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High-order harmonic generation in graphene quantum dots
in the field of an elliptically polarized pulse
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We study theoretically the generation of high-order harmonics in graphene quantum dots placed in the field
of an elliptically polarized ultrashort pulse. The generated high-order harmonics are sensitive to the pulse’s
ellipticity and its amplitude. The intensities of high-order harmonics become very sensitive to the ellipticity of
an incident pulse when its polarization gets close to a circular one, and some high-order harmonics become
strongly suppressed for a circularly polarized incident pulse. The suppressed harmonic orders depend on the
symmetry of the quantum dot systems. For triangular quantum dots, which have D3h symmetry, every third
harmonic is suppressed, while for hexagonal quantum dots with D6h symmetry, such suppression is observed for
every sixth harmonic, and the even-order harmonics are suppressed for all ellipticities of the incident pulse due
to an additional inversion symmetry of the hexagonal quantum dots. The ellipticities of the generated high-order
harmonics also show strong nonmonotonic dependence on the ellipticity of an incident pulse, in which the
dependence becomes stronger for high pulse amplitudes.
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I. INTRODUCTION

There has been growing interest in theoretical and exper-
imental studies of optical nonlinearities of solids, including
high-order harmonic generation (HHG) and nonlinear ab-
sorption and scattering, among other things [1–12]. Recently,
HHG in two-dimensional (2D) materials, including graphene
[13–16] and transition metal dichalcogenides [17], has drawn
much attention due to their promising optical and electronic
properties compared to three-dimensional solids. Several
nanostructures, including graphene quantum dots (GQDs)
[18] and graphene nanoribbons [19], were studied extensively
to overcome the limitation due to the lack of a band gap in
semimetallic graphene. Band gap tunability in GQDs can be
achieved by varying the lateral shape, size, and type of edge,
making GQDs more suitable for nonlinear optical systems
[20]. The generation of high-order harmonics and its depen-
dence on relaxation processes have been reported numerically
in hexagonal GQDs with just 24 atoms [21]. Recent studies
have also reported that HHG in GQDs with triangular [22,23]
and rectangular [24] geometries shows several exciting prop-
erties. Namely, in Ref. [23], strong suppression of even-order
harmonics has been reported in triangular GQDs, which have
an even number of edge states. The suppression of even har-
monics is realized when half of the edge states are initially,
i.e., before the pulse, occupied.

While the HHG is mainly studied for linearly polarized
optical pulses, general polarization of the incident optical
pulse, e.g., elliptical polarization, provides unique opportu-
nities to explore, investigate, and control strong light-matter
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interactions in solids and tune their nonlinear optical response.
The polarization degree of freedom enables excellent insight
into the study of the fundamental aspects of light-matter in-
teraction and time-varying polarization states, which further
opens the door to control attoscience coherent techniques,
including spectroscopy, and would be a great candidate to
control tabletop harmonic processes, including ultraviolet and
x-ray spectral regions [25–27]. Recently, the dependence of
HHG on the ellipticity of an incident pulse was used to probe
the molecular chirality on a subfemtosecond timescale [28].
Furthermore, elliptical polarization enables gating schemes,
including polarization gating and double optical gating, to
generate attosecond XUV pulses, which study the electron
dynamics in atoms, molecules, and solids [29–31].

The elliptical polarization of the laser driver field has
opened up several interesting physical phenomena in gases.
In contrast, interactions of such pulses with nanosystems of
solids are largely unexplored, hindering the possibility of ex-
ploitation of experimental techniques for solid-state devices
[27]. Therefore, studying the ellipticity dependence of light-
matter interactions in 2D materials and their quantum dots
(QDs) would lead to new insight into the nonlinear optical
properties of these systems.

In 2011, Ghimire et al. reported through an experimen-
tal study of the bulk ZnO system that emitted high-order
harmonics are less sensitive to ellipticity [32] of the optical
pulse compared to gases [33,34]. However, under circular
polarization of the incident pulse, the generation of high-order
harmonics is strongly suppressed despite strong field ioniza-
tion [32]. Later, Liu et al., conducting a theoretical study of
the same material, showed a monotonic decrease in harmonic
yield with increasing ellipticity of the driving pulse [35].

