF, R f = 2 k�,

and Cf = 100 pF are set to be sufficiently large, making the
influence of effective resistances and parasitic capacitances in
the circuit sample negligible. Details on the sample fabrication
are provided in Appendix F. To ensure the tunability of two
circuit samples, we measure the impedance spectra of node 1
with external voltages being (Va = Vb = −5 V), (Va = −Vb =
−5 V), and (Va = −Vb = 5 V), corresponding to the cases
with (kx, ky) = (0.217π,−0.217π ), (0.217π, 0.217π ), and
(0.33π,−0.074π ), as shown by blue, green, and red lines in
Figs. 2(b) and 2(c). These measurements possess a good con-
sistency with simulation results, as detailed in Appendix G,
indicating the effectiveness of the two samples.

To further explore different knot/link topologies related
to the trefoil knot EP2 and 63

3 link EP3, we experimentally
reconstruct admittance band structures for both electric cir-
cuits by measuring global voltage responses across all circuit
nodes under ac voltage excitation into each node. Details on
this experimental measurement can be found in Appendix H.
The discretized points in Fig. 2(d) present the experimentally
reconstructed admittance eigenspectrum for the circuit sample
with L(2,3) along a closed path in the 2D k-vector space [the
same path as that plotted in Fig. 1(d)]. The colored lines
correspond to associated simulation results. It is clearly shown
that the experimentally reconstructed admittance eigenspec-
trum has good consistency with the simulation, where the
two-strand braid with a three-times twisting is obtained. By
applying periodic boundary conditions on top (θ = 2π ) and
bottom (θ = 0) planes, a trefoil knot around EP2 can be
obtained, as shown in the inset of Fig. 2(d). Then we examine
the circuit sample of L(3,3). The experimentally reconstructed
admittance eigenspectrum along the identical path as that used
in the circuit sample of L(2,3) is depicted in Fig. 2(e) using
discretized points, while the lines represent simulation results.
It is shown that the reconstructed admittance eigenspectrum
exhibits a three-strand braid twisted thrice, exhibiting excel-
lent agreement with the theoretical prediction. These findings

unequivocally demonstrate the experimental realization of ex-
otic knot and link topologies for EP2 and EP3. It is worth
noting that our experimental approach can also be utilized
to study the splitting behavior passing through the EP. In
Appendix I, we conduct numerical calculations and experi-
mental measurements on the splitting behaviors of eigenspec-
tra passing through the trefoil knot EP2 and 63

3 link EP3. It
can be observed that the trefoil knot EP2 exhibits a nonlinear
splitting in the form of E ∼ |k|3/2, and the EP3 with 63

3 link
topology displays the linear splitting behavior of E ∼ |k|,
being consistent with the properties of Dirac EPs.

IV. DIRAC EP WITH THE NESTED-LINK TOPOLOGY

Beyond the (p, q)-torus knot EPs, in the following, we
present a general approach to construct higher-order Dirac
EPs using the nested-link topology. It is worth mentioning
that the nested link can be represented as a hierarchically
periodic braid [73], which is merely a subset of the braid
group. Figure 3(a) illustrates an example of a hierarchically
periodic braid with each generation possessing a cross section
of radius rn. The green and red lines represent first- and
second-generation braids respectively, while orange and blue
lines indicate (n − 1)th-generation and nth-generation braids.
Here, the first-generation braid is composed of three effective
strands, while subsequent generations consist of two effective
strands. In this case, each strand in the first-generation braid
comprises two second-generation braids, and each second-
generation braid contains two third-generation braids. By
iteratively repeating this process, we can construct a gener-
alized nested braid structure exhibiting fractal-like geometry.
Finally, merging two end planes results in achieving the nested
link.

