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Three-dimensional PT -symmetric topological phases with a Pontryagin index
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We report on a certain class of three-dimensional topological insulators and semimetals protected by spinless
PT symmetry, hosting an integer-valued bulk invariant. We show using homotopy arguments that these phases
host multigap topology, providing a realization of a single Z invariant in three spatial dimensions that is distinct
from the Hopf index. We identify this invariant with the Pontryagin index, which describes Belavin-Polyakov-
Schwartz-Tyupkin (BPST) instantons in particle physics contexts and corresponds to a three-sphere winding
number. We study naturally arising multigap linked nodal rings, topologically characterized by split-biquaternion
charges, which can be removed by non-Abelian braiding of nodal rings, even without closing a gap. We
additionally recast the describing winding number in terms of gauge-invariant combinations of non-Abelian
Berry connection elements, indicating relations to Pontryagin characteristic class in four dimensions. These
topological configurations are furthermore related to fully nondegenerate multigap phases that are characterized
by a pair of winding numbers relating to two isoclinic rotations in the case of four bands and can be generalized
to an arbitrary number of bands. From a physical perspective, we also analyze the edge states corresponding
to this Pontryagin index as well as their dissolution subject to the gap-closing disorder. Finally, we elaborate
on the realization of these novel non-Abelian phases, their edge states, and linked nodal structures in acoustic
metamaterials and trapped-ion experiments.
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I. INTRODUCTION

The study of topological insulators and semimetals pro-
vides for an active area of current research that connects
various theoretical as well as experimental impetuses [1–3],
offering, amongst others, a condensed matter realization of
the θ vacuum and according magnetoelectric polarizability,
quantum field-theoretic anomalies and axion electrodynamics
[4–9]. While the inclusion of spatial symmetries, defects, and
even out-of-equilibrium contexts has provided for an exten-
sive landscape of characterizations [10–22], in the past years
a rather general viewpoint has emerged. Namely, using readily
implementable relations between band representations at high
symmetry momenta, general constraint equations that match
equivariant K-theory computations [23] can be derived. The
emerging classes in momentum space can subsequently be
compared to real-space band representations [24–26] to dis-
cern whether they are compatible with an atomic limit and,
accordingly, their topological nature [27,28]. Although these
symmetry-indicated techniques map out a large fraction of
topological insulators and semimetals, the past few years have
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seen the rise of novel types of topologies that depend on
multigap conditions that a priori cannot be captured by these
schemes.

These multigap topologies are characterized by finer topo-
logical structures and homotopy invariants [29] that pertain
to band spaces (groups of isolated bands) that in turn depend
on multigap conditions. A particular example in this regard
is Euler class, being the analog of the Chern number, that
arises in systems enjoying C2T , that is, twofold rotations com-
bined with time-reversal symmetry (TRS), or PT symmetry,
involving parity and TRS. In such scenarios band degen-
eracies residing between different bands carry non-Abelian
charges [29–33], being the band structure incarnation of a π

disclination in a biaxial nematic [34–36], and braiding them
around in momentum space can result in two-band subspaces
that have band nodes with similar, rather than oppositely val-
ued, charges, whose obstruction to be annihilated is directly
proportional to the Euler class characterizing that two-band
subspace [32]. While these new insights have in first stages
furnished deeper understanding of finer topologies and the
relation to flag manifolds [29,37,38], recent advances promise
progress in novel quantum geometric structures [39]. More
importantly, these multigap topologies are increasingly being
related to real physical settings. For example, novel multi-
gap out-of-equilibrium phases [40] and in particular quench
effects [41] have been seen in trapped-ion insulators [42],
while non-Abelian braiding and multigap physics for both
bulk and boundary properties have been predicted in phonon
[43,44] as well as electronic spectra of real materials sub-
jected to stress/strain or temperature-induced structural phase
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transitions [32,45,46]. Finally, these new multigap topologies
are particularly appealing in the context of metamaterials in
which an increasing number of theoretical as well as experi-
mental results are being reported [47–52].

We note that these pursuits fit in a wider research activity
that concerns the exploration of phases beyond the tenfold
way [53] such as fragile phases [54] and Hopf insulators [55],
where the first refers to phases in which the topology can be
undone by closing the gap with trivial bands (as opposed to
a K-theoretical invariant that necessitates a gap closing with
a band of opposite charge), while the second type of invariant
arises by virtue of the target space under the Hamiltonian map-
ping. That is, the mapping from a three-dimensional Brillouin
zone torus to a two-sphere (S2) target space allows for an iden-
tification with a Hopf invariant. We reiterate, however, that
multigap phases in principle do not have to be symmetry indi-
cated (all bands can be in the same irreducible representation)
and that, while a band gap closing with a trivial band can undo
the topology, an unbraiding process is needed to accomplish
this, signaling a different stability [56,57] and characteriza-
tion. Similarly, with regard to the Hopf map, we stress that,
although out-of-equilibrium effects of two-dimensional Euler
insulators [41] or three-dimensional PT -symmetric insulators
(with a four-band target space) can be associated with Hopf
maps [58], these maps are generalizations of the standard
Hopf map and depend on multigap conditions, that is, the
partitioning of the bands.

It is in this setting of refined band partitions and ho-
motopy invariants where we find the subsequent results. In
particular, we show that for simple four-band systems the clas-
sification of three-dimensional real topological phases can be
extended with another type of Z invariant, which relates to a
generalized Pontryagin index representing Belavin-Polyakov-
Schwartz-Tyupkin (BPST) instantons in non-Abelian gauge
field theories such as SU(2) Yang-Mills theory [59,60]. We
demonstrate that this invariant in some sense relates to the
Z ⊕ Z-valued Hopf indices characterizing such four-band
systems [58], but in fact is a different entity beyond this
classification. Concretely, the index corresponds to the ele-
ments of the third homotopy group π3(S3) ∼= Z, describing
higher-dimensional winding numbers on the three-sphere S3.
Upon adding a real positive tuning parameter t providing an
additional dimension in the parameter space, we then establish
a link to the so-called characteristic Pontryagin class, a real
relative of the second Chern number, accessible in four dimen-
sions. Very interestingly, we also show that this Z invariant
actually characterizes the topology of fully gapped phases
(i.e., with complete flag classifying spaces) of even arbitrarily
many isolated bands. We moreover provide systematically
generated minimal models exhibiting this type of topology,
which offers a very direct route towards experimental sim-
ulations in optical lattices and metamaterials. Using these
models, we also show an interplay between non-Abelian Wil-
son loops and nontrivial Zak phases [61–64] and edge modes
induced at the surfaces and numerically study their robustness
to uniform disorder up to the closing of bulk gap. As a side
result, we find that this type of topology enables braiding of
non-Abelian nodal rings in three dimensions, which yields
exotic nodal structures in explicit and surprisingly simple
Hamiltonians. Accordingly, we propose concrete metamate-

rial realizations to capture these linking structures as well
as the bulk invariant and its bulk-boundary correspondence,
thereby impacting active experimental pursuits.

This paper is organized as follows. In Sec. II, we introduce
mathematical definitions and constructs, including classifying
spaces, which capture the topology encoded in models with
nontrivial Pontryagin index. Section III then presents model
realizations of these types of topology, including a minimal
one that naturally realizes a non-Abelian linked nodal ring
structure. In Sec. IV, we elaborate on the manifestations of
the introduced topology, demonstrating bulk-boundary cor-
respondence, associated topological phase transitions, and
possible unbraiding mechanisms with and without closing
the bulk gap that admit removal of these linked structures,
which naturally emerge due to the one-dimensional topology
of the flag manifold underlying the algebra of nodal rings.
Subsequently, we discuss in Sec. V the full flag limit and a
multigap invariant on removing the nodal structures, access-
ing a nontrivial topological phase with a fully nondegenerate
band structure, while in Sec. VI we analyze the robustness to
disorder of the edge modes induced by the introduced bulk
invariants. Finally, we comment on connections with experi-
mental realizations in Sec. VII, before concluding in Sec. VIII.

II. NON-ABELIAN PONTRYAGIN TOPOLOGY

We begin with a general introduction to the non-Abelian
real topology realized in the three-dimensional (3D) four-band
models proposed in the subsequent section. After introducing
the relevant classifying spaces, we then elaborate on the Pon-
tryagin index and its relation to the Pontryagin class related to
the realized bulk topology.

