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Multifold Weyl semimetals under irradiation: The particularity of singlet Weyl points
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We investigate the topological phases of Weyl semimetals possessing a pair of multifold (N-fold) Weyl points
(WPs) irradiated by an off-resonant circularly polarized light in the frame of Floquet theory. The irradiation
splits each N-fold WP into two singlet WPs and one residual WP of N − 2 fold in k space. When the irradiation
intensity increases, the two singlet WP pairs move faster and are gapped out first; therefore, a phase transition
from N-fold to (N − 2)-fold Weyl semimetal occurs. The pair of remaining (N − 2)-fold WPs are annihilated
later and a sequential phase transition to insulator happens. The irradiation influences the system by means of
two mechanisms—the time average of the perturbation and the emission and reabsorption of photons, with the
latter usually regarded as responsible for the phase transitions of matter and the former sometimes omitted due
to its trivial effect. However, we find that these phase transitions are caused by the former, not by the latter, and
the latter only affects how the WPs in the same pair approach each other, except for the case of N = 1 in which
both mechanisms take effect. The most common Weyl semimetal, say N = 1, has the most special response. The
irradiation can induce not only the transition from Weyl semimetal to insulator, but also the inverse transition,
while the latter cannot happen in Weyl semimetals with N � 2.
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I. INTRODUCTION

Weyl semimetal is a kind of three-dimensional (3D) topo-
logical material in which the conduction and valence bands
touch at pairs of points named Weyl points (WPs) [1–3]. The
Weyl semimetal hosts topologically protected Fermi arcs that
consist of surface states and connect the WPs in one pair. The
WPs with opposite chiralities act as magnetic monopoles in
momentum space and the nature of WP chirality is the phys-
ical origination of many intriguing effects such as the chiral
anomaly, planar Hall effect, and 3D Hall effect [1,2]. Besides
the most common Weyl semimetals with linear dispersion, the
multifold Weyl semimetals possess multifold WPs that are
formed by merging two and more WPs with the same chi-
rality so that a multifold WP carries multitopological charge
(Chern number greater than one) [4–7]. The multifold Weyl
semimetals have a mix of linear and higher-order dispersions
and host multiple Fermi arcs on the surface Brillouin zone.
Due to the fantasy of Weyl semimetals, the interest on Weyl
quasiparticles in solid media is extended to cold atoms [8],
photonic crystals [9–11], and phononic lattices [12,13].

Normally, topological phases of matter are very limited,
so creating or engineering topological materials is highly
desired in the society of condensed matter physics. In the
ages of the graphene rising [14,15], it was found that the
periodic perturbation of light can turn graphene into a
topological insulator and new edge states correspondingly
appear [16–22], which opens up a pathway towards Floquet
topological physics due to the high tunability of light fields
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[23–27]. The light irradiation can break the time-reversal
symmetry and add a mass term to the Hamiltonian to induce
the phase transitions of matter [28–31]. In the past decade,
great progress has been made in exploring various Floquet
topological states driven by optical perturbations. The phase
transitions between Weyl semimetal and Dirac material
[31–33], nodal line medium [34–38], topological insulator
[39–42], high-order topological material [43,44], and normal
insulator [45] were found to be induced by circularly polarized
light illumination. The Floquet-Bloch states [46,47] and the
quantum anomalous Hall current in Floquet topological
insulators [48–50] were observed experimentally. On the
march of researching singlet Weyl semimetals, the physics
of multifold Weyl semimetals under periodic perturbation is
placed on the table. It was reported that the multifold Weyl
phase can be induced by irradiation on crossing-nodal line
semimetals [51,52]. When the lattice hoppings are changed
alternatively between difference choices, in which each
choice of hopping leads to a Weyl semimetal of a different
fold, the hybrid multifold Weyl phase appears [53].