To incorporate the nested link into the EP spectrum in the
2D k space, we align the transverse plane of the nested braid
with the (kx, ky) plane. It is important to note that our focus
lies on nested braids having an equal number of effective
strands and the twisting time within the same generation. In
this scenario, an effective strand in the ith-generation braid
can be denoted as SMi , where vector Mi = (m1, m2, . . . , mi )
signifies its generational sequence with ml (l = 1 to i) repre-
senting the ml -th effective strand in the lth-generation braid.
Consequently, we can describe the position of effective strand
SMi in the (kx, ky, θ ) space as

kx(Mi ) =
i∑

�=1

k� cos(wm�θ + ϕm� ), ky(Mi )

=
i∑

�=1

k� sin(wm�θ + ϕm� ), (3)

where ϕm� and wm� represent the initial rotation angle
and the twisting number of the ml -th effective strand in the
lth-generation braid. k� is the radius of the lth-generation
braid, and θ is the azimuthal angle of a closed curve in k
space.

Next, we establish a correspondence between such a
nested braid in k space and the eigenspectrum of a non-
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FIG. 3. The theory on the construction of EPs with nested knot
topology. (a) The illustration of the hierarchically periodic braid with
three generations. The bottom inset presents an enlarged view of the
starting plane of the nested braid. (b), (c) Numerical results of the real
and imaginary parts of eigenspectra for the non-Hermitian Hamilto-
nian sustaining a sixth-order EP with a two-generation nested knot in
the 2D k space. (d) Numerical results on the real part of eigenenergies
with the evolution of (kx, ky) along a closed path �(θ ). (e) The
illustration of the nested knot of eigenenergies around the sixth-order
EP.

Hermitian Hamiltonian near an EP. It is well established
that the energy-knot/link encircling an EP can be interpreted
as the roots (or nodal set) of the characteristic polyno-
mial associated with the k-space non-Hermitian Hamiltonian
along a closed trajectory in momentum space. In this this,
we can mathematically express the requisite characteristic
polynomial as

q(ε, kx, ky) =
n1∏

m1=1

n2∏
m2=1

. . .

ni∏
mi=1

{ε − [kx(Mi ) + iky(Mi )]}

=
n1∏

m1=1

n2∏
m2=1

. . .

ni∏
mi=1

{
ε −

i∑
�=1

k�(kx + iky)wm�

× exp
(
iϕm�

)}
. (4)

To obtain the non-Hermitian Hamiltonian with a nested-
link EP, the characteristic polynomial should be expanded in
the series of ε as q(ε, kx, ky) = εN − ∑N−1

j=0 t j (kx, ky)ε j with
N = n1n2 . . . ni. The non-Hermitian Hamiltonian possessing
an EPN with a nested link is written as

HN =

⎛⎜⎜⎜⎝
tN−1(kx, ky) . . . . . . t0(kx, ky)

1
0

0 0
. . .

. . .

0
0

0 0 1 0

⎞⎟⎟⎟⎠
N×N

. (5)

It is important to note that the Hamiltonian HN is reduced
to a N by N Jordan block at (kx = 0, ky = 0) with ti(kx, ky) =
0 (i = 1 to N–1). In this case, an EPN with the nested-link
topology can appear at the origin of 2D k space.

To validate the accuracy of our proposed non-Hermitian
Hamiltonian, we investigate a specific non-Hermitian lattice
model that supports a Dirac EP6 with the nested-link topol-
ogy. Here, we consider a nested braid with two generations,
where the corresponding parameters are k1 = 1.1, k2 = 0.3,

and wMi = 1. Figures 3(b) and 3(c) illustrate the real and
imaginary parts of eigenspectra for this model in the 2D k
space. It is evident that a Dirac EP6 emerges at (kx, ky) =
(0, 0) exhibiting the linear dispersion, wherein the real and
imaginary parts of all six energy bands coincide. To fur-
ther elucidate the nested-link topology associated with the
Dirac EP6, we calculate the real part of eigenenergies while
varying (kx, ky) along a closed path �(θ ), as depicted in
Fig. 3(d). It is shown that a nested braid with two gen-
erations can be achieved. By merging the top and bottom
planes of this nested braid, we obtain a nested-link config-
uration, as shown in Fig. 3(e). These results unequivocally
demonstrate both the validity and efficiency of our method in
designing EPn featuring nested-link topologies. More exam-
ples of higher-order EPs with nested knot/link topologies are
applied in Appendix J.