A. Relevant classifying spaces

As alluded to above, the topology of the system is fully set
by the target space, as induced by the Hamiltonian mapping.
This is quantified by the notion of the associated classifying
space. Here, we introduce the classifying spaces relevant for
the Pontryagin topology. The classifying space G is defined
to minimally capture the topology of a particular Hamil-
tonian, which can be induced by the following mappings:
T d → Sd → G, where the Brillouin zone (BZ) is identified
with a d torus, BZ ∼= T d [14,29,39]. In the subsequent we
assume the first mapping to be trivial, thereby neglecting
possible inducing weak invariants, while the second map is
classified by a homotopy group πd (G) capturing all possible
nontrivial winding, or topology, of the Hamiltonian map. We
require four Bloch bands, spanning a four-dimensional real
vector space as a fiber at each crystal momentum k in three
spatial dimensions, which relates to the topology of a rank-
four vector bundle over the BZ hypertorus, BZ ∼= T 3, as the
base space. We map the BZ to a three-sphere T 3 → S3, on
which the nontrivial winding of the Hamiltonian captured
by the Pontryagin index will be induced by the winding of
the isolated band corresponding to the normal bundle of the
three-sphere, NS3, with the other three potentially degener-
ate bands spanning the tangent bundle T S3. The classifying
space, and hence topology, is then set by the partitioning of
flattened bands. In particular, on partitioning the system into
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three-band occupied and single-band unoccupied subspaces,
and assuming a real-valued Hamiltonian due to the presence
of spinless spatiotemporal inversion symmetry (PT symme-
try), the classifying space becomes [29]

Gr1,4(R) = O(4)/[O(1) × O(3)] ∼= S3/Z2
∼= RP 3. (1)

Here, we manifestly divide by the group of gauge transfor-
mations corresponding to the specific partitioning in the band
subspaces. The above manifold corresponds to a real Grass-
mannian Grk,N (R), where

Grk,N (R) = O(N )/[O(k) × O(N − k)]. (2)

We note that the above formulation also directly elucidates
the existence of the Hopf insulator [55,65–68]. That is, a two-
band system is characterized by the complex Grassmannian
Gr1,2(C), being the Riemann sphere. Considering the third
homotopy then coincides with Hopf fibration S3 → S2 [55].
As a next step, on fixing the orientation, which corresponds
to enforcing the Bloch eigenvectors to span oriented frames
[29], the effective target space of the introduced four-band
Hamiltonian extends to an oriented real Grassmanian,

G̃r1,4(R) = SO(4)/SO(3) ∼= S3, (3)

where we note that a general oriented real Grassmannian is
defined as

G̃rk,N (R) = SO(N )/[SO(k) × SO(N − k)]. (4)

Hence, in three dimensions, the Pontryagin index characteriz-
ing winding on a three-sphere, as in the high-energy physics of
BPST instantons [59,60], is a natural invariant introduced by
the classifying spaces of real four-band Hamiltonians H (k) in
which one partitions the system into a three-band and single-
band subspace. This is consistent with general classification
results on real topology [29], and is equivalent to the elements
of third-homotopy groups, independent of the orientability

π3(G̃r1,4(R)) ∼= π3(S3) ∼= Z, (5)

π3(Gr1,4(R)) ∼= π3(RP 3) ∼= Z. (6)

We remark that such real topology can be viewed as a
higher-dimensional analog of orientable and nonorientable
three-band Euler Hamiltonians in two dimensions, which
have been realized experimentally in acoustic metamaterials
[48,51]. This perspective, as well as the experimental accessi-
bility of three spatial dimensions, offer a platform for realizing
the Hamiltonian, which we detail in the subsequent.

B. Pontryagin index

We first identify the Pontryagin index as a Z-valued
bulk invariant realized in our settings. The Pontryagin in-
dex captures a winding on a three-sphere S3. This winding
can be explicitly imposed on a Bloch eigenvector corre-
sponding to the isolated band subspace, or equivalently to
the normal bundle NS3. The fourth Bloch band n4(k) ≡
|u4(k)〉 generates the winding of the Hamiltonian, anal-
ogously to the third band constituting the frame basis
of the two-sphere normal bundle NS2, n3(k) ≡ |u3(k)〉 =
|u1(k)〉 × |u2(k)〉 in a two-dimensional Euler insulator with
Hamiltonian Hχ (k) = 2n3(k)⊗nT

3 (k) − 13 [32,41,69]. The

associated higher-dimensional invariant, equating to the Pon-
tryagin index, is given by

Q = 1

2π2

∫
S3

d3k εi jkl (n4)i∂kx (n4) j∂ky (n4)k∂kz (n4)l , (7)

where (n4)i labels the components of the winding vector n4,
which can be equivalently expressed in terms of the three
other bands as (n4)i = εi jkl (n1) j (n2)k (n3)l . This formula is
a higher-dimensional (S3 instead of S2) winding analog of
the Euler invariant χ in two-dimensional non-Abelian insula-
tors, that can be deduced from the skyrmion number formula
[32,41]. That is,

χ = 1

2π

∫
S2

d2k n3 · (∂kx n3 × ∂ky n3). (8)

Moreover, with any vector n4, we can associate an SU(2)-
valued quaternion matrix

U = (n4)012 + i(n4) jσ j, (9)

where Einstein summations are implied and σ j with j = x, y, z
correspond to the usual Pauli matrices. We can interpret such
a unitary matrix in terms of a non-Abelian su(2) connection
form G, which is not the general non-Abelian Berry con-
nection commonly used in studying the band topology [63],
appears as the connection on the principal G bundle for the
SU(2) instantons [60], and is defined as

G = U −1dU, (10)

with associated non-Abelian curvature F ,

F = dG + G ∧ G. (11)

In these terms, the Pontryagin index can be written as

Q = 1

24π2

∫
S3

Tr (U −1dU )3 = 1

24π2

∫
S3

Tr G3. (12)

Interestingly, one may show that for four-band phases split
into one- and three-band subspaces, the Pontryagin index, that
is the bulk invariant corresponding to the winding number
of the isolated Bloch vector of the proposed models, can be
constructed in terms of the non-Abelian Berry connection.

The non-Abelian Berry connection elements are defined as

Aα
i j = 〈ui|∂kα

|u j〉, (13)

with band indices i, j = 1, 2, 3, 4 and momentum indices
α = x, y, z. As detailed in Appendix A, one may show that

Q = 1

2π2

∫
T 3

d3k A41 · (A42 × A43)

≡ 1

2π2

∫
T 3

d3k [A41, A42, A43], (14)

where the so(4) connection elements connect the occupied
and unoccupied band subspaces, analogously to the other
invariants characterizing non-Abelian phases [51,58]. For
example, in two spatial dimensions, the three-band Euler in-
variant can be rewritten as

χ = 1

2π

∫
T 2

d2k εαβAα
31Aβ

32, (15)

where εαβ is a 2 × 2 real antisymmetric matrix with unit
determinant. From the perspective of Eq. (14), the invariant
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is viewed as an integral of the connection field volume three-
form obtained from the connection vectors associated with the
Bloch bundle over the base hypertorus T 3.

C. Relation to Pontryagin class

As a next step, we elaborate on the connections of
the bulk Pontryagin index to the closely related higher-
dimensional characteristic class, the Pontryagin class.
The Pontryagin class characterizing four-dimensional topo-
logical phases with reality condition, can be written
in terms of SO(4)-valued non-Abelian Berry curvature
Fαβ

i j = ∂αAβ
i j − ∂βAα

i j + [Aα, Aβ ]i j as [50]

P1 = 1

8π2

∫
T 4

d4k εαβγ δFαβ
i j F γ δ

i j , (16)

where the integration measure includes all momenta kα with
α = 1, 2, 3, 4 present, or more generally four parameters of a
parameter space, e.g., three momenta and additional parame-
ter t , in the context of this work.

Upon relaxing the reality condition, a complexification of
the real Bloch bundle allows us to redefine the associated
characteristic class as a second Chern number

C2 = 1

8π2

∫
T 4

d4k εαβγ δF̃αβ
i j F̃ γ δ

i j , (17)

where F̃αβ is the non-Abelian Berry curvature over the com-
plexified bundle, traced over the occupied bands i, j. This is
consistent with the relation between characteristic classes [70]

pk (E ) = (−1)kc2k (E ⊕ iE ), (18)

where E denotes the total space of a real Bloch bundle B
and E ⊕ iE is its complexification for any arbitrary positive
integer k. We stress that the nontriviality of the first Pontryagin
class demands reality of the bundle, hence the necessity for
enforcing a symmetry such as PT . Additionally, the Pon-
tryagin class is only defined for vector bundles of dimension
4k, as in terms of cohomology rings pk (E ) ∈ H4k (S4k,Z) ∼=
Z, meaning that the lowest-dimensional Pontryagin insulator
requires four dimensions. However, a four-dimensional Pon-
tryagin insulator requires at least six bands for nontriviality of
the invariant [50]. Hence, it cannot be dimensionally reduced
to our three-dimensional model in the manner in which an
axion insulator can be seen as a descendant of a second Chern
insulator [4]. We may, however, construct an artificial setup
to relate to the Pontryagin class in four dimensions, without
inducing extra bands. For this, we begin by dimensionally
extending the eigenvectors to generate a new Hamiltonian
H (k, t ) = 2|u4(k, t )〉〈u4(k, t )| − 14. We demand t to be a real
parametrization in range t = 0 → t = ∞. Setting,

|u4(k, t )〉 =
√

f (t )|u4(k)〉, (19)

with a smooth function f (t ) = t2

t2+1 , we may induce an ex-
tended non-Abelian connection, which is specifically of su(2)
type exactly in the t = ∞ limit, with [60]

G = f (t )U −1dU . (20)

In this picture, physically the state |u4(k, t )〉 does not change
as soon as t �= 0. This can be understood by recognizing the
transformation as a time-dependent rescaling, which can be

removed by normalization, as long as the vector is nonva-
nishing (t �= 0). We stress that contrary to the non-Abelian
Berry connection, the extended connection, here used only
to establish a link to Pontryagin characteristic class, does not
require normalization of the Bloch states |u4(k, t )〉, contrary
to the states |u4(k)〉 used for the quaternion construction of
the SU(2) matrices U , which necessarily need to be normal-
ized to achieve the unitarity of U . Mapping to the associated
curvature two-form upon taking an exterior derivative, the
connection yields

Q = 1

8π2

∫
D4

TrF ∧ F = P1, (21)

defined on an open disk D4, which is bounded by a three-
sphere S3 parametrized with crystal momentum. Here, the
fourth k coordinate t can be interpreted as a tuning parameter
that allows for the expansion of the sphere [60].

The above thus shows that one may establish a connec-
tion between the Pontryagin index invariant present in the
proposed three-dimensional models and, on dimensional ex-
tension, one of the four characteristic classes capturing the
topology of vector bundles corresponding to band structures.

III. MODELS

Within this section we formulate concrete models allowing
us to induce nontrivial Pontryagin index topology. We begin
by formulating a minimal model, after which a systematic
framework is introduced to generate models exhibiting arbi-
trary values of the invariant.