Though the phases of matter of singlet Weyl semimetal
under irradiation were studied extensively, what happens in
multifold Weyl semimetals is insufficient by now. In this
paper, we investigate the splitting and moving of WPs of mul-
tifold (N-fold) Weyl semimetals irradiated by an off-resonant
circularly polarized light. We first review the off-resonant
effect in the language of Floquet theory and formulate gen-
erally the effective Hamiltonian that can reflect the phase
transitions of matter. We figure out two mechanisms—the
time average of the perturbation and the emission and reab-
sorption of photons—to renormalize the Hamiltonian of the
system. The latter mechanism is usually regarded to induce
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FIG. 1. (a),(b) Sketches of Weyl point (WP) splitting and moving
in k space when the multifold (N = 4) Weyl semimetal is irradiated
by a circularly polarized light in a different direction. The split WP
pairs draw trajectories in the kx-kz plane (see Fig. 3) when the irradi-
ation intensity increases. (c) Transitions between phases of matter.

the phase transitions of matter and so the former is omitted in
some literatures [35,54]. However, we find that the former, not
the latter, is the main mechanism for these phase transitions.
Following, we apply the deduced Hamiltonian to the multifold
Weyl semimetals and research the irradiation effect when the
light illuminates in different directions. Finally, we discuss our
calculation details and summarize our results.

The main conclusions are visually presented in Fig. 1.
When the irradiation is applied along the direction of the WP
connection (the line stemmed from the negative chiral WP to
the positive one) and increases, the WPs for N � 2 approach
each other straightly and the WP connection is shortened as
Fig. 1(a) shows. When the light illuminates perpendicularly
to the WP connection, the irradiation direction and the WP
connection span a plane. Under the illumination, each multi-
fold WP is split into two singlet WPs and one WP of (N − 2)
fold and these WPs are scattered and move in the spanned
plane, as shown in Fig. 1(b). The singlet WP pairs are gapped
out first, the remaining WP pair are annihilated later, and
the material undergoes two phase transitions of matter—the
Weyl semimetal of N fold to that of (N − 2) fold to insulator.
Figure 1(c) shows the possible matter phases of the multi-
fold Weyl semimetal and the transitions between them. The
irradiation along the WP connection causes direct transition
from N-fold semimetal to insulator, while the perpendicular
irradiation has to first drive the medium to an intermediate
phase, (N − 2)-fold Weyl semimetal, before turning it into
an insulator. All the phase transitions are unidirectional ex-
cept for the N = 1 case. This is because the response of
the Weyl semimetal for N = 1 is quite different from N � 2
cases. When N = 1, the irradiation causes the WP connection
to be shortened or elongated, depending on the irradiation

intensity and orientation. The ability of shortening and elonga-
tion under the irradiation means that the phase transition from
Weyl semimetal to insulator can be realized by canceling out
the WP pair and the reverse phase transition can happen by
eliminating the energy gap of the insulator and generating the
WP connection length from zero on.

II. THEORY OF OFF-RESONANT IRRADIATION
EFFECT ON SOLID MEDIA

When a material is subjected by the irradiation of an elec-
tromagnetic field, the electromagnetic field can be described
by its vector potential

A(t ) = AR cos ωt + AI sin ωt, (1)

where ω is the angular frequency of light, t is the time, and
AR and AI are the real and imaginary parts of the complex
vector potential amplitude, say, A = AR + iAI (both AR and
AI are vectors and they are orthogonal). The electromagnetic
wave is assumed to propagate parallel or antiparallel to the
direction of AR × AI and the positive propagation is assumed
for convenience. The irradiation effect can be included into
the k-space Hamiltonian of the material, H (k), by means
of the Peierls substitution k → k +A (the electron charge
e and the reduced Planck constant h̄ are set to be units to
simplify the notations) [55,56], where k is the wave vector. If
the irradiation can be viewed as perturbation, we can expand
the Hamiltonian up to the second order ofA as

H̃ = H (k +A)

= H (k) +A · ∇H (k) + 1
2 (A · ∇)2H (k), (2)

with ∇ being the gradient operator in k space. Inserting the
definition ofA in Eq. (1) into the above equation, we have

H̃ = H + AR · ∇H cos ωt + AI · ∇H sin ωt

+ 1
2 (AR cos ωt∇R + AI sin ωt∇I )2H, (3)

where ∇μ with μ = R, I is the k-space gradient along the
direction of Aμ. After omitting harmonic components of fre-
quency 2ω in the bracket square, the first and second order
Hamiltonians caused by the Peierls substitution are

H (1) = AR · ∇H cos ωt + AI · ∇H sin ωt,

H (2) = 1
4

(
A2

R∇2
RH + A2

I ∇2
I H

)
. (4)

The total time dependent Hamiltonian, up to the second order
perturbation and base frequency, is thus

H̃ (t ) = H + H (1)(t ) + H (2). (5)

One can see that the electromagnetic field induces a static
correction and a harmonic perturbation to the unirradiated
system.