V. OBSERVATION OF DIRAC EP6 WITH THE
NESTED-LINK TOPOLOGY BY ELECTRIC CIRCUITS

To achieve a Dirac EP6 with the nested-link topology, we
design an electric circuit with six nodes, as shown in Fig. 4(a).
The voltage follower module enables a constant nonreciprocal
coupling between adjacent nodes, while the multiplier module
facilitates tunable complex couplings through two external
input voltages within each module (denoted as Va,n and Vb,n

with n = 1, . . . , 6). It is important to note that unlike the
circuit design in Fig. 1, capacitors C and Ca are used instead of
inductors in both the voltage follower module and multiplier
module to ensure stability. Moreover, to achieve the tunable
matrix element H6(1, 1), a combined module consisting of a
multiplier module and a voltage follower is employed with
grounding at node 1. The inductor Lg is grounded at node
1, while resistors Rg are grounded at the other nodes. We
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FIG. 4. Experimental results on the observation of the nested link for a sixth-order Dirac EP in electric circuits. (a) The schematic diagram
of the designed electric circuit for the realization of a nested knot related to the sixth-order exceptional point. (b) The photograph image of the
fabricated electric circuits. (c) The measured impedance spectra of node 1 with the external voltages being (Va = Vb = −5 V), (Va = −Vb =
−5 V), and (Va = −Vb = 5 V). (d) Experimental results of the real part of the recovered eigenspectrum, which is in the form of a nested
periodic braid, along a closed line in the 2D k-vector space for the circuit sample.

can express the circuit Laplacian as

L6 = iωC

⎡⎢⎢⎢⎢⎢⎢⎣
a1 + ib1 a2 + ib2 a3 + ib3 a4 + ib4 a5 + ib5 a6 + ib6

1 D 0 0 0 0
0 1 D 0 0 0
0 0 1 D 0 0
0 0 0 1 D 0
0 0 0 0 1 D

⎤⎥⎥⎥⎥⎥⎥⎦, (6)

with D = −(1 + 1
ω2LgC

− 1
ωCRg

), a1 + ib1 = 1.5i−1.5 +
R11

R11+R01
(−Va,1

100 + iVb,1

100 ), a3 + ib3 = −Va,3

10 + iVb,3

10 , and

an + ibn = −Va,n

100 + iVb,n

100 (n = 2, 4, 5, 6). It is clearly shown
that the circuit Laplacian possesses a form identical to the
non-Hermitian Hamiltonian with a nested-link EP under
Rg = 2

3ωC and Lg = 2
ω2 C. The detailed derivation of the circuit

Laplacian is provided in Appendix K.
The photograph image of the fabricated circuit sample

is shown in Fig. 4(b). Here, the circuit parameters are set
as Ca = 10 nF, Rb = 10 k�,C = 100 nF, Rb′ = 1 k�,

Rg = 666 �, R11 = 100 �, R01 = 100 k�, and
Lg = 200 mH. The measured impedance spec-
tra of node 1 under the external voltages being
(Va = Vb = −5 V), (Va = −Vb = −5 V), and (Va =
−Vb = 5 V) (matching the simulation results in
Appendix E) are displayed in Fig. 4(c). Furthermore, Fig. 4(d)
presents the real part of experimentally recovered admittance
eigenspectra at f = ω/2π = 1.591 kHz along a closed curve
�(θ ) in the 2D k space. It is clearly shown that six energy
strands can form a nested braid with two generations. By
imposing periodic boundary conditions on the top and bottom
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planes, a nested energy link related to the Dirac EP6 can be
constructed, as shown in Fig. 3(e). Furthermore, the
numerical and experimental results on the splitting behavior
of eigenspectra passing through the nested-link EP6 are
presented in Appendix I. The linear dispersion passing
through the EP6 satisfies the properties of Dirac EPs.