A. Flat band limit

An effective approach to formulate a minimal model is to
appeal to the flat band limit to capture the real topology of
topological phases with nontrivial Pontryagin class. We use a
minimal construction, which explicitly induces a winding on
S3 by the fourth band [32,41,50,69], while keeping three other
bands separated from the fourth by a gap, namely,

HQ(k) = 2n4(k)⊗nT
4 (k) − 14. (22)

The nontrivial Pontryagin index corresponding to the above
system (22) is then simply given as

n4(k) = 1

N

⎛⎜⎜⎜⎜⎝
sin pxkx

sin pyky

sin pzkz

m − ∑
i=x,y,z cos piki

⎞⎟⎟⎟⎟⎠. (23)

In the above, N represents a normalization factor and the
parameters px, py, pz ∈ Z are introduced to allow for arbi-
trary Pontryagin indices Q = 2px py pz and Q = px py pz on
changing m. We reiterate that viewed as winding on S3, any
Pontryagin index corresponds to a member of the third homo-
topy group π3(S3) ∼= Z.

Importantly, the possibility of an arbitrarily high associated
winding invariant Q, namely Pontryagin index, definitionally
implies the presence of a Z-type invariant, which we also
verify further with the Z-type bulk-boundary correspondence
(Sec. IV).
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B. Plücker embedding

Alternatively, one may also generally construct a Hamil-
tonian of any Pontryagin index Q through the Plücker
embedding approach [29,39,71]. Previously, this framework
was used in the context of two-dimensional Euler insula-
tors [29] and second Euler insulators [50], which are close
relatives of the truly four-dimensional Pontryagin insulator
[50]. In brief, the embedding encapsulates equipping elements
of the classifying Grassmannians with multivectors, which
form the basis for matrix construction of the Hamiltonian
[29]. We start with a flattened Hamiltonian and a Bloch band
matrix R(k)

HQ(k) = R(k)

⎛⎜⎜⎜⎜⎝
−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎞⎟⎟⎟⎟⎠R(k)T. (24)

The matrix R(k) ∈ SO(4) is generated via a parametrization
with three angles (φ,ψ, θ ), where those are provided by maps

ψ (k) = πmax{|kx|, |ky|, |kz|}, (25)

θ (k) = cos−1
(
kz/

√
k2

x + k2
y + k2

z

)
, (26)

φ(k) = Q tan−1(kx/ky), (27)

for any k point in the BZ isomorphic to a three-torus T 3.
Intuitively, the map assigns angular hyperspherical coordi-
nates (φ,ψ, θ ) to different patches of k points in the BZ,
while inducing the angular winding introduced by Q. The
parametrization of the Hamiltonian is explicitly provided by
a map

R(k) = eiθ�20 eiφ�21 eiψ�12 , (28)

with corresponding matrices �i j = σi ⊗Kσ j , where ⊗K de-
notes a Kronecker product. We stress that Fourier trans-
forming the components of HQ(k) would in principle yield
long-range hoppings, which can be truncated to finitely ranged
neighbor hoppings without changing the topology as long as
the gap is not closed upon truncation, which we effectively
corroborate at each stage of the analysis [29,39,63].

The Bloch vectors, which can be identified with columns
of R(k) as seen through the spectral decomposition, can be
projected on S3 as a base space to form a vector bundle, such
that the three-band subspace spans its tangent bundle T S3,
while the last band constitutes the normal bundle NS3. The
maps introduced above generate the winding in the bundle and
the Pontryagin index can be viewed as the winding of the fiber
across the bundle.

IV. PHYSICAL MANIFESTATIONS OF TOPOLOGY

Having introduced the mathematical aspects of the Pon-
tryagin topology and, accordingly, model realizations, we
proceed to the main results corresponding to the manifesta-
tions of nontrivial hyperspherical windings and underlying
non-Abelian structures, as captured by the well-established
S3 ∼= SU(2) isomorphism.

FIG. 1. (a) Phase diagram of the minimal model with px = py =
pz = 1 supporting nontrivial Pontryagin indices Q. The mass term
controls the Z-valued invariant, similarly to the two-dimensional
models with Euler topology [41]. (b) Projection of bulk bands and
edge states along a one-dimensional section of a three-dimensional
insulator with nontrivial Pontryagin index Q = 1 set in the minimal
model, as compared with Q = 0.

A. Bulk-boundary correspondence

We begin by investigating the spectrum and bulk-boundary
correspondence in the minimal model with (px, py, pz ) =
(1, 1, 1) set as in Eq. (23), with the occupied three-band sub-
space, and unoccupied band inducing the nontrivial Pontrya-
gin index. The projected band structure of the insulator with
Q = 1, which includes the projections of the boundary states,
is shown in Fig. 1.

We observe that despite the presence of edge modes at-
tainable at any energy within the bulk gap, these do not need
to connect valence and conduction bands. Interestingly, in
the context of the other PT -symmetric phases, the modes
with a similar property were reported in two-dimensional
meronic Euler insulators, also characterized by non-Abelian
topology [48]. In particular, we notice that the obtained one-
dimensional projection of states, retaining only ky as a good
quantum number labeling the states (see Fig. 1), is reminis-
cent of the one-dimensional projected spectrum obtained from
the two-dimensional Euler Hamiltonians. As will be explored
further in the following, the connection to the Euler phases
becomes stronger, on recognizing that the bulk Hamiltonian
with Q �= 0 can support surface bands with a surface Euler
invariant, subject to the constraint that the boundary satisfies
the reality condition [29,32].

We further note that upon taking m = 2, the edge states
can be separated by an energy gap, if PT symmetry is broken
on the surface. Correspondingly, there exist surface bands,
which can acquire a dispersion reminiscent of the gapped
pockets in the two-dimensional edge spectrum found in three-
dimensional axion insulators (Fig. 1) [72]. Moreover, the edge
state branches can be disconnected from the projected bulk
with purely PT -symmetric perturbations. We stress again
that for the non-Abelian phases studied in this work, the
symmetry is spinless (PT )2 = 1. To contrast the introduced
PT -symmetric phases with the axion insulators further, we
may also compare the bulk states, rather than the boundary
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eigenstates. The bulk of axion insulators is characterized by
the θ angle, proportional to the magnetoelectric polarizability,
and given by an integral of the Chern-Simons three-form

θ = 1

4π

∫
T 3

Tr

[
dA ∧ A + 2

3
A ∧ A ∧ A

]
. (29)

Here, the trace is evaluated over occupied states. Interest-
ingly, on direct evaluation of θ for arbitrary Q ∈ Z, we find
θv = 4πQ in the valence subspace of three bulk bands, with
θc = 0 trivially in the single conduction band satisfying the
reality condition. However, under the 3 ⊕ 1 band partitioning,
a gauge transformation on the occupied states acts as g ∈ U (3)
in the degenerate limit, obtaining a unitarily equivalent set of
single-particle eigenstates, which transforms the θv as [73]

θv → θv + 1

12π

∫
T 3

d3k εpqrTr [(g−1∂pg)(g−1∂qg)(g−1∂rg)].

(30)

Such a gauge term can be identified with the Z-valued
generator of the cohomology H3(U (3),Z) ∼= Z, namely

1
24π2

∫
S3 Tr (g−1dg)3 [74], yielding a gauge ambiguity of

θv → θv + 2πn, where n is integer. Hence, θv can only be
defined mod 2π . Therefore, for any introduced Q we find,
θv = 4πQ → 0 (mod 2π).

As follows from the known bulk-boundary correspon-
dence for the three-dimensional topological insulators [4], the
triviality of the bulk θ allows the surface anomalous Hall
conductivity to vanish. Indeed, we consistently find that the
total surface Chern number (Cs,tot) vanishes, which is consis-
tent with the surface Chern theorem [75]. To evaluate Cs,tot,
we compute the surface bands |us

n(kx, ky)〉 over the reduced
BZ (rBZ ∼= T 2), as well as the associated Wannier ladders
(see Appendix B). Explicitly, the total surface Chern number
(Cs,tot) is defined as

Cs,tot = 1

2π

∫
rBZ

d2k
∑

n

�n
xy,s. (31)

Here, �n
xy,s ≡ i[〈∂kx u

s
n(kx, ky)|∂ky u

s
n(kx, ky )〉 − c.c.] is the

Abelian Berry curvature of the surface band, which
individually integrates to Cn

s . Here, n runs over all
bands with the hybrid Wannier centers w̄z(kx, ky)
self-contained in the surface layers. The topological nature
of the surface states for nonvanishing Q is captured by
the 2Q-fold winding of w̄z(kx, ky), as can be observed in the
Wannier ladders along arbitrary quasimomenta kx and ky, see
Appendix B.

Having introduced Cs,tot, we recognize that the surface
Chern theorem gives θc + θv = 2πCs,tot, as also shown in
Ref. [58] in the context of PT -symmetric real Hopf insulators
(see also Sec. V). Correspondingly, we obtain θv = 4πQ =
2πCs,tot = 0 mod 2π . Therefore, Cs,tot = 0, on inserting the
previously recognized θc = 0, and on including the modular
character of θv (mod 2π ) for the three-band occupied valence
subspace. This finding is distinct from real Hopf insulators
with bulk-boundary correspondence captured by a pair of
Hopf indices resulting in surface Chern numbers equal and
opposite on the opposite boundaries; a configuration which
also manifestly satisfies PT symmetry.