The periodic driven system can be expressed as the Floquet
Hamiltonian in energy space [24–27]. We keep only zero-
and one-photon processes and the Floquet Hamiltonian is
truncated to be

HF =

⎛
⎜⎝
H0,0 − ω H−1,0 0

H0,−1 H0,0 H0,1

0 H1,0 H0,0 + ω

⎞
⎟⎠, (6)
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where Hm,m′ with m, m′ = 0,±1 is the harmonic component
of the time dependent Hamiltonian H̃ with the frequency
(m − m′)ω and is defined by

Hm,m′ = 1

T

∫ T

0
H̃ ei(m′−m)ωt dt, (7)

with T = 2π/ω being the driving period. Folding the Floquet
Hamiltonian into the zero photon subspace, we have the effec-
tive Hamiltonian

Heff = H0,0 +
∑

m=±1

H0,m
1

E − (H0,0 + mω)
Hm,0, (8)

where H0,0 = H + H (2) is the time average of H̃ and the
second term describes the correlation effect induced by an
electron emitting a photon and reabsorbing it so as to return
to the initial state. We reexpressHm,m+1 as V , and soHm+1,m

as V +. In the limit of infinite ω, the effective Hamiltonian is
reduced to

Heff = H + H (2) + [V +,V ]

ω

= H + H (2) + Hω. (9)

In the equation, H (2) and Hω are both of the second order
of A but have different physical originations. The former
stems from the time-average effect of the perturbation [see
the second line of Eq. (3)], while the latter is induced by
the emission and reabsorption of photons, which is inverse
proportional to the frequency. According to the first line of
Eq. (4), one can easily obtain

V = 1

T

∫ T

0
H (1)eiωt dt = 1

2
A · ∇H. (10)

Note that vector potential A is a complex vector; it can de-
scribe either linearly or elliptically polarized irradiation. For
the linear polarization, A is real, and because ∇H is Hermi-
tian, we have [V +,V ] = 0, so the linear polarized irradiation
cannot induce any effect in Hω.

For the elliptically or circularly polarized cases, A has
nonzero imaginary part and Hω is calculated to be

Hω = iARAI

ω
[∇RH,∇I H]. (11)

For linear polarized illumination, we have AR = 0 and so
Hω = 0, consistent with our assertion before. Assuming the
illumination is applied in the direction of the unit vector n, the
above equation can be transformed as

Hω = ARAI

ω
D · n, (12)

where D is a Hermit vector defined by

D = i(∇H × ∇H ). (13)

Substituting H (2) in Eq. (4) and Hω in Eq. (12) into Eq. (9),
we have the effective Hamiltonian to include the irradiation
effect, which reads

Heff = H + ARAI

ω
D · n + 1

4

(
A2

R∇2
RH + A2

I ∇2
I H

)
. (14)

The effective Hamiltonian is general and independent of ma-
terials. One can find that the last term does not vanish if the

Hamiltonian has k2 or higher power of k terms and cannot
be ignored because the off-resonant theory requires a large
frequency limit. For linearly polarized irradiation (AI = 0),
the equation is reduced to Heff = H + A2

R∇2
RH/4.

III. MULTIFOLD WEYL SEMIMETALS UNDER
CIRCULARLY POLAR IRRADIATION

The minimal bipartite Hamiltonian of a Weyl semimetal
with a pair of multifold WPs can be written as [57–59]

H = vkN
+σ+ + vkN

−σ− + (
k2 − k2

w

)
σz

=
(

k2 − k2
w vkN

+
vkN

− k2
w − k2

)
, (15)

where N is a positive integer to indicate the Chern number of
one WP, σα (α = x, y, z) are Pauli matrices, 2kw is the distance
between the two WPs, k is the magnitude of wave vector k,
and v is a positive parameter of the dimension of k2−N to
balance the dimension between the matrix elements. In the
equation, the notations k± = kx ± iky and σ± = (σx ± iσy)/2
are used. The WP locations are KW = (0, 0,±kw ), which can
be deduced by means of the zero energy condition.