VI. CONCLUSION

In conclusion, we have theoretically designed and exper-
imentally demonstrated the realization of EPs with different
knot/link topologies by non-Hermitian electric circuits. Both
an EP2 with the trefoil knot topology and an EP3 with the 63

3
link topology have been observed. Moreover, a method for the
construction of non-Hermitian lattice models with different
types of nested energy links of EPs has been provided, and a
Dirac EP6 has been observed by electric circuits. Our findings
suggest a useful platform to engineer complicated knot topol-
ogy of higher-order EPs, and may have potential applications
in the field of designing electronic sensors with different knot
topologies.
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APPENDIX A: NUMERICAL RESULTS OF
EIGENSPECTRA WITH DIFFERENT KNOT

AND LINK TOPOLOGIES AROUND EPs

In this appendix, we present numerical results of eigen-
spectra with different (p, q)-torus knots and links around EPs.
Figures 5(a)–5(c) plot the eigenspectra of H(p,q) with (p = 2,
q = 1), (p = 2, q = 3), and (p = 2, q = 5), respectively. The
bottom insets display results of the real part of eigenspectra
with the 2D k vector (kx, ky) evolving along a closed path, and
the associated 3D knotted energy strands are also plotted. It is
clearly shown that energy knots can embedded into Riemann
surfaces with different geometries, that manifest the topology
of knotted EPs. Moreover, we also calculate the eigenspectra
of H(p,q) with (p = 2, q = 2), (p = 3, q = 2), and (p = 4,
q = 2), as shown in Figs. 5(d)–5(f). Three insets present the
evolution of the real part of eigenspectra along a closed curve
in the 2D k space and the linked energy strands. We find that
the second, third, and fourth Dirac EPs appear at the origin,
and different types of energy links exist around the Dirac EPs.

APPENDIX B: NUMERICAL RESULTS AND DISCUSSIONS
ON ENERGY DISPERSIONS AND PHASE RIGIDITIES
AROUND EPs WITH DIFFERENT VALUES OF p AND q

In this appendix, we present numerical results and discus-
sions on energy dispersions and behaviors of phase rigidities
around EPs with different values of p and q. Firstly, we plot
the calculated results on the splitting behavior of the real part
of eigenspectra passing through the trefoil knot EP2 (p = 2

and q = 3) along the ky = 0 path, as shown in Fig. 6(a). It
can be observed that the trefoil knot EP2 exhibits a nonlinear
dispersion on the form of E ∼ |k|3/2. For comparison, the
energy spectra through EP2 with (p = 2, q = 2) and (p =
2, q = 1) are further presented in Figs. 6(b) and 6(c), where
the linear dispersion E ∼ |k| and the square-root dispersion
E ∼ |k|1/2 are observed, respectively.

Then we study the behavior of eigenvectors close to EPs
with different values of p and q. We can also derive the ana-
lytical formula for the phase rigidity rn = 〈ψ̃R

n |ψ̃R
n > (|ψ̃R

n 〉
is the right eigenvector), which is in the form of rn ∼ 2|k|q

|k|q+1
near the (2, q)-knot EP. To further illustrate this relation, we
calculate the phase rigidities of the model with (p = 2, q = 3),
(p = 2, q = 2), and (p = 2, q = 1) along the path of ky = 0,
as displayed in Figs. 6(d)–6(f). It is shown that numerical
results are consistent with our analytical formula close to
(2, q)-knot EPs.

APPENDIX C: NON-HERMITIAN DOUBLING
THEOREM OF DIRAC EPS

In this appendix, we illustrate that the EPs considered in
our work satisfy the non-Hermitian doubling theorem, where
EPs are not presented individually. To illustrate this effect,
we add a perturbative coupling term into H(3,3), and the total
Hamiltonian becomes

H = H(3,3) + m

⎛⎝0 0 1
0 0 0
0 0 0

⎞⎠,

where the second term represents the perturbation term,
and H(3,3) is the Hamiltonian with the 63

3 link EP3 con-
sidered in our paper. To illustrate the evolution of EPs in
the (kx, ky) space, Fig. 7 plots the positions of EPs with
the parameter m being changed from 0 to −1. It is shown
that H(3,3) with m = 0 exhibiting four EP3 with (kx, ky) =
(0, 0), (0, π ), (π, 0), (π, π ). By decreasing m to −0.5,
two pairs of EPs approach each other. When m = −1, two
EPs simultaneously disappear. In this process, it is indicated
that EPs disappear or appear in pairs, satisfying that the sum
of the discriminant numbers of all EPs is zero.

In our calculations and measurements, we only focus on a
narrow range in the two-parameter space around (kx, ky) =
(0, 0), where only one pth-order EP exists.