However, while Cs,tot = 0 for any Pontryagin index Q, we
crucially find that the boundaries host topologically nontriv-
ial pairs of surface bands. Namely, we calculate the surface
Wilson loop spectrum, obtaining nontrivial Wilson loop
eigenvalue windings of ±2Q. Consistently with the surface
Chern theorem, this configuration yields Cs,tot = 2Q − 2Q = 0.
Furthermore, as long as the surface obeys C2T symmetry, the
pair of the surface bands can be characterized with a surface
Euler topology under the reality condition imposed on the
surface [29,32]. The surface Euler invariant (χs) reads:

χs = 1

2π

∫
rBZ

d2k Euxy,s, (32)

with integrand Euxy,s ≡ 〈∂kx u
s
n(kx, ky)|∂ky u

s
n+1(kx, ky)〉 −

〈∂ky u
s
n(kx, ky)|∂kx u

s
n+1(kx, ky)〉, the surface Euler curvature in

surface bands n, n + 1. Consistently with the obtained surface
Wilson loop windings, this amounts to χs = 2Q. While the
numerical validation for the discussed correspondence is
provided in Appendix B, we leave the further study of the
emergence of such exotic bulk-boundary correspondence for
future work.

Finally, we remark that for any general nonvanishing value
of Q, the bulk-boundary correspondence is reflected by the
topological protection of the edge states accompanying the
topologically nontrivial bulk (Q �= 0). In particular, it is man-
ifested by their robustness against disorder, as numerically
validated in Sec. VI

B. Topological phase transitions

We can furthermore construct a phase diagram from the
minimal model introduced above. When px = py = pz = 1,
we observe two topological phase transitions at m = ±1
and m = ±3. Correspondingly, the Pontryagin index changes
from Q = 2 to Q = 1 and to Q = 0, as shown in Fig. 1. We
notice that this finding is different from the two-dimensional
finding in orientable Euler insulators [29], where χ = 2N
with N ∈ Z, admitting only a direct transition with �χ = ±2,
e.g., from χ = 2 to χ = 0 alongside a removal of Euler nodes,
on closing the principal gap. Interestingly, as the trivializa-
tion occurs on closing the principal gap in three-dimensional
Pontryagin models, the nodal structure also disappears, as we
detail in the subsequent.

The reduction of the Pontryagin index through topological
phase transitions can be viewed in terms of the trivialization of
subdimensional non-Abelian Wilson loop windings (see also
Sec. IV C, Fig. 5) over two-dimensional sections of BZ at the
high-symmetry planes kz = 0 and kz = π . To understand this
further, we recognize that the momentum-space construction
of the Hamiltonian resembles the construction of a strong
three-dimensional, spinful, Z2 insulator, where the strong in-
variant is induced on appropriately coupling two-dimensional
Z2 quantum spin Hall insulator models at kz = 0 and kz = π .
Here, the induced strong invariant is the Pontryagin index,
which is Z valued, as reflected by the following construc-
tion from Euler insulators hosting Z invariants. Namely, the
Hamiltonian spanning from kz = 0 to kz = π momentum-
space planes, as defined in Eq. (23), can be thought of as
equivalent to a family of individual subdimensional non-
Abelian 2D phases [41]; (i) initially consisting of three bands
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FIG. 2. Nodal structures over the three-dimensional Brillouin
zone for the minimal model of the Hamiltonian provided in Eq. (22).
Nodes between bands |u1〉 and |u2〉 were denoted in blue, while
band crossings between bands |u2〉 and |u3〉 were denoted in orange.
(a) Q = 0 with trivial nodal structure and vanishing linking numbers.
(b) Q = 1, with two nodal rings present. (c) Q = 2, with four linked
nodal rings. We show that the structures are not protected by the
Pontryagin index Q, but are easily realized in the context of the
presented models.

in total: two occupied Euler bands, and one unoccupied band
given by Hχ (k); (ii) modified by an inclusion of a trivial
occupied band accompanying the two-band subspace; (iii)
with a fixed mass term set by the kz (m∗ = m − cos kz). We
note that the other subdimensional relations in terms of two-
dimensional fragile, though symmetry-indicated rather than
symmetry-indicator-free [29], topology, were established in
the context of axion insulators with θ = π [5,76,77].

In the next section, after discussing the nodal structures that
naturally arise in the three-band subspaces of our models, we
further propose topological phase transitions to more general
multigap flag limit phases with four isolated bands, classified
by an oriented flag variety

F̃l1,1,1,1(R) = SO(4) ∼= S3 × S3

Z2
, (33)

that thereby serve as an unambiguous reference to further
interpret the outlined topological structures. Here we note that
a general oriented flag manifold is defined as

F̃lp1,...,pN (R) = SO(4)/[SO(p1) × · · · × SO(pN )]. (34)

Such multigap flag phases where all bands are fully par-
titioned can be accessed on addition of a proper term
to the Hamiltonian with Pontryagin index Q, or smooth
reparametrization of the diagonal matrix in the embedding
construction, in both cases necessarily removing any band
crossings to enter the full multigap regime. We will moreover
see that the connection to the flag limit (Sec. V) will provide
for an unambiguous reference to fully elucidate the above
topological features. That is, we will show that such topolog-
ical transitions can be tracked with the bulk index, as well as
the distinct bulk-edge correspondence for various types and
values of the bulk invariants (Sec. VI). Before turning to these
aspects, we, however, first comment on the naturally emerging
linking structures in our models (see Fig. 2).

C. Nodal structures

In this section, we discuss the nodal structures present in
the three-band subspaces within the band structures of the
introduced models. Such a characterization is necessary to fur-

ther understand the bulk-invariant Q induced by π3(Gr1,4) ∼=
π3(S3) ∼= Z, central to this work, given that the nodal topol-
ogy is supported by the tangent bundle T S3 of the classifying
space, which is parallelizable [78], in contrast to the winding
of the isolated band in the normal bundle NS3 inducing the
invariant. The parallelizability of the tangent bundle of S3

implies that the nodal structure cannot be responsible for
the value of Q, the manifestation of which we demonstrate
by explicit unbraiding constructions outlined in this section.
We stress that these nodal links appear very naturally in our
models, as shown in Fig. 2, and can be unbraided [33] quite
efficiently to further enter the full flag limits introduced in the
previous subsection. As a result, we empirically observe that
the presented model setting provides an excellent platform to
accomplish braiding in rather simple four-band models that
should appeal to metamaterials settings, see also Sec. VII.
Here, we elaborate on the non-Abelian charges carried by the
nodal structures present in the models, and on the unbraiding
necessary to access the reference flag limits further discussed
in the next section. We include explicit parametrizations of the
corresponding braiding Hamiltonians in Appendix C.

To characterize the nodal topology, we start by noticing
that the frames {|u1〉, |u2〉, |u3〉, |u4〉} constituting a vierbein
at any k point can acquire an accumulated angle on being
parallel-transported around any node due to band touch-
ing. These are captured by the first homotopy group of an
unoriented flag variety Fl1,1,1,1 with O(4) representing gen-
eral rotations of the vierbein and each Z2 capturing the
gauge freedom of single Bloch vector, |ui〉 → −|ui〉, en-
forced by the real symmetry. The according fundamental
group is

π1(Fl1,1,1,1) = π1

(
O(4)

Z4
2

)
∼= P̄3, (35)

where P̄3 is the Salingaros vee group of Clifford algebra Cl0,3,
which is a non-Abelian group of rank 16, with ten conjugacy
classes. Therefore, a quaternion group is a subgroup of such
group, implying its non-Abelian character. The Salingaros vee
group is obtained from Cl0,3 by first defining a basis for the
Clifford algebra as

B = {1, e1, e2, e3, e1e2, e2e3, e1e3, e1e2e3} ≡ {ei}, (36)

where the set {e1, e2, e3} generates the algebra—this fact is
important when assigning the non-Abelian charges to nodes
in the energy spectrum. The vee group is then defined as

G = ({±ei|ei ∈ B},×), (37)

where × represents the Clifford algebra multiplication.
There exists a ring isomorphism between Cl0,3 and the

split biquaternions, which are a type of hypercomplex num-
ber based on the quaternions. While quaternions are of the
form w + xi + yj + zk and have real coefficients {w, x, y, z},
biquaternions have complex coefficients multiplying the
imaginary units, lifting the number of real dimensions from
four to eight. The split biquaternions are then obtained by
having the coefficients be split-complex numbers, which are
of the form z = x + iy, with i2 = 1 rather than i2 = −1. The
split biquaternions are also isomorphic to H ⊕ H, where H
are the quaternions. This shows how the quaternion charges
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FIG. 3. Explicit unlinking of nodal structure through the creation of adjacent nodal rings on closing a gap, as parametrized in Appendix C.
The blue and orange rings show nodal lines between the bands (|u1〉–|u2〉, and |u2〉–|u3〉, correspondingly) in the occupied three-band subspace
and the green rings show nodal lines between the highest occupied and unoccupied bands. (a) initial nodal links, (b)–(c) creation of additional
rings, (d) connecting rings, (e)–(f) splitting and disentangling green and blue rings, (g) removal of green rings, (h) contraction and annihilation
of blue rings to enter the gapped flag limit. Numerically, the unbraiding on closing the principal gap can be achieved by adding a diagonal
mass term to the Hamiltonian, similarly to the two-dimensional Euler insulators and semimetals, where an effective mass to unbraid the nodes
can also be realized by adding on-site disorder [56].

of 2 ⊕ 1 band models [51] can be found as a subgroup of the
charges in 3 ⊕ 1 band ones.

The ring isomorphism also implies a group isomorphism
between the vee group of Cl0,3 and the group of split bi-
quaternions, thus the charges can be assigned as shown
in Appendix D. As the nodal topology of four-band non-
Abelian insulators with real topology requires nontriviality
of the first homotopy group of corresponding flag variety, a
similar classification was also achieved in one-dimensional
and two-dimensional phases [51], which, however, cannot
realize the nodal ring structures and associated unbraid-
ing, requiring three spatial dimensions, as discussed in
this work.