On the contrary, experimental work on the MgO system
revealed a strong dependence of HHG yield on the ellipticity

2469-9950/2024/109(16)/165121(10) 165121-1 ©2024 American Physical Society

https://orcid.org/0000-0002-6233-7552
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.109.165121&domain=pdf&date_stamp=2024-04-10
https://doi.org/10.1103/PhysRevB.109.165121


SURESH GNAWALI AND VADYM APALKOV PHYSICAL REVIEW B 109, 165121 (2024)

of the incident pulse, including a significant signal for circu-
lar polarization [36]. The authors showed that the maximum
harmonic yield, in some cases, can be reached not for linear
polarization but for polarization with a finite value of the
ellipticity. Later, the enhancement of HHG in graphene by an
elliptically polarized driving pulse was also reported [37,38].
Furthermore, circularly polarized extreme ultraviolet HHG in
graphene was reported using first-principles simulation within
time-dependent density functional theory [39]. These results
revealed that circularly polarized driver pulses do not perma-
nently prohibit harmonic generation from specific crystals and
2D materials. There are some proposals for solids to explain
maximum harmonic yield at finite ellipticity of the incident
pulse in a semimetal regime of the crystal [40].

Quantum dots are systems that have properties of both
solids and atoms; i.e., they have discrete energy spectra which
are determined by the symmetry of the dots, and also, they
have quasispatial periodicity of solids. Interaction of such
quantum dots with an incident optical pulse should be sensi-
tive to the polarization of the pulse, i.e., its ellipticity. Here, we
consider a special type of quantum dots: graphene quantum
dots. Such quantum dots can have different symmetries; e.g.,
triangular GQDs have D3h symmetry, while hexagonal GQDs
have D6h symmetry. The symmetry of the GQD determines its
nonlinear optical response, e.g., by suppressing the generation
of some harmonics. Below we theoretically study the non-
linear ultrafast dynamics of GQDs within the density matrix
approach, which allows us to include the relaxation processes
within the GQDs phenomenologically.

The paper is organized as follows. In Sec. II, we introduce
the model and main equations. In Sec. III, the results are
discussed, which are further summarized in the concluding
Sec. IV.

II. MATH AND EQUATIONS

The system of a GQD placed in the field of a short optical
pulse is described by a time-dependent Hamiltonian with the
following form:

H (t ) = H0 + H ′(t ), (1)

where H0 is the field-free Hamiltonian that describes the GQD
system within the scope of the tight-binding model,

H0 = −t
∑
〈i j〉

(ĉ†
i ĉ j + H.c.), (2)

where i and j label the sites of the QD, ĉ†
i and ĉi are creation

and annihilation operators for an electron at site i, and t =
−2.8 eV is the hopping integral. We also assume that the on-
site energies are zero. Numerical diagonalization of the tight-
binding Hamiltonian for a GQD consisting of N atoms gives
N levels with wave functions ψn and corresponding energies
En. The wave functions and the energy spectra are obtained
numerically.

The Hamiltonian H ′(t ) describes the interaction of the
electron system with the optical field as follows:

H ′(t ) = −e
∑

i

ĉ†
i ĉiri · F(t ), (3)

where ri is the position of the ith atom and F(t ) is the
time-dependent electric field of the optical pulse. Below we
consider an elliptically polarized pulse, for which the time-
dependent electric field is defined as

F(t ) = Fx(t )êx + Fy(t )êy, (4)

where

Fx(t ) = F0,xe−(t/τ0 )2
cos(ω0t ),

Fy(t ) = F0,ye−(t/τ0 )2
sin(ω0t ), (5)

and

F0,x = F0√
1 + ε2

, F0,y = εF0√
1 + ε2

. (6)

Here, F0, ε, ω0, and τ0, are the amplitude, ellipticity, fre-
quency, and duration of an elliptically polarized optical pulse.
The pulse is linearly (circularly) polarized for ε = 0 (ε = 1).
Thus, the driver ellipticity ε corresponding to the incident
laser pulse is defined as

ε = F0,y

F0,x
. (7)