In this paper, we only consider the circularly polarized
irradiation, say |AR| = |AI | = A0, so the effective Hamiltonian
in Eq. (14) turns out to be

Heff = H + A2
0

ω
D · n + A2

0
4 ∇2

⊥H

= h+σ+ + h−σ− + hzσz, (16)

where ∇2
⊥ = ∇2

R + ∇2
I means the k-space Laplace operator

in the plane perpendicular to the light propagation. In the
equation, A2

0/ω and A2
0 mark the effect of Hω and H (2), respec-

tively. We rearrange the Hamiltonian as in the second line, in
which hz is real and h+ = h+

− is a complex coefficient, to help
us analyze the WP positions. The components of D can be
straight calculated from (15) and they are

Dx = 4Nvkz(kN−1
+ σ+ + kN−1

− σ−),

Dy = 4iNvkz(kN−1
+ σ+ − kN−1

− σ−),

Dz = −4Nv(kN
+σ+ + kN

−σ−) + 2N2v2k2N−2
ρ σz, (17)

where kρ = (k2
x + k2

y )1/2.
Because the energy dispersion of the Hamiltonian is deter-

mined by E2 = |hz|2 + |h+|2, the locations of WPs under the
irradiation can be found out by letting

h+ = 0,

hz = 0. (18)

To achieve this, the expression of D · n and ∇2
⊥H for different

illumination direction has to be specified.

A. Light illuminating in z direction

When the irradiation is applied along the z direction, AR

and AI lie in the x-y plane, and we obtain

D · n = χDz,

∇2
⊥H = 4σz, (19)
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where χ = ±1 indicates the light propagates parallel (antipar-
allel) to the z axis. Inserting the above results into Eq. (16),
the coefficients of σ+ and σz in the effective Hamiltonian are
calculated to be

h+ = vkN
+

(
1 − 4χN

A2
0

ω

)
,

hz = k2 − k2
w + 2χN2v2 A2

0

ω
k2N−2
ρ + A2

0. (20)

The former tells k+ = 0, say, kx = 0 and ky = 0, which means
the WPs are always on the z axis, and the latter determines the
WP positions on the axis.

When N = 1, one can find that k0
ρ = 00 appears in the

second line of Eq. (20). We check the calculation of Dz in
Eq. (17) and conclude that k0

ρ = 1 should be adopted here. In
this situation, the pair of WPs are located at

KW =
(

0, 0,±
√

k2
w − A2

0

(
1 + χ

2v2

ω

))
. (21)

The WP connection length is a function of both A0 and ω.
The irradiation changes the WP connection length and the
rate of change is different for illuminating along the z axis
positively or negatively. For positive incidence, when the ir-
radiation intensity reaches A0 = kw/(1 + 2v2/ω)1/2, the WP
connection length decreases to zero and the system under-
goes a phase transition from Weyl semimetal to insulator. For
negatively applied irradiation, the phase transition takes place
at another irradiation intensity A0 = kw/(1 − 2v2/ω)1/2. The
+z direction is the easy direction to induce the phase tran-
sition. Specially, if ω < 2v2, a negatively applied irradiation
causes the WP connection length to be longer and such
a phase transition cannot happen. The elongation of the
WP connection means the irradiation can induce the reverse
phase transition—the transition from an insulator to a Weyl
semimetal. If we replace kw with ikw in Eq. (15), k2 − k2

w

is changed to be k2 + k2
w and the Hamiltonian describes an

insulator, which is identical to the Hamiltonian used in Ref.
[31]. Now kw is a parameter to determine not the WP positions
but the energy gap 2k2

w. According to Eq. (20), the energy gap
under irradiation is 2k2

w − 2A2
0(2v2/ω − 1). When the irradia-

tion intensity reaches A0 = √
k2
w/(2v2/ω − 1), the energy gap

vanishes and the reverse phase transition occurs.
Figures 2(a) and 2(b) show the WP connection length

as a function of A0 for N = 1 at different ω. When A0 in-
creases, the distance decreases from its initial value 2kw unless
the irradiation is applied negatively and ω < 2v2. When the
irradiation approaches its criterion intensity, the distance de-
creases to zero. At infinite ω limit, the critical intensity is
A0 = kw, regardless of whether the irradiation is applied pos-
itively or negatively. Figures 2(c) and 2(d) show the phase
boundaries between Weyl semimetal and insulator in A0-ω−1

space. The vertical axis is set to be ω−1 to allow us to observe
the phase transitions at large ω. There always is a phase
transition happening for any value of ω when the positively
applied irradiation increases, while when the irradiation is
negatively applied, the transition is absent for large ω−1 (or
small ω, explicitly, ω < 2v2).

FIG. 2. Light illuminating along the z direction for N = 1. Upper
panels: Weyl point connection length W as a function of A0 for
different ω (in units of kw) at v = 1 in Eq. (15). Lower panels: phase
boundaries for different v.