We find that by construction of the minimal models in-
troduced in Eq. (22), the linking number of all nodal rings
corresponding to nodes in different gaps is equal to the Pon-
tryagin index Q therein. The topological phase transitions
introduced in the previous sections cause the disappearance
of the nodal structures through an associated unbraiding, as
shown in Fig. 3. This process involves subsequently: creation
of additional nodal rings on gap closure, unbraiding, which
flips the nodal charges; reconnecting the rings; and finally
contracting them. On unbraiding, which allows unlinking the
structure on flipping the charges, the contraction can remove
the nodes, ultimately gapping out the phase. We give an ex-
plicit parametrization of this process in Appendix C.

However, as we explain, the unbraiding of nodal ring struc-
tures does not necessarily require closing the principal gap

(the gap between the three-band and single-band subspace),
see Fig. 4, which is supported by the fact that a tangent bundle
of a three-sphere T S3 hosting three-band subspace of our
models is parallelizable. This property admits a removal of
singularities in the tangent bundle due to the nodes, without
accessing the fourth band from the normal bundle NS3 by
the principal gap-closing degeneracies. We show by explicit
construction that the presence of split-biquaternion nodes is
not intrinsically due to the nontriviality of Pontryagin index as
a bulk invariant, which would be equivalent to the necessity
of closing a gap for the removal and unbraiding of nodal
structure only, see Fig. 3. Namely, we find that the nodal
structure can be unbraided without closing a neighboring gap,
bringing the band structure to a state where nodes of oppo-
site split-biquaternion charges can be annihilated with local
perturbations. However, we emphasize that such unbraiding
process, involving introduction of additional rings, and refined
twisting of the nodal rings [Figs. 3(b)–3(d)] to flip charges on
unbraiding enabling further ring annihilation, is highly nonlo-
cal, effectively providing a protection against arbitrary local
perturbations. We also provide an explicit parametrization of
this process in Appendix C.

Interestingly, we find the nodal rings to enclose two-
dimensional regions, which induce π -phase shifts on parallel-
transporting eigenstate frames around them. In other words,
such regions are associated with the discontinuities in the
Berry connection over the BZ. We refer to these as Dirac
sheets, in analogy to the lower-dimensional analogs, namely

165125-8



THREE-DIMENSIONAL PT -SYMMETRIC … PHYSICAL REVIEW B 109, 165125 (2024)

FIG. 4. Visualization of the process of unbraiding of nodal structures without closing the principal gap in a model with Q = 1. The blue
and orange rings show nodal lines in the occupied three-band subspace, as in Fig. 3. (a) Initial nodal links, (b) creation of additional rings,
(c) connecting rings, (d)–(e) splitting and disentangling rings, (f)–(g) closure and removal of orange rings, (h) leftover blue ring, which can be
contracted and removed, obtaining the fully gapped flag limit. The unbraiding was obtained on adding a parametrized dispersive band-splitting
term to the Hamiltonian, contrary to the previously introduced unbraiding with a diagonal term closing the principal gap; see also Appendix C.

Dirac strings, corresponding to the gauge connection dis-
continuities in two-dimensional Euler phases. In the further
parallel-transport study, for each value Q �= 0, we additionally
obtain Wilson loop spectrum, showing nontrivial windings
across the BZ, contrary to Q = 0, see Fig. 5. The windings
obtained are even, as in Euler phases, contrary to the odd
windings found in Stiefel-Whitney insulators [38].

V. REFERENCE FLAG LIMITS

In this section, we study the multigap topology of the
full flag limit of the Hamiltonian obtained from the models
with nontrivial Pontryagin index, when all bands are non-
degenerate across the entire BZ. This can be achieved by

annihilating the nodes after unbraiding the nodal structure
without closing the principal bulk energy gap, as we demon-
strated in Fig. 4. As all nodes are removed, the classifying
space is given by Fl1,1,1,1 and through homotopy classification
we obtain the following homotopy classes of Hamiltonians
π3(Fl1,1,1,1) ∼= π3[SO(4)] ∼= Z ⊕ Z. In other words, by re-
moving the degeneracies between bands, a phase transition
occurred, which allows the new system to host two Z in-
variants (wL,wR) rather than one (Q). We find that these
invariants are not independent. These flag limits and limits
hosting known topologies serve as an important reference to
further elucidate our above findings.

As the classifying space has a direct link to SO(4), it is
useful to consider how the Z ⊕ Z invariant arises in the case

FIG. 5. Non-Abelian Wilson loop winding for Pontryagin index (a) Q = 0, (b) Q = 1, (c) Q = 2, and (d) Q = 3. The loops were evaluated
at ky = 0, and high-symmetry planes ky = π . For Q = 0 we find no winding of the Wilson loop eigenvalues φ, along with the winding of
Q = 1, Q = 2, Q = 3 being even, contrary to the Stiefel-Whitney insulators with odd Wilson loop winding. We observe that the combined
total winding of the eigenvalues within two planes sums to 2Q.
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of SO(4) matrices. In this regard it is useful to call upon the
well-known isomorphism

SO(4) ∼= S3
L × S3

R

Z2
, (38)

which is a consequence of the fact that SO(4) rotations can be
split into two isoclinic rotations (left and right) acting on the
vector of interest from the right and left. An arbitrary SO(4)
rotation leaves two planes invariant in the sense that any vector
within these planes stays in its plane during the rotation. The
third homotopy group of this space can then be considered
to arise from the 3D winding number of two copies of the
three-sphere:

π3
(
S3

L × S3
R

) ∼= π3
(
S3

L

) ⊕ π3
(
S3

R

) ∼= Z ⊕ Z. (39)

The Z2 quotient does not affect πn for n � 2, as it is a dis-
crete space. Using this information, a Hamiltonian that hosts
this set of invariants may be constructed as detailed in the
following.

We start by recognizing that a generic four-band flag
Hamiltonian can be factored as

H (k) = V (k)ẼV (k)T, (40)

where V is an SO(4) matrix of the normalized eigenvectors
and Ẽ = diag[−2,−1, 1, 2]. Distinct eigenvalues are used to
enforce the fact that there are gaps between all bands. V can
then be factored into VRVL, which are the left and right iso-
clinic rotation matrices. An explicit form of this factorization
reads [79]

VR =

⎛⎜⎜⎜⎝
r0 −r3 r2 r1

r3 r0 −r1 r2

−r2 r1 r0 r3

−r1 −r2 −r3 r0

⎞⎟⎟⎟⎠, (41)

VL =

⎛⎜⎜⎜⎝
l0 −l3 l2 −l1
l3 l0 −l1 −l2

−l2 l1 l0 −l3
l1 l2 l3 l0

⎞⎟⎟⎟⎠, (42)

where r2
0 + r2

1 + r2
2 + r2

3 = 1 and l2
0 + l2

1 + l2
2 + l2

3 = 1.
These conditions ensure that VR and VL are orthogonal
matrices and imply that the components ri and li
form a pair of four-dimensional vectors that lie on
three-spheres.

Considering now the map from the BZ to each of these
three-spheres, we can use the winding vector defined in the

previous model:

r = (sin wLkx, sin ky, sin kz, 2 − cos wLkx − cos ky− cos kz )T,

(43)

l = (sin wRkx, sin ky, sin kz, 2 − cos wRkx − cos ky− cos kz )T,

(44)

to induce the winding on each of these spheres. However, in
this case it is possible to have a different winding number
on S3

R and S3
L through the parameters wL and wR. The Bloch

eigenvectors are then obtained by taking the columns (or
rows) of VRVL.

Although it is not immediately obvious how these two
winding numbers can be extracted from the eigenvectors, it
is important to note the following. Calculation of the winding
number of the Bloch eigenvectors using Eq. (7) gives either
wL − wR or wL + wR depending on if we take V = VRVL or
V = VRV T

L . The same number is obtained from all eigenvec-
tors, so this alone is not enough to characterize the phase.

Further to this, we note that another type of phases
described by PT -symmetric four-band models has been pro-
posed recently; namely, the so-called real Hopf insulators
[58]. Contrary to our models, these phases require an oc-
cupied and unoccupied two-band subspaces classified in the
degenerate limit. In other words, the partitioning in that case
corresponds to a classifying space

G̃r2,4(R) = SO(4)/[SO(2) × SO(2)] ∼= S2 × S2. (45)

Correspondingly, the bulk invariant is given by

π3(G̃r2,4(R)) ∼= π3(S2 × S2) ∼= Z ⊕ Z, (46)

which can be denoted as (χw, χz ) and referred to as double
Hopf index. The Hopf invariants (indices) are given by [58]:

χw/z = − 1

4π

∫
T 3

aw/z ∧ fw/z, (47)

where fw/z = daw/z, while aw/z = iz̄w/zdz̄w/z are connection
one-forms defined in terms of Hopf maps induced by the
complex vectors z̄ [41,58].

It follows that the real Hopf insulators with
(χw, χz ) = (0, Q) can be obtained on repartitioning the
bands of the model with Pontryagin index, or by closing the
upper and lower gaps in the flag limit phases. Any attempts to
continuously connect the Hamiltonians of these three phases
will necessarily fail, as a gap closing or reopening needs to
occur, corresponding to a change of the invariants following
from the distinct classifying spaces.

There is, however, an interesting correspondence between
wL and wR and the invariants constructed to classify the real
Hopf insulator in Eqs. (45)–(47), see Appendix E,

χw = 1

2π2

∫
BZ

d3k εi jkl r
i∂kx r

j∂ky r
k∂kz r

l = wR,

χz = − 1

2π2

∫
BZ

d3k εi jkl l
i∂kx l

j∂ky l
k∂kz l

l = −wL. (48)

We also confirm with further numerical evaluations that χz

and χw correspond exactly to the winding number wL and wR

of the isoclinic rotation matrices. This implies that although
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these invariants were derived assuming a classifying space of
G̃r2,4, the opening of a gap in the top and bottom two-band
subspaces does not change the type of topological homo-
topy invariants. In fact, the only nontrivial change happens
on closing two adjacent gaps, as π3(Fl1,1,1,1) ∼= π3(Fl1,1,2) ∼=
π3(Gr2,4) ∼= Z ⊕ Z, but π3(Gr1,4) ∼= Z. These results also
show that χw and χz, as defined above, are not necessarily
Hopf invariants, as there is no S2 structure in the classifying
space of this model; although there is a link between the
winding number on the three-sphere and the Hopf invariant.