APPENDIX D: DETAILED DERIVATION OF CIRCUIT
LAPLACIAN SUSTAINING EPs WITH THE TREFOIL

KNOT AND THE 63
3 LINK TOPOLOGIES

In this appendix, we provide a detailed derivation of the
circuit Laplacian for our designed electric circuits. Firstly, we
consider the circuit with the trefoil knot EP. Carrying out the
Kirchhoff’s law on two circuit nodes, we get the following
equations as

I1 = IL + IR + Ic, (D1a)

I2 = IL + Ic + IR, (D1b)

where the right-hand side of the equations represent the sum
of the currents flowing into the circuit nodes. It is noted
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FIG. 5. Numerical results of eigenspectra with different knot and link topologies around EPs. (a)–(c) The eigenspectra of H(p,q) with
(p = 2, q = 1), (p = 2, q = 3), and (p = 2, q = 5). (d)–(f) The eigenspectra of H(p,q) with (p = 2, q = 2), (p = 3, q = 2), and (p = 4, q = 2).
Insets display the real part of eigenspectra along a closed path in the 2D k space, and the associated 3D knotted energy strands.

that no current is flowing into any of the inputs for the
multipliers and the OpAmps. Using the transfer function of
the multipliers, we can obtain the detailed expression of
Eq. (D1) as

I1 =
(

aV2

iωL
− V1

iωL

)
+

(
bV2

R
− V1

R

)
− V1

iωC
, (D2a)

I2 = 1

iωL
(V1 − V2) −

(
1

R
+ 1

iωC

)
V2, (D2b)

with a = Va
10V and b = Vb

10V . Choosing R = ωL, Eq. (D2) can
be written in the matrix form as(

I1

I2

)
= 1

iωL

(
−1 − i + ω2CL a + ib

1 −1 − iωL
R + ω2CL

)(
V1

V2

)
.

(D3)

It is shown that the real part of the diagonal elements
can be set to zero by setting ω2 = 1

CL . The remaining
imaginary part on the diagonal only induces a constant
shift and the eigenspectra structure is not affected. We
note that Eq. (D3) possesses the same form with the
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FIG. 6. Numerical results of energy dispersions and phase rigidities around (2, q)-knot EP. (a)–(c) The energy dispersions around EPs with
(p = 2, q = 3), (p = 2, q = 2), and (p = 2, q = 1). (d)–(f) The phase rigidities around EPs with (p = 2, q = 3), (p = 2, q = 2), and (p = 2,
q = 1).

Hamiltonian matrix of H(2,3), where the k-dependent effec-
tive tight-binding parameters (sinkx + isinky)3 can be realized
by tuning external voltages of Va and Vb to make the
equation a + bi = (sinkx + isinky)3 satisfied at different k
vectors.

Additionally, we consider the 63
3 link circuit. Carrying out

the Kirchhoff’s law on three circuit nodes, we get the follow-
ing equations as

I1 = IL + IR + Ic, (D4a)

I2 = IL + Ic + IR, (D4b)

I3 = IL + Ic + IR, (D4c)

where the right-hand sides of the equations represent the
sum of the currents flowing into the circuit nodes. Using the
transfer function of the multipliers, we can obtain the detailed
expression of Eq. (D4) as

I1 =
(

aV2

iωL
− V1

iωL

)
+

(
bV2

R
− V1

R

)
− V1

iωC
, (D5a)

I2 = 1

iωL
(V1 − V2) −

(
1

R
+ 1

iωC

)
V2, (D5b)

I3 = 1

iωL
(V2 − V3) −

(
1

R
+ 1

iωC

)
V3, (D5c)

with a = Va
10V and b = Vb

10V . Choosing R = ωL, Eq. (D5) can
be written in the matrix form as

⎛⎝I1

I2

I3

⎞⎠ = 1

iωL

⎛⎜⎝−1 − i + ω2CL 0 a + ib

1 −1 − iωL
R + ω2CL 0

0 1 −1 − iωL
R + ω2CL

⎞⎟⎠
⎛⎝V1

V2

V3

⎞⎠. (D6)

Similar to Eq. (D3), it is shown that the real part of
the diagonal elements can be set to zero by setting ω2 =

1
CL . We note that Eq. (D6) possesses the same form with
the Hamiltonian matrix of H(3,3), where the k-dependent

effective tight-binding parameters (sinkx + isinky)3 can be
realized by tuning external voltages of Va and Vb to make
the equation a + bi = (sinkx + isinky)3 satisfied at different k
vectors.
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FIG. 7. The movement of EPs with changing the perturbation term.