For the cases of n � 2, because of the constraint k+ = 0
(kρ = 0), the WP positions are

Kw = (
0, 0,±

√
k2
w − A2

0

)
. (22)

Interestingly, the positions are independent of N . In the equa-
tion, A2

0/ω does not appear, which means Hω has no effect
on the WP moving and the moving is purely caused by H (2),
and the equation possesses the only irradiation parameter A0

and is irrelevant with ω, χ , and v. When the irradiation inten-
sity reaches A0 = kw, the phase transition between multifold
Weyl semimetal and insulator occurs. The irradiation can only
shorten the WP connection, which means the reverse phase
transition cannot take place for N � 2 cases. The WP connec-
tion length as a function of A0 is just that for the N = 1 case at
infinite ω limit [see Eq. (21)], as shown in Figs. 2(a) and 2(b).

B. Light illuminating in x direction

When the irradiation is applied along the x direction, the
vectors AR and AI span in the y-z plane and we have

D · n = χDx,

∇2
⊥H = 4σz − vN (N − 1)(kN−2

+ σ+ + kN−2
− σ−), (23)

where χ = ±1 indicates the light is propagating parallel (an-
tiparallel) to the x axis. Substituting the results in the above
equation into Eq. (16), we have the coefficients h+ and hz in
the effective Hamiltonian,

h+ = v

[
kN
+ + 4χ

A2
0

ω
Nkzk

N−1
+ − A2

0

4
N (N − 1)kN−2

+

]
, (24)
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hz = k2 − k2
w + A2

0. (25)

The equation is universal for any value of N .
When N = 1, the material possesses a pair of singlet WPs,

the last term in h+ in the above equation vanishes, and the
constraint h+ = 0 results in

(kx + iky) + 4χ
A2

0

ω
kz = 0. (26)

The imaginary part of the equation leads to ky = 0, which
means the WPs are on the kx-kz plane. The real part brings

kx

kz
= −4χN

A2
0

ω
, (27)

where N is preserved because the expression will be used later
for values of N other than N = 1. The equation describes a
line in the kx-kz plane (referred to as the tilting line in the
following). The constraint hz = 0 accompanied with ky = 0
results in

k2
x + k2

z = k2
w − A2

0. (28)

The equation defines a circle (referred to as the node cir-
cle in the following), on which the WPs locate, with radius
(k2

w − A2
0)1/2 in the kx-kz plane. The intersections between the

tilting line and the nodal circle are the WP positions under the
irradiation. When the light is applied positively or negatively
along the x direction, the tilting line is rotated and deviated
from the z axis counterclockwise or clockwise and, simulta-
neously, the node circle radius shrinks.

Figure 3(a) illustrates the trajectory of WPs moving in
the kx-kz plane for the case of N = 1 when the irradiation
increases from zero on. The WPs are initialed at (0,±kw ) and
the tilting line overlaps with the kz axis. When the irradiation
is turned on, the tilting line is rotating away from the kz axis,
the node circle is shrinking, and the intersections between the
line and the circle are moving in the kx-kz plane. First, the
tilting line rotates rapidly and the node circle shrinks slowly,
so the intersection movement is almost tangent. Following,
the line rotating is slowed down, the circle shrinking becomes
fast, and the intersections move nearly radically. Because of
the alternative change rates between the tilting line and the
node circle, the trajectory of a WP pair is an S path. When the
irradiation increases, the WPs start their travel from the two
ends of the S path and move along and finally joint with each
other at the middle point and cancel out there. The distance
between the WPs as a function of A0, which is shown in
Fig. 3(b), is irrelevant with the shape of the trajectory curve,
but is simply determined by the node circle radius. A Weyl
semimetal to insulator transition occurs when the circle radius
decreases to zero, say, at irradiation intensity A0 = kw.