We thus retrieve an example of true multigap topology,
and a sequence of phase transitions that can be obtained by
closing successive gaps. Starting from a fully gapped model
with the classifying space Fl1,1,1,1, we can specify wL and wR

to obtain a real Hopf phase. We can then close two adjacent
gaps, leaving only the highest or bottom energy gap open,
to obtain the model characterized by the Pontryagin index.
Finally, we can trivialize such model by closing the remaining,
highest or bottom energy gap.

It is important to note that the eigenfunctions in the fully
gapped model also possess a 3D winding number (Pontrya-
gin index). The winding, however, can be fully determined
from the values of wL and wR and therefore does not con-
stitute an independent invariant. The crucial change that
happens on closing two adjacent gaps is the ability to mix
the bottom three bands through gauge transformations. This
introduces a gauge dependence to wL and wR, which can
be easily checked numerically. It does not, however, affect
the winding number of the eigenvectors, as captured by
the Pontryagin index, which now becomes an independent
invariant.

We may also consider the stable flag limit in which we
extend the band structure to an arbitrary number of isolated
bands, enforcing band gaps between them in the flattened
Hamiltonian. The classifying space for such a new model is
O(N )/Z×N

2 , with third homotopy group, π3(O(N )/Z×N
2 ) ∼=

π3(SO(N )) ∼= Z, for N � 5. It is known [60] that every sim-
ple compact group G̃ contains an SU(2) subgroup, and the
Pontryagin index as defined in Eq. (12) classifies all the maps
π3(G̃). The invariant can actually be evaluated explicitly from
Eq. (12) by inserting the frame of N eigenvectors in the place
of matrix U . Alternatively, the Z invariant arising from the
homotopy classification can be understood as the number of
times the Hamiltonian wraps the SU(2) subgroup of SO(N ).

VI. EDGE STATES AND DISORDER

In this section we comment on the edge states due to the
bulk-boundary correspondence in the reference flag limits,
which we contrast with the original models consisting of
one principal gap and a three-band subspace. Furthermore,
we show that these edge states are robust up to gap-closing
disorder in the 3 ⊕ 1 Pontryagin phases, as well as in the
related flag limits.

A. Edge states in flag limits

We further elaborate on the bulk-boundary correspondence
between the flag invariants wL,wR and the presence and de-
generacies of the multigap edge states. We find that top and

FIG. 6. Comparison of edge states in the bulk gaps of insula-
tors with Pontryagin indices Q = 2, Q = 1, and Q = 0, realized in
(a)–(c) the model Hamiltonians (22), (d) flag limit phase
(wL,wR ) = (0, 1), (e) (wL, wR ) = (1, 1), (f) (wL,wR ) = (2, 1). The
edge states are evaluated under open boundary conditions in the x
direction with (ky, kz ) = (0.5, 0.5). We find that the bulk-boundary
correspondence of these three-dimensional PT -symmetric phases
yields the multiplicities of edge states g = 4Q in the principal gap
of 3 ⊕ 1 model, and g1 = 4(wL + wR ), g3 = 4(wL − wR ) in bottom
and top gaps in the flag limit. While the topologically trivial PT -
symmetric phases with Q = 0 can host edge states, these are not
topologically protected due to the triviality of the bulk invariant,
as we verify against disorder (Sec. VI). On closing two lower gaps
with a band inversion, g = g3, which can be mapped to the corre-
spondence of invariants. Q = (wL − wR ). The fourfold multiplicity
of edge states can be understood in terms of the interplay of the sym-
metries: the essential PT , as well as T (T 2 = 1), and P admitted by
the models.

bottom gaps support the presence of dangling edge states, with
degeneracies given by multiples of wL − wR and wL + wR,
see Fig. 6. This should be contrasted with the Q edge states in
the principal gap of degenerate 3 ⊕ 1 limit with Pontryagin
index, as well as with real Hopf insulators, which do not
require a presence of two subsidiary band gaps in occupied
and unoccupied two-band subspaces. Additionally, the further
connection between edge states in flag limit and 3 ⊕ 1 phases
with Pontryagin index can be seen on breaking T , while keep-
ing PT in the latter, by an addition of a constant matrix term.
Namely, this results in the additional edge states appearing in
the lower nodal part of the three-band subspace, besides the
edge states in the principal gap. As we showed in Sec. IV,
the nodes are not protected by the bulk invariant, hence their
removal establishes a link of edge states in 3 ⊕ 1 phase to the
edge states in the full flag limit.
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FIG. 7. Edge and bulk states of (a)–(b) the Pontryagin Q = 1
and (c)–(d) associated flag limit (wL, wR ) = (0, 1) phases subject
to weak disorder (W = 0.3). The one-dimensional wave function
sections of clean phases (black) were plotted against the same states
perturbed with weak Anderson disorder (red). In both phases, the
edge states remain exponentially localized (a), (c) as long as the
disorder strength is not sufficient to close the gap. The bulk states
(b), (d) do not show similar robustness, becoming distorted on adding
disorder.

B. Robustness to disorder

In this section, we show the protection of edge states
supported by the nontrivial Pontryagin index Q of the bulk
Hamiltonian, up to gap closing. While the trivial phase Q = 0
in the proposed model also has the associated edge modes,
we show that these are not topologically protected, hence not
robust to disorder.

We impose Anderson disorder by the following perturba-
tion Hamiltonian:

�Hdisorder =
∑
n,i

δμi,nc†
i,nci,n, (49)

where n is a unit cell label, i = 1, 2, 3, 4 is an orbital label, and
δμi,n ∈ [ − W,W ] is a local change in the chemical potential
on adding disorder with uniform random distribution and am-
plitude W . We find that the edge states remain exponentially
localized on adding weak disorder and dissolve at the disorder
strength W above the size of the bulk gap, see Fig. 7.

VII. EXPERIMENTAL REALIZATIONS

We now further elaborate on experimental realizations,
which we suggest for studying physical manifestations of the
novel type of three-dimensional Pontryagin band topology
studied in this work. First, we propose a metamaterial real-
ization of the described minimal phases with Q = 2, Q = 1,
Q = 0 (px, py, pz = 1) with the correspondent edge states,
hence a way to measure and empirically validate the Z in-
variant given by the Pontryagin index. The protocol is based
on the idea of extending the known simulations with acoustic
resonators [48,51], to a 3D synthetic matter construction. To
generate the lowest Pontryagin indices, connecting tubes up
to the second neighbors is necessary, and we propose that the
π/2 phase shifts generating imaginary hopping amplitudes

can be ensured by proper phase-shifting impedance match-
ing in the materials constituting the connecting tubes. On
extending the setup of an analogous experiment used to study
non-Abelian band topology [51], the amplitudes of hopping
parameters can be controlled with the diameters of the tubes,
with coupling of any two connected resonators being captured
by an effective Hamiltonian

Heff =
(

ω1 eiφ|κ|
e−iφ |κ| ω2

)
. (50)

Here, |κ| and φ correspond to the amplitude and the phase
of the coupling κ representing particular hopping, and ω1, ω2

are natural resonator frequencies identified with the on-site
energies in the tight-binding model.

While phases with higher index Q can, in principle, be
created, that would require additional higher-neighbor con-
nections, which might be unfeasible from a technical point
of view. We propose that the mass term m, which is crucial
for the topological phase transitions, can be controlled by
changing thickness of metamaterial tubes. Such procedure
would realize a three-dimensional extension of the protocols
implemented in the previous works studying Euler topology
in two spatial dimensions [48,51].

Additionally, we propose that the nontrivial nodal struc-
tures can be realized in optical trapped-ion experiments. We
would expect the protocol to be analogous to the closely
related experiment used for studying the Euler class in the
lower-dimensional, topological Euler insulators [42] with
three-band Euler Hamiltonians realized in hyperfine states of
ytterbium 179Yb+ ions. The four bands with Pontryagin index
represented by the fourth-band winding might be realized in
atomic states of four-level systems, such as, e.g., neodymium
Nd3+, in that case with states labeled by term symbols 4F5/2,
4F3/2, 4I9/2, 4I11/2. Here, inverting the band structure while
not changing topology, such that three bands are unoccupied,
might be simpler to achieve in a real experiment. The ex-
plicit parametrization of the Hamiltonians naturally realizing
the manipulation of the linked nodal structures by braiding
processes described in Sec. IV, is provided in Appendix C.
We note that the unbraiding on closing the principal gap
(Fig. 3), which is accessible by a simple diagonal term, might
be experimentally simpler to realize than without closing the
gap (Fig. 4).

VIII. DISCUSSION AND CONCLUSION

We show that the Pontryagin index naturally induces a
Z-type invariant in real-valued three-dimensional four-band
Hamiltonians, which we further corroborate by topological
phase transitions and bulk-boundary correspondence. This
can be contrasted with other known topologies in three-
dimensional systems. Contrary to the stable Z2 invariant of
a three-dimensional topological insulator (Altland-Zirnbauer
class AII), protected by spinful T (T 2 = −1) symmetry, the
centrosymmetric case thereof, or an axion insulator with θ =
π and broken T symmetry; we find that the Pontryagin mod-
els host a Chern-Simons three-form for any winding number
Q, yielding trivial θ , once the gauge freedom in the occupied
bands is taken into consideration (θ = 4πQ ≡ 0 mod 2π ).
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FIG. 8. Wannier ladders for Pontryagin index (a) Q = 0, (b) Q = 1, (c) Q = 2 and (d) Q = 3. The flows of HWF centers (w̄z) were
evaluated along ky on setting kx = 0. For Q = 0 we find no net flow of HWF centers in the ladder. For nontrivial Q ∈ Z (b)–(d), we
observe two HWF centers flowing by ±2Q real-space unit cells, along with a third HWF center without any flow, all of which cor-
respond to the occupied three-band subspace. On the contrary, the unoccupied band subspace supports no flow in the associated HWF
centers.