We study the electron dynamics of the electron system of
GQDs using the time evolution of the density operator ρ̂,
which is determined by the following density matrix equation:

d ρ̂

dt
= i

h̄
[ρ̂, H] = i

h̄
[ρ̂, H0] + i

h̄
[ρ̂, H ′], (8)

where [Â, B̂] is the commutator of operators Â and B̂.
Taking the matrix elements of the left- and right-hand sides

of Eq. (8) between the states ψn of the field-free Hamiltonian
H0, we obtain the following system of equations for the den-
sity matrix:

ρ̇mn = iωmnρmn + i

h̄

∑
k

(ρmkH ′
kn − H ′

mkρkn), (9)

where ωmn = (En−Em )
h̄ , En is the energy corresponding to

state ψn, ρmn = 〈ψm|ρ̂|ψn〉, H ′
kn = −DknF(t ), and Dkn =

e〈ψk|r̂|ψn〉 is the dipole matrix element of the dipole operator
er̂.

Employing the density matrix approach provides an op-
portunity to incorporate the relaxation process into our model
through the corresponding phenomenological relaxation rates.
To address the relaxation process corresponding to dipole
decay we introduce the dephasing time τ , which we assume
is the same for all nondiagonal matrix elements of the density
matrix. Below we set the dephasing time at τ = 10 fs. Experi-
mentally, the relaxation time that was reported for a graphene
monolayer is around 10–20 fs [41–47]. Although our system
is a finite-size graphene QD, we assume below that the same
relaxation, i.e., dephasing, time is around 10 fs.

With the relaxation processes, the density matrix equa-
tion (9) takes the following form:

ρ̇mn = iωmnρmn + i

h̄

∑
k

(ρmkH ′
kn − H ′

mkρkn)

− (1 − δnm)ρmn/τ, (10)

where δnm is the Kronecker delta symbol.
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With the density matrix expressed in the interaction repre-
sentation,

ρ̃mn = ρmne−iωmnt , (11)

the system of equations (10) takes the following form:

˙̃ρmn = i

h̄

∑
k

[
ρ̃mkeiωnkt H ′

kn − H ′
mk ρ̃kneiωkmt

]
− (1 − δnm)ρ̃mn/τ. (12)

We solve the system of differential equations (12) nu-
merically using the ODEINT library, which is a collection of
different numerical algorithms to solve initial value problems
of ordinary differential equations [48]. The initial conditions
are that, before the pulse, all valence band (VB) states are
occupied and all conduction band (CB) states are empty, i.e.,
ρ̃nn = 1 if n ∈ VB and ρ̃nn = 0 if n ∈ CB.

With the known solution of the density matrix equa-
tion (12), the time-dependent dipole moment can be calculated
from the following expression:

d(t ) =
∑
mn

ρ̃mn(t )eiωmnt Dnm. (13)

The time variation of the dipole moment determines the
radiation of the system. At a given frequency ω, the intensity
of the corresponding radiation is obtained from the following
expression:

I (ω) = Ix(ω) + Iy(ω), (14)

where

Ix(ω) = μ0ω
2

12πc
[|Fω[ḋx]|2, Iy(ω) = μ0ω

2

12πc
|Fω[ḋy]|2]. (15)

Here, Fω[ḋx]|2 and Fω[ḋy]|2] are frequency Fourier trans-
forms of the time derivatives of the corresponding components
of the dipole moment.

The order of the generated high-order harmonic is defined
in units of ω0, i.e.,

Nω = ω

ω0
. (16)

The generated high-order harmonics in the field of an ellipti-
cally polarized pulse are also elliptically polarized. From our
numerical analysis, we found that the difference between the
phases of the Fourier transforms of the derivative of the y and
x components of the dipole moment, i.e., Fω[ḋy] and Fω[ḋx],
is close to 90◦, which shows that the x and y axes are the
axes of the corresponding polarization ellipse of high-order
harmonics. In this case, we define the corresponding ellipticity
ε(Nω) of the Nωth harmonics using the following expression:

ε(Nω ) = F̃y(Nω )

F̃x(Nω)
=

√
Iy(ω)

Ix(ω)
, (17)

where F̃x(Nω ) and F̃y(Nω ) are the x and y components of
the electric field of the generated Nωth harmonics. Such a
defined ellipticity can be greater than 1 and also determines
the orientation of the polarization ellipse; i.e., if ε(Nω ) < 1
[ε(Nω ) > 1], then the principal axis of the polarization ellipse
is the x axis (y axis).