APPENDIX E: PHOTOGRAPH IMAGE OF FABRICATED
CIRCUIT SAMPLE WITH THE 63

3 LINK EP

As shown in Fig. 8, we plot the photograph image of the
fabricated circuit sample with the 63

3 link EP.

APPENDIX F: DETAILS OF THE METHOD
OF CIRCUIT FABRICATION

We fabricate electronic circuits using LCEDA program soft-
ware, where PCB stacking, internal layers, and the wiring
method are properly designed. Here, sample PCBs have six-
layer board structure, where the top and bottom layers are used
to wire and place components. The two nonadjacent inner lay-
ers are used as the power supply layers for active devices and
the remaining two inner layers are grounding layers, which
not only synchronizes the power supply, but also facilitate
heat dissipation. Furthermore, we made the wiring as short as
possible while also selecting a relatively large width (0.6 mm)
to minimize parasitic effects. Using the multilayer design of
circuit PCBs, we note that electric circuits provide a useful
platform for exploring the complicated knot topology of EPs.
It is worth noting that the filtering capacitors are placed at
each active device supply pin, which can filter ac noise and
high-frequency interference signals to provide a stable dc
operating voltage for the multipliers (0.01 µf) and amplifiers
(0.1 and 2.2 µf). The amplifier driving the capacitive load
introduces a resistor (R0 = 5 �) close to the OpAmp to ensure
output stability. The pins or SMP connectors are soldered to
both the PCB nodes and the multiplier inputs for external
voltage input. To ensure high accuracy and low losses of the
circuit components (the disorder strength is only 1%), we use
a WK6500B impedance analyzer to select circuit elements.

APPENDIX G: SIMULATION RESULTS
OF IMPEDANCE SPECTRA

As shown in Figs. 9(a)–9(c), we plot the simulation
impedance spectra of node 1 with the external voltages being
(Va = Vb = −5 V), (Va = −Vb = −5 V), and (Va = −Vb =
5 V) of the circuit sample with a trefoil knot EP2, a 63

3 link
EP3 and a sixth-order EP.

APPENDIX H: DETAILS OF THE EXPERIMENTAL
MEASUREMENTS

In order to efficiently excite circuits containing adjustable
nonreciprocal coupling and constant nonreciprocal coupling,
we set the ac input signal at the circuit nodes. At the same
time, we choose ±15 V dc voltage source to supply the
active device and vary external voltages of the multipliers to
achieve tunable couplings by adjusting the dc voltage source
amplitude. The measured impedance spectra and impedance
profiles possess the same form when the external input voltage
takes different values.

Furthermore, to recover the circuit Laplacian eigenspectra,
the voltage response of all circuit nodes should be measured
by the oscilloscope when an ac voltage with the form of
V0eiωt (ω = 2π f ) is applied to the circuit nodes. Then we
motivate all circuit nodes to repeat the process. The voltage
source is connected in series with a precision resistor to the
PCB. Here, Vi( j) corresponds to the measured voltage at node
i under the voltage excitation at node j with I j . The ac volt-
age source current I j is calculated by Ohm’s law I = U/R,
where U is the voltage difference across the precision resistor
obtained from the oscilloscope, and R is the resistance of
the precision resistor. Based on the measured voltages and
exciting currents, we can get the inverse of circuit Laplacian
G [Gi j = Vi( j)/I j], after which the circuit Laplacian J can

FIG. 8. The photograph image of a fabricated circuit sample with
the 63

3 link EP.
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FIG. 9. The simulation results of impedance spectra. (a)–(c)
The simulation impedance spectra of node 1 with the external
voltages being (Va = Vb = −5 V), (Va = −Vb = −5 V), and (Va =
−Vb = 5 V) of the circuit sample with a trefoil knot EP2, a 63

3 link
EP3, and a sixth-order EP.

be recovered from J = G−1. Based on the recovered circuit
Laplacian, the non-Hermitian Hamiltonian of a pth-order EP
related to a (p, q)-torus knot can be written as H(p,q) =
iωLJ(p,q) + iωL

R Ip with Ip being a pth-order identity matrix (see
Appendix D for details). Similarly, the non-Hermitian Hamil-
tonian of a two-generation nested-link EP can be written as
HN = 1

iωC J + (1 + 1
ω2LgC

− 1
ωCRg

)IN with IN being a pth-order
identity matrix (see Appendix K for details). In this case, we
can get the recovered circuit Laplacian eigenspectra.