Additionally, we find that the even Wilson loop winding
excludes a possibility of existence of 3D Stiefel-Whitney
insulators with a Z2 invariant (i.e., second Stiefel-Whitney
class w2) in the oriented Hamiltonians introduced in this work.
By studying the manifestations of the single bulk invariant
(Q ∈ Z), which include the associated bulk-boundary corre-
spondence (Sec. IV), we also deduce that our findings are
distinct from the real Hopf insulators hosting surface Chern
numbers at the boundaries [58,80]. Hence, by exhaustion
of the known three-dimensional PT -symmetric topological
phases, we conclude that the Pontryagin-indexed three-band
subspace indeed hosts a different type of non-Abelian real
topology.

Overall, our findings provide a realization of non-Abelian
multigap topological insulators with a single Z invariant in
three spatial dimensions, as supported by the multitude of
unique results and mathematical relations to other types of
topologies presented in this work. We conclude that, con-
trary to the Abelian topological insulators with a single
Z-valued Hopf index, the origin of the invariant stems from
the nontriviality of Pontryagin index characterizing the Bloch
bundle. We introduced models for arbitrary index, studied the
bulk-boundary correspondence due to the integer invariants,
investigated the stability of edge modes against disorder, and
also referenced these findings to the full flag limit. The index-
changing topological phase transitions, ultimately trivializing
the model, were studied. Upon addition of the Hamiltonian
terms opening all gaps and accessing the full flag limit,
we made the connections to real Hopf and axion insulators.
The nodal structures, with nontrivial linking numbers re-
movable by highly nonlocal parallelization of the sub-bundle
corresponding to the three-band subspace hosting the split-
biquaternion nodes, were studied, and demonstrated within
a class of minimal models. These simple models promise
a realization in a wide variety of experimental settings that
include metamaterials and quantum simulators. Despite the
trivializability of nodal rings discussed in this work, we
showed a non-Abelian character of the nodes in a three-
dimensional setting, offering nontrivial platform for fusion
and braiding, beyond the quaternion algebra of nodes in Euler
semimetals.
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APPENDIX A: PONTRYAGIN INDEX IN TERMS
OF NON-ABELIAN BERRY CONNECTION

Here, we briefly show how the Pontryagin index cor-
responding to the hyperspherical (S3) winding can be
reexpressed in terms of the elements of non-Abelian Berry
connection. First, we start by noticing that by orthogonality of
the normalized eigenvectors constituting vierbeins

(u4)i = εi jkl (u1) j (u2)k (u3)l , (A1)

Equivalently, on defining a coordinate-free notation, where
two wedges imply a contraction with εi jkl , i.e., with the anti-
symmetric pseudotensor, we have: u4 = u1 ∧ u2 ∧ u3. Hence,
in such notation, we can rewrite our invariant as

Q = 1

2π2

∫
S3

d3k u4 · (∂kx u4 ∧ ∂ky u4 ∧ ∂kz u4). (A2)

Using the cyclic property of the scalar product

Q = 1

2π2

∫
S3

d3k [u4 ∧ ∂kx u4 ∧ ∂ky (u1 ∧ u2 ∧ u3)] · ∂kz u4.

(A3)

For any five four-vectors, we consistently derive a higher di-
mensional analog of a triple vector product, within introduced
coordinate-free notation

a ∧ b ∧ (c ∧ d ∧ e) = [(a · c)(b · d) − (a · d)(b · c)]e

+ [(a · e)(b · c) − (a · c)(b · e)]d

+ [(a · d)(b · e) − (a · e)(b · d)]c,

(A4)
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FIG. 9. Surface Wilson loops for (a) Q = 0, (b) Q = 1, (c) Q = 2, and (d) Q = 3 along kx . Here, the plotted Wilson loop eigenvalues φ

were found for two surface bands associated with two HWF center (w̄z) sheets closest to the surface, on isolating these from the rest of the
Wannier ladder. For original HWF sheets, see the Wannier ladder in Fig. 8. For Q = 0 we find no Wilson loop winding. For non-trivial Q ∈ Z
(b)–(d), we find two opposite eigenvalues ±2Q. While such pair does not carry a surface Chern number, as explained in the main text; under
the C2T symmetry satisfied on the surface, such winding is topologically protected against the symmetry-preserving perturbations. Based on
the deduced Wilson loop winding, protected under the symmetry enforcing a reality condition [32], we conclude that the surface bands host a
surface Euler invariant χs, which we find on two opposite surfaces under the open boundary conditions in z direction.

which with constraints ui · u j = δi j by orthonormality, and
ui∂aui = 1

2∂a(ui · ui ), as well as ui∂au j = −u j∂aui for any
i = 1, 2, 3, 4, and a = kx, ky, kz by the reality condition,
yields on direct substitution

Q = 1

2π2

∫
T 3

d3k
[(

u4∂kx u1
)(

u4∂ky u2
)(

u4∂ky u3
)

− (
u4∂kx u1

)(
u4∂ky u3

)(
u4∂ky u2

) + . . .
]
. (A5)

Recognizing elements of the non-Abelian Berry connection
gives

Q = 1

2π2

∫
T 3

d3k
[
Ax

41Ay
42Az

43 − Ax
41Ay

43Az
42 + . . .

]
. (A6)

Rewriting in a symmetrized form with respect to the other
components (permutations of kx, ky, kz), from which the
invariant can also be computed

Q = 1

2π2

∫
T 3

d3k εi jkAi
41Aj

42Ak
43, (A7)

which completes the proof.

APPENDIX B: WANNIER LADDERS
AND SURFACE WILSON LOOPS

Here, we provide further details on the evaluation of the
Wannier ladders and the surface Wilson loops used to study
the bulk-boundary correspondence of PT -symmetric Hamil-
tonians with arbitrary Pontryagin index Q ∈ Z. The Wannier
ladders and surface Wilson loops are presented in Fig. 8 and
Fig. 9, correspondingly.

The hybrid Wannier functions (HWFs), maximally local-
ized in z direction, and used to construct the Wannier ladders,
were obtained as the eigenfunctions of the z component of
the position operator projected on the occupied subspace. The
Hamiltonian is first Fourier transformed in the z direction
and placed on a chain with 20 sites under open boundary
conditions. The ground-state projector is constructed from the
occupied energy eigenstates as P̂ = ∑occ

n |ψn〉〈ψn|. The oper-
ator P̂ẑP̂ is then numerically diagonalized on a mesh in the
2D reduced Brillouin zone (with momenta kx and ky) and the

eigenvectors and eigenvalues are extracted, corresponding to
the HWF and their centers (w̄z) in the z direction, respectively.

For the surface Wilson loop winding, we employ a stan-
dard procedure of computing a non-Abelian Wilson loop,
here with surface bands given by |us

n(kx, ky)〉. As explained
in the Fig. 9 caption, we use the deduced winding of Wilson
loop eigenvalues to exclude the presence of surface Chern
numbers (Cs,tot), as predicted from an analytical argument.
Moreover, we retrieve that the nontrivial winding for bulk
Q �= 0 corresponds to the surface Euler topology protected by
C2T symmetry. Here, a pair of surface bands hosts an Euler
invariant χs at each surface of the system, contrary to the net
opposite surface Chern numbers on the boundaries of real
Hopf insulators [58]. Finally, we comment that the surface
Euler invariant is defined modulo a sign, which can be
changed under a gauge transformation χs → −χs, while
the surface Wilson loop winding is preserved. An identical
gauge ambiguity is known for the bulk Euler class in two-
dimensional materials [51].

FIG. 10. Assigning the non-Abelian charges to different node
configurations. The generators of the group are assigned to single
nodes in each of the gaps and more complex configurations are achi-
eved by multiplying the charges of the constituent nodes. Note that
e1e2e3 and −e1e2e3 are in different conjugacy classes, as there is no
braiding procedure that can flip the sign of only one of the nodes.
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APPENDIX C: PARAMETRIZATIONS FOR UNBRAIDING

The trivialization of the nodal structure can be cast in a
particularly simple form by adding a perturbation with only
on-site energies to the Bloch Hamiltonian. The term used in
these calculations is t diag[−6, 0, 4, 10], however, any term
of the form t diag[E1, E2, E3, E4] with the condition E1 <

E2 < E3 < E4 will accomplish the desired unbraiding. The
parameter t controls the magnitude of the perturbation. In
the limit as t → ∞, the Hamiltonian approaches the form
of the perturbation with four flat bands at distinct energies
and trivial eigenvectors. This implies that in the process of
tuning t , the nodal rings must unlink, as this is the only way

the occupied bands can develop gaps. The eigenvectors of
the limiting Hamiltonian will be constant, as the perturbation
is diagonal in the original basis, which leads to all Berry
connections (including non-Abelian ones) being identically
zero. This implies that any topological invariant constructed
from these connections must also be zero, so the bulk gap must
close in the process as well to facilitate this phase transition.
Both of these effects are observed in the plots shown in Fig. 3.