FIG. 1. Hexagonal and triangular graphene quantum dots.
(a) The hexagonal dots consist of 54 atoms, and (b) triangular dots
possess 61 atoms. The distance between the nearest-neighbor atoms
is a = 1.42 Å.

III. RESULTS AND DISCUSSION

Below, we study two types of GQDs, hexagonal and
triangular, which have different point symmetries. The cor-
responding GQDs are shown in Fig. 1. The hexagonal QD
consists of 54 carbon atoms and has D6h symmetry, while the
triangular QD has 61 atoms and the corresponding symmetry
is D3h. The triangular QD also has zigzag edges. We consider
only two sizes of QDs to identify the symmetry-related effects
in the nonlinear optical response of the systems.

The energy spectra of the triangular and hexagonal QDs
are shown in Fig. 2. Due to dimensional quantization, both
systems have finite band gaps, which are 1.91 eV for the
hexagonal QD and 1.87 eV for the triangular QD. The tri-
angular QD with zigzag edges also has degenerate in-gap
edge states with zero energy, which are marked in Fig. 2. The
bulk states of both triangular and hexagonal GQDs belong to
either one- or two-dimensional irreducible representations of
the corresponding symmetry groups, D3h and D6h.

In all calculations below, we keep the same frequency of
the pulse, 1 eV, which is less than the band gap for both GQD
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FIG. 2. Energy spectra of (a) a hexagonal GQD and (b) a tri-
angular GQD. For a triangular QD, zero-energy states are the edge
states, as shown. The valence and conduction band edge states and
the corresponding band gaps are marked for each GQD. Levels with
negative and positive energies correspond to the valence band and
conduction band states, respectively.

systems. We change the amplitude F0 of the pulse, with a
maximum amplitude of up to 0.3 V/Å. The radiation spectra
of triangular and hexagonal GQDs are shown in Fig. 3 for
different ellipticity values of the incident pulse. The radiation
spectra clearly follow the symmetries of the systems. No even-
order harmonics are realized for the hexagonal QD, which
has inversion symmetry, while for the triangular QD, both
even-order and odd-order harmonics are clearly visible in the
radiation spectrum. Another symmetry-related feature is the
suppression of some high-order harmonics when the incident

pulse becomes circularly polarized. Namely, the triangular
GQD has D3h symmetry with a rotational element of C3, and
the orders of high-order harmonics that are suppressed are 3,
6, 9, . . ., i.e., 3 + 3m, where m is an integer. The hexagonal
GQD has D6h symmetry, which results in the suppression of
high-order harmonics with orders 3, 9, 15, . . ., i.e., 3 + 6m,
where m is an integer. The suppression of the high-order har-
monics, mentioned above, is realized when the ellipticity gets
close to 1, which corresponds to a circularly polarized pulse.
For all field amplitudes, the suppression of the corresponding
harmonics is clearly pronounced. Also, for the hexagonal QD,
the harmonic orders of 6, 12, 18, and so on, i.e., even-order
harmonics from the set of 3 + 3m, are suppressed for all
ellipticities due to the inversion symmetry of such a quantum
dot. For the high-order harmonics, which do not show any
suppression for a circularly polarized pulse, the dependence
of an incident pulse on the ellipticity is weak. The cutoff
frequency, which is analyzed in detail below, also has a weak
dependence on the ellipticity of the pulse.

To illustrate the suppression of the corresponding high-
order harmonics for a circularly polarized pulse, we show in
Fig. 4 the intensities of the first few harmonics as a function of
the ellipticity of an incident pulse. The data show that the sup-
pression of the corresponding harmonics occurs mainly in the
range from ε > 0.9. The suppression is less pronounced for
the triangular QD [see Fig. 4(b)], which has a larger number of
atoms than the hexagonal QD. Namely, for the hexagonal QD
[see Fig. 4(a)], for all harmonics, the corresponding intensities
are suppressed by 4–5 orders of magnitude, while for the
triangular QD, only the third-order harmonics is suppressed
by 4 orders of magnitude and all other higher-order harmonics
are suppressed by 2–3 orders of magnitude.