APPENDIX I: NUMERICAL CALCULATIONS
AND EXPERIMENTAL MEASUREMENTS ON THE

SPLITTING BEHAVIORS OF EIGENSPECTRA PASSING
THROUGH THE EPs

In this appendix, we conducted theoretical calculations
(solid lines) and experimental measurements (discrete points)
on the splitting behavior of real and imaginary parts of eigen-
spectra passing through the trefoil knot EP2 along the ky = 0
path, as shown in Figs. 10(a) and 10(b). It can be observed
that the trefoil knot EP2 exhibits a nonlinear splitting in the
form of E ∼ |k|3/2, but the knot structure near this EP2 cannot
be discerned. Furthermore, the splitting behaviors along the
ky = 0 path for the EP3 with 63

3 link topology and the EP6 with

nested-link topology in the form of E ∼ |k| are presented in
Figs. 10(c) and 10(d) and Figs. 10(e) and 10(f), respectively.
We can see that both the real and imaginary parts of energy
spectra display the linear dispersion near these EPs, manifest-
ing the dispersion behavior of Dirac EPs.

APPENDIX J: NUMERICAL RESULTS
OF EIGENSPECTRA WITH DIFFERENT

NESTED-LINK TOPOLOGIES AROUND EPs

In this appendix, we present numerical results of eigen-
spectra with different nested-link/knot topologies around EPs.
Figures 11(a) and 11(b) plot the eigenspectra and evolu-
tion of eigenenergies around EPs with different nested-link
topologies with (n1 = 4, n2 = 2), (n1 = 2, n2 = 2, n3 = 2),
respectively. It is clearly shown that higher-order Dirac EPs
with different nested-link topologies appear at the origin of
2D k space.

APPENDIX K: DETAILED DERIVATION OF CIRCUIT
LAPLACIAN SUSTAINING EPs WITH THE

TWO-GENERATION NESTED-LINK TOPOLOGIES

Applying Kirchhoff’s law to the six circuit nodes for the
sixth-order exceptional point circuit, we get the following
equations as

I1 = ILg +
6∑

n=1

(ICa,n + IRb,n ), (K1a)

I2 = IRg + iωC(V1 − V2), (K1b)

I3 = IRg + iωC(V2 − V3), (K1c)

I4 = IRg + iωC(V3 − V4), (K1d)

I5 = IRg + iωC(V4 − V5), (K1e)

I6 = IRg + iωC(V5 − V6). (K1f)

The current Kirchhoff equation for node c is IC = V1−VC
R01

+
0−VC
R11

. This node has no current output to the external envi-
ronment and therefore IC = 0. It can be derived that VC = cV1

with c = R01
R11+R01

. Using the transfer function of the multipli-
ers, we can obtain the detailed expression of Eq. (K1) as

I1 =
(

Va,1VC

10
− V1

)
iωCa,1 +

(
Vb,1VC

10
− V1

)
1

Rb,1

+
(

Va,2V2

10
− V1

)
iωCa,2 +

(
Vb,2V2

10
− V1

)
1

Rb,2

+
(

Va,3V3

10
− V1

)
iωCa,3 +

(
Vb,3V3

10
− V1

)
1

Rb,3

+
(

Va,4V4

10
− V1

)
iωCa,4 +

(
Vb,4V4

10
− V1

)
1

Rb,4

+
(

Va,5V5

10
− V1

)
iωCa,5 +

(
Vb,5V5

10
− V1

)
1

Rb,5

+
(

Va,6V6

10
− V1

)
iωCa,6 +

(
Vb,6V6

10
− V1

)
1

Rb,6
− V1

iωLg
,

(K2a)
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FIG. 10. The splitting behavior passing through the EPs. (a), (b) The real and imaginary parts of eigenspectra of the trefoil knot EP2. (c),
(d) The real and imaginary parts of eigenspectra of EP3 with the 63

3 link topology. (e), (f) The real and imaginary parts of eigenspectra of EP6

with the nested-link topology.