As mentioned in the main text, it is also possible to unbraid
the structure without closing the uppermost bulk gap and
therefore without trivializing the phase. To accomplish this,
we first pick a parallelized basis following Refs. [78,81] for
the (unnormalized) eigenvectors of the occupied subspace as
follows:

|u1〉 = (− sin ky, sin kx,−(m − cos kx − cos ky − cos kz ), sin kz )T,

|u2〉 = (− sin kz, m − cos kx − cos ky − cos kz, sin kx,− sin ky)T,

|u3〉 = (−(m − cos kx − cos ky − cos kz ),− sin kz, sin ky, sin kx )T. (C1)

This basis forms a nowhere-vanishing smooth section of
T S3. We may then write the Hamiltonian defined in Eq. (22)
in the spectrally decomposed form with the addition of a
diagonal term to reveal the nodal structure:

H (k) = |u4〉〈u4| − |u1〉〈u1| − |u2〉〈u2|
− |u3〉〈u3| + diag[−0.6, 0, 0.4, 1]. (C2)

Finally, to obtain the unbraiding procedure, we add a
tuning parameter t ∈ [0, 1], which disconnects the band as-
sociated to |u3〉 from the others in the occupied subspace:

H (k) = |u4〉〈u4| − |u1〉〈u1| − |u2〉〈u2|
− (1 + t )|u3〉〈u3| + diag[−0.6, 0, 0.4, 1]. (C3)

This is equivalent to adding a perturbation to the original
Hamiltonian of the form t |u3〉〈u3|, with a tuning parameter t .
It is therefore important to use the unnormalized eigenvectors
in this construction, as otherwise the perturbation will not be
local in real space. Using these eigenvectors we find that the

lack of normalization in Eq. (C3) simply leads to the bands
acquiring a dispersion and no change in topology occurs.

APPENDIX D: SPLIT-BIQUATERNION NODAL ALGEBRA

In this Appendix, we detail the split-biquaternion charges
that can be assigned to the collections of nodes acting differ-
ently on parallel-transported vierbeins. The nodes correspond
to the band crossings introduced in the multigap flag limit with
four isolated bands, see Fig. 10. We note that the classification
is algebraically reminiscent to the one introduced in the pre-
vious work [29].

APPENDIX E: EQUIVALENCE OF ˜Fl1,1,1,1 WINDING
NUMBERS AND DOUBLE REAL HOPF INVARIANT

In the following, we show the equivalence of the winding
numbers generating topology in real Hamiltonians classified
by F̃l1,1,1,1 and real Hopf invariants corresponding to
winding induced by mapping S3 × S3 → G̃r2,4

∼= S2 × S2.
Throughout this section we denote partial derivatives ∂ f

∂x as
fx. The explicit form of the matrix of Bloch eigenvectors
in terms of the components of r = (a, b, c, d )T and
l = (p, q, r, s)T is

⎛⎜⎜⎜⎝
ap + bq − cr − ds −as + br + cq − d p ar + bs + cp + dq aq − bp + cs − dr
as + br + cq + d p ap − bq + cr − ds −aq − bp + cs + dr ar − bs − cp + dq

−ar + bs − cp + dq aq + bp + cs + dr ap − bq − cr + ds as + br − cq − d p
−aq + bp + cs − dr −ar − bs + cp + dq −as + br − cq + d p ap + bq + cr + ds

⎞⎟⎟⎟⎠. (E1)

Taking the rows to be the eigenvectors sorted top to bottom as (u1, u2, u3, u4), it is possible to compute the Euler connection
and Euler curvature using these components. The results are the connections for the valence subspace and the conduction
subspace:

ac
x = (ap + bq − cr + ds)

(
sakx + askx − rbkx − brkx − qckx − cqkx − pdkx − d pkx

)
+ (−as − br − cq + d p)

(
pakx + apkx − qbkx − bqkx + rckx + crkx + sdkx + dskx

)
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+ (aq − bp − cs − dr)
( − rakx − arkx − sbkx − bskx + pckx + cpkx − qdkx − dqkx

)
+ (−ar + bs − cp − dq)

( − qakx − aqkx − pbkx − bpkx − sckx − cskx + rdkx + drkx

)
, (E2)

av
x = (ap − bq − cr − ds)

( − sakx − askx − rbkx − brkx + qckx + cqkx − pdkx − d pkx

)
+ (aq + bp − cs + dr)

(
rakx + arkx − sbkx − bskx − pckx − cpkx − qdkx − dqkx

)
+ (ar + bs + cp − dq)

( − qakx − aqkx + pbkx + bpkx − sckx − cskx − rdkx − drkx

)
+ (as − br + cq + d p)

(
pakx + apkx + qbkx + bqkx + rckx + crkx − sdkx − dskx

)
, (E3)

and similarly for ky and kz on simple replacement of kx in the above expression.
The corresponding curvatures of top two (conduction) and bottom (valence) two bands are

F c
xy = (

pakx + qbkx − rckx + sdkx + apkx + bqkx − crkx + dskx

)(
saky − rbky − qcky − pdky − d pky − cqky − brky + asky

)
− (

paky + qbky − rcky + sdky + apky + bqky − crky + dsky

)(
sakx − rbkx − qckx − pdkx − d pkx − cqkx − brkx + askx

)
− ( − saky − rbky − qcky + pdky + d pky − cqky − brky − asky

)(
pakx − qbkx + rckx + sdkx + apkx − bqkx + crkx + dskx

)
− (

qaky − pbky − scky − rdky − bpky + aqky − drky − csky

)( − rakx − sbkx + pckx − qdkx + cpkx − dqkx − arkx − bskx

)
− ( − raky + sbky − pcky − qdky − cpky − dqky − arky + bsky

)( − qakx − pbkx − sckx + rdkx − bpkx − aqkx + drkx − cskx

)
+ ( − sakx − rbkx − qckx + pdkx + d pkx − cqkx − brkx − askx

)(
paky − qbky + rcky + sdky + apky − bqky + crky + dsky

)
+ (

qakx − pbkx − sckx − rdkx − bpkx + aqkx − drkx − cskx

)( − raky − sbky + pcky − qdky + cpky − dqky − arky − bsky

)
+ ( − rakx + sbkx − pckx − qdkx − cpkx − dqkx − arkx + bskx

)( − qaky − pbky − scky + rdky − bpky − aqky + drky − csky

)
,

(E4)

F v
xy =−(

pakx + qbkx + rckx − sdkx + apkx + bqkx + crkx − dskx

)(
saky − rbky + qcky + pdky + d pky + cqky − brky + asky

)
− (

paky − qbky − rcky − sdky + apky − bqky − crky − dsky

)( − sakx − rbkx + qckx − pdkx − d pkx + cqkx − brkx − askx

)
− (

qaky + pbky − scky + rdky + bpky + aqky + drky − csky

)(
rakx − sbkx − pckx − qdkx − cpkx − dqkx + arkx − bskx

)
− (

raky + sbky + pcky − qdky + cpky − dqky + arky + bsky

)( − qakx + pbkx − sckx − rdkx + bpkx − aqkx − drkx − cskx

)
+ (

pakx − qbkx − rckx − sdkx + apkx − bqkx − crkx − dskx

)( − saky − rbky + qcky − pdky − d pky + cqky − brky − asky

)
+ (

qakx + pbkx − sckx + rdkx + bpkx + aqkx + drkx − cskx

)(
raky − sbky − pcky − qdky − cpky − dqky + arky − bsky

)
+ (

rakx + sbkx + pckx − qdkx + cpkx − dqkx + arkx + bskx

)( − qaky + pbky − scky − rdky + bpky − aqky − drky − csky

)
+ (

sakx − rbkx + qckx + pdkx + d pkx + cqkx − brkx + askx

)(
paky + qbky + rcky − sdky + apky + bqky + crky − dsky

)
.

(E5)

The Hopf invariants can be brought to the form [58]:

− 1

16π2

∫
BZ

ac ∧ Euc + av ∧ Euv + ac ∧ Euv + av ∧ Euc = χz,

− 1

16π2

∫
BZ

ac ∧ Euc + av ∧ Euv − ac ∧ Euv − av ∧ Euc = χw. (E6)

Plugging in these expressions and greatly simplifying leads to the following:

χz = − 1

16π2

∫
BZ

d3k
(−8dbkz aky ckx + 8dakz bky ckx − 8adkz bky ckx − 8bakz dky ckx + 8abkz dky ckx + 8baky dkz ckx − 8bdkz cky akx

− 8cbkz dky akx − 8cdkz aky bkx − 8dakz cky bkx − 8ackz dky bkx + 8dakx bkz cky + 8daky bkx ckz − 8dakx bky ckz − 8bckz aky dkx

− 8cakz bky dkx + 8caky bkz dkx + 8bakz cky dkx − 8abkz cky dkx + 8abky ckz dkx + 8cakz bkx dky + 8bakx ckz dky

+ 8cakx bky dkz + 8abkx cky dkz

)
, (E7)
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χw = − 1

16π2

∫
BZ

d3k
(−8qskz pky rkx − 8spkz qky rkx + 8spky qkz rkx + 8qpkz sky rkx − 8pqkz sky rkx + 8pqky skz rkx − 8rskz qky pkx

− 8sqkz rky pkx − 8qrkz sky pkx − 8srkz pky qkx − 8pskz rky qkx − 8r pkz sky qkx + 8spkz qkx rky + 8spkx qky rkz − 8rqkz pky skx

+ 8r pkz qky skx − 8prkz qky skx − 8qpkz rky skx + 8pqkz rky skx + 8qpky rkz skx + 8r pkx qkz sky + 8pqkx rkz sky

+ 8r pky qkx skz + 8qpkx rky skz

)
. (E8)

Written as components of r and l, the above equations reduce to:

χw = 1

2π2

∫
BZ

d3 k εi jkl r
ir j

kx
rk

ky
rl

kz
,

χz = − 1

2π2

∫
BZ

d3 k εi jkl l
il j

kx
lk
ky

l l
kz
, (E9)

which are (up to a sign), the 3D winding numbers of the vectors r and l. These winding numbers were defined to be wL and wR,
which completes the proof of correspondence to real Hopf invariants.
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