If N = 2, the medium is a doublet Weyl semimetal and the
constraint h+ = 0 tells

(kx + iky)2 + 8χ
A2

0

ω
kz(kx + iky) − A2

0

4
N (N − 1) = 0. (29)

The imaginary of the equation also results in ky = 0. Applying
it to the other constraint hz = 0, we find that the WPs are
on the circle defined in Eq. (28). The real part of the above

FIG. 3. Light illuminating along the x direction. Left panels:
trajectories of Weyl points (WPs) moving in the kx-kz plane when
A0 increases. The outer and inner circles are the node circles defined
in Eq. (28) for A0 = 0 and A0 = 0.6kw , respectively. The thin solid
curves are the hyperbolic curves at A0 = 0.6kw . The red and blue
filled dots mark the intersections between the node circles and hy-
perbolic curves, which are the locations of the WPs for A0 = 0.6kw .
The empty dots are the locations at which the WP pairs are gapped
out. Right panels: distance between the WP pair canceled out first as
a function of A0 for different ω (in units of kw). In all panels, v = 1
is adopted.

equation brings a new constraint relation,

k2
x + 8χ

A2
0

ω
kzkx − A2

0

4
N (N − 1) = 0. (30)

The equation defines a hyperbolic curve with two asymptotic
lines. One asymptotic line is the tilting line described in
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Eq. (27) in which N = 2 should be adopted now; the other
is kx = 0. Since the WPs are on the kx-kz plane, the latter
asymptotic line is the kz axis, which is not changed when the
material is illuminated.

Figure 3(c) demonstrates the split WP trajectories of a
doublet Weyl semimetal under irradiation. The two branches
hyperbolic curve interacts with the node circle at four points
that are the locations of the WPs. The illumination split each
doublet WP into two singlet WPs. If the irradiation intensity
increases, the circle becomes smaller, the tilting line rotates
away, the hyperbolic curve changes correspondingly, and the
intersections move and leave their tracks in the kx-kz plane.
When the hyperbolic curve is detached from the circle, a
phase transition between doublet Weyl semimetal and insu-
lator takes place. Because the shape of the hyperbolic curve
depends on the parameter ω, the critical intensity is a function
of ω. Figure 3(d) shows the WP distance as a function of
A0 at different ω. At the infinite ω limit, the critical inten-
sity takes the smallest value and is worked out to be A0 =
kw/[1 + N (N − 1)/4]1/2, which is approximately 0.82kw for
N = 2.

When N � 3, the constraint h+ = 0 leads to

kN−2
+

[
k2
+ + 4χN

A2
0

ω
kzk+ − A2

0

4
N (N − 1)

]
= 0. (31)

Apart from kN−2
+ , the rest of the equation is the same as

Eq. (29), so its imaginary part results in ky = 0 too, and its real
part describes a new hyperbolic curve (because N is new) with
two asymptotic lines implied by Eqs. (27) and the kz axis. For
each multifold WP, two singlet WPs are exfoliated from it and
locate at the intersections between the hyperbolic curve and
the node circle defined in Eq. (28), and a residual (N − 2)-fold
WP remains. The residual multifold WP position is indicated
by the (N − 2)-fold root of the equation, kN−2

+ = 0, which
is to say that it lies at one of the intersections between the
kz axis and the node circle. as indicated in Fig. 3(e). When
the irradiation intensity increases, the tilting line rotates and
the node circle shrinks. Each WP pair exfoliated draws a
trajectory branch and the residual pair runs on the kz axis.
At a critical intensity, the node circle is separated from the
hyperbolic curve, the two pairs of exfoliated WPs are gapped
out, and a phase transition from N-fold to (N − 2)-fold Weyl
semimetal takes place. At infinite ω limit, the critical intensity
A0 = kw/[1 + N (N − 1)/4]1/2, the same expression as before
but with different value of N , is 0.63kw for N = 3. When the
intensity reaches A0 = kw, the node circle radius decreases to
zero and another phase transition, the phase transition from
the (N − 2)-fold Weyl semimetal to insulator, happens what-
ever value N takes. Figure 3(f) shows the distance between
WPs in one pair as a function of A0. The critical intensity is
smaller than that of N = 1 and N = 2 cases and is the smallest
at the infinite ω limit.

Figures 4(a) through 4(c) show the phase diagrams of mul-
tifold Weyl semimetals in A0-ω−1 space. The phase boundary
for single-fold Weyl media and insulator is simply a vertical
line A0 = kw, but that between doublet Weyl medium and
insulator is deviated from the vertical line apparently near
the large ω end. When N � 3, a new phase region of (N −
2)-fold Weyl semimetal arises. The N-fold Weyl semimetal

FIG. 4. Phase diagrams for light illuminating along the x direc-
tion. (a)–(c) Phase diagrams for Weyl semimetals of fold N = 1, 2, 3.
(d) Boundaries between the phase of multifold Weyl semimetal and
the adjacent phase of matter for N = 1 ∼ 4.

cannot transit to insulator without experiencing the intermedi-
ate phase. The boundaries between the original phase and its
adjacent phase (the phase that the medium is turned into first
when A0 increases) for different N are exhibited all in one in
Fig. 4(d).