I2 = iωC(V1 − V2) − V2

Rg
, (K2b)

I3 = iωC(V2 − V3) − V3

Rg
, (K2c)

I4 = iωC(V3 − V4) − V4

Rg
, (K2d)

I5 = iωC(V4 − V5) − V5

Rg
, (K2e)

I6 = iωC(V5 − V6) − V6

Rg
, (K2f)

with Va,1 = 100a1
c , Vb,1 = 100b1

c ; Va,3 = 10a3, Vb,3 = 10b3; and
Va,n = 100an, Vb,n = 100bn (n = 2, 4, 5, 6). It is noted that
due to the different order of magnitude of the Hamiltonian
elements, we design the corresponding load capacitors and
resistors for the multiplier module so that when the circuit
Laplacian matrix matches the Hamiltonian elements, the ex-
ternal input voltage required for the multiplier falls within
the effective voltage range. Meanwhile, the resistors and ca-
pacitors in each multiplier module have to satisfy Rb,n =

1
ωCa,n

(n = 1, . . . , 6). Choosing Ca,n = 0.1C, Rb,n = 1
ωCa,n

=
10
ωC (n = 1, 2, 4, 5, 6), Ca,3 = C, and Rb,3 = 1

ωC , Eq. (K2) can
be written in the matrix form as

⎛⎜⎜⎜⎜⎜⎜⎝
I1

I2

I3

I4

I5

I6

⎞⎟⎟⎟⎟⎟⎟⎠ = iωC

⎛⎜⎜⎜⎜⎜⎜⎜⎝

G1 −
(

1.5 − 1
ω2CLg

− 1.5i
)

G2 G3 G4 G5 G6

1 D 0 0 0 0
0 1 D 0 0 0
0 0 1 D 0 0
0 0 0 1 D 0
0 0 0 0 1 D

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
V1

V2

V3

V4

V5

V6

⎞⎟⎟⎟⎟⎟⎟⎠, (K3)

with Gn = an − ibn (n = 1, . . . , 6), D =
−(1 + 1

ω2LgC
− 1

ωCRg
) = −1 + 1.5i, and the parameters

are set as Rg = 2
3ωC and Lg = 2

ω2C to complete the constants
of the diagonal elements. The remaining constant part on the
diagonal only induces a constant shift and the eigenspectra

structure is not affected. We note that Eq. (K3) possesses
the same form with the Hamiltonian matrix of H6, where
the k-dependent effective tight-binding parameters t j (kx, ky)
can be realized by tuning external voltages of Va,n and Vb,n

to make the equation an − bni = tn−1(kx, ky) satisfied at
different k vectors.
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FIG. 11. Numerical results of eigenspectra with different knot
and link topologies around EPs. (a), (b) The eigenspectra and
evolution of eigenenergies around EPs with different nested-link
topologies with (n1 = 4, n2 = 2), (n1 = 2, n2 = 2, n3 = 2).

APPENDIX L: NUMERICAL RESULTS ON THE REAL
AND IMAGINARY PARTS OF EIGENSPECTRA ALONG

DIFFERENT PATHS

The dispersion cuts along three paths of kx = ky, kx = 0,
and 2kx = ky for three EPs considered in our work are shown
in Figs. 12(a), 12(c), and 12(e) for the real part of eigenspec-
tra, and Figs. 12(b), 12(d), and 12(f) for the imaginary part
of eigenspectra. It can be observed that the trefoil knot EP2

FIG. 12. (a), (c), (e) and (b), (d), (f) The real and imaginary parts
of eigenspectra along three paths of kx = ky, 2kx = ky, and kx = 0
through trefoil knot EP2, 63

3 link EP3, and EP6 with the nested link.

exhibits a nonlinear splitting. Furthermore, both the real and
imaginary parts of energy spectra display the linear dispersion
near Dirac EPs.
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