The above results are obtained for the illumination along
the x axis. If the light propagates in another direction in the
x-y plane, the split WPs will distribute and move in the n-kz

plane and the obtained conclusions remain valid. If one rotates
the light beam in the x-y plane, the plane of the split WPs
laying will change following the incident rotation. When the
incidence is rotated by angle π , the rotation of the tilting line
is reversed indeed, which is the same effect as reversing χ ,
consistent with our afore results.

IV. REMARKS AND CONCLUSIONS

The time average perturbation H (2) and the photon
emission-absorption effect Hω play different roles when the
irradiation is applied and they are featured in the equations by
A2

0 and A2
0/ω, respectively. The topological phase transitions

of matter are caused by H (2) because it determines the radius
of the node circle and Hω only justifies the manner of WP
approaching by controlling the tilting line. Among all types of
multifold Weyl semimetals, the singlet Weyl semimetal is the
most special one to respond to the irradiation. It is the only
material in which the effect of Hω is involved in the phase
transitions of matter [both the terms A2

0 and A2
0/ω appear in

Eq. (21)]. The irradiation along the WP connection does not
split multifold WPs. It not only can shorten the WP connection
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as usual but also can elongate it. The elongation effect implies
that the reverse phase transition can be induced. Such reverse
transition cannot happen in other Weyl semimetals. It was
believed that the photon emission-absorption effect plays the
key role for the phase transitions of Weyl semimetals [41];
indeed, the viewpoint is only valid for one special value of N ,
say, N = 1.

The effect of irradiation reversal is equivalent to that of
reversing the circular polarization or changing the chirality of
the Weyl Hamiltonian, say, exchanging k+ and k− in Eq. (15).
In some realistic singlet Weyl semimetals, for example, in
Na3Bi [60], WP chirality is bounded with electron spin, so
the irradiation reversal can also be regarded as spin flipping in
these materials and electrons of opposite spins have different
response to the irradiation, as reported in Ref. [33]. When
the light illuminates in the direction of WP connection, the
WP connection lengths of different spins are modified with
different rates. It is possible that one spin species falls in the
insulator state and the other spin species stays in the Weyl
semimetal state, as discussed in Ref. [45].

The irradiation perpendicular to the WP connection splits
the N-fold WP pair into three pairs—two singlet pairs and the
remaining (N − 2)-fold pair. The three pairs are scattered in
the plane formed by the WP connection and the light propa-
gation direction. The two singlet pairs leave two S paths when
the irradiation increases, move along their S paths from the
path ends, and will be canceled out simultaneously at a critical
irradiation intensity depending on N . In the meantime, the
WPs of the remaining pair approach each other straight along
the WP connection line and are finally gapped out at another
irradiation intensity irrelevant of N . In the multifold Weyl
semimetal irradiated, there exist three topological phases
of matter, say, N-fold Weyl semimetal, (N − 2)-fold and

insulator, and the transitions between them can be realized by
changing the irradiation intensity. After two singlet WPs are
exfoliated from each multifold WP, the remaining WPs are
still multifold if N > 3 and cannot be resolved furthermore
even increasing the irradiation intensity. This is because the
off-resonant theory is a second order perturbation one. If
higher order perturbation is taken into account, more pairs of
WPs will be exfoliated, but the split will be less remarkable
and is not considered in this paper.

We only give the analytical calculations for irradiation
along z and x directions. If the irradiation is applied in other
directions, the intermediate cases can be understood quanti-
tatively by turning on the irradiation along the +z direction
and rotating it counterclockwise by a full round. When the
irradiation appears, the WP connection shrinks on the kz axis.
When irradiation is rotated away, each WP is split and de-
viates from the kz axis and the deviation is most notable at
the rotation angle 90◦. Proceeding the rotation, the deviation
decreases and the split WPs merge at the kz axis at the rotation
angle 180◦. If the rotation is going on, the WPs will resplit and
are deviated reversely, and the WPs recover their locations
when the full round of rotation is completed. During the
rotation, all the split WPs shift on the node circle for N �
2, while, for N = 1, the WP connection changes its length,
which is shortest at zero rotation angle and longest at the
angle 180◦.
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