FIG. 3. Emission spectra of graphene QDs: (a), (c), and (e) hexagonal QD and (b), (d), and (f) triangular QDs. In each panel, different lines
correspond to different ellipticities of the incident pulse. The pulse frequency is h̄ω0 = 1 eV. The field amplitude of the incident pulse is (a) and
(b) F0 = 0.1 V/Å, (c) and (d) 0.2 V/Å, and (e) and (f) 0.3 V/Å. The dephasing time is τ = 10 fs. The intensity is shown on a logarithmic
scale.
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FIG. 4. Intensities of high-order harmonics as a function of the
ellipticity of the incident pulse. The results are shown for (a) a hexag-
onal QD and (b) a triangular QD. The pulse frequency is h̄ω0 = 1 eV,
and its amplitude is 0.3 V/Å. The dephasing time is τ = 10 fs. The
results are shown for harmonic orders of 3, 9, and 15 in (a) and 3, 6, 9,
12, and 15 in (b) as marked. The intensity is shown on a logarithmic
scale.

The emitted high-order harmonics are also elliptically
polarized, and their polarization is characterized by the cor-
responding ellipticity. The dependence of the ellipticities of
different high-order harmonics on the ellipticity of the inci-
dent pulse is shown in Fig. 5 for the first four odd harmonics
(Nω = 1, 3, 5, and 7). For a linearly polarized optical pulse,
i.e., ε = 0, the situation is different for the hexagonal and tri-
angular QDs. For the hexagonal QD [see Figs. 5(a) and 5(c)],
for which the x axis is the axis of symmetry, the optical pulse
that is linearly polarized along the x direction generates only
the x component of the dipole moment, resulting in high-order
harmonics which are linearly polarized with zero ellipticity.
For the triangular QD, the x axis is not the axis of symmetry.
In this case, a linearly polarized pulse generates both the x and
y components of the dipole moment, resulting in the emission
of high-order harmonics which are elliptically polarized with
small, but finite, ellipticity [see Figs. 5(b) and 5(d)].

Also, the ellipticity of the first-order harmonics, the fre-
quency of which is the same as the frequency of the incident
pulse, is almost the same as the ellipticity of the incident
pulse. The difference between them is more pronounced
for the high field amplitude of 0.3 eV/Å [see Figs. 5(c)
and 5(d)]; this difference is related to the nonlinear dynam-
ics of the electron system in the field of the pulse, where
the nonlinearity becomes more pronounced for higher field
amplitudes.

For the high-order harmonics, the unique property of their
ellipticities is that they are larger than the ellipticity of the
incident pulse. For some cases, the ellipticities of high-order
harmonics even exceed 1, which means that, while for an

incident pulse the x component of the optical field is greater
than the y component, for the high-order harmonics, the x
component of the generated field becomes less than the corre-
sponding y component. The enhancement of the ellipticity of
high-order harmonics is not related to the system’s symmetry;
i.e., the behavior is similar for both hexagonal and triangular
quantum dots. At the same time, for the hexagonal quantum
dot [see Figs. 5(a) and 5(c)], the enhancement of the elliptici-
ties of high-order harmonics is more pronounced than for the
triangular quantum dot. Also, the tendency with increasing the
amplitude of the incident pulse is that the largest ellipticity
is observed at smaller-order harmonics when the amplitude
of the pulse increases. For example, for a field amplitude of
0.1 V/Å, the maximum ellipticity is realized for the fifth and
seventh harmonics, while for a field amplitude of 0.3 V/Å, the
maximum ellipticity is realized for the third harmonic.

While the hexagonal quantum dot has inversion symmetry,
which results in the suppression of even-order harmonics, the
triangular quantum dot does not have such symmetry, and
odd-order harmonics are generated in the field of an ellipti-
cally polarized pulse. The ellipticities of the corresponding
harmonics are shown in Fig. 6. For a linearly polarized pulse
along the x direction, i.e., for ε = 0, the emitted even-order
harmonics are linearly polarized along the y axis, which fol-
lows from the reflection symmetry of the triangular quantum
dot with respect to the y axis. For our definition of the ellip-
ticity, this polarization results in the infinite ellipticity of the
even-order harmonics for ε = 0. For the finite ellipticity of the
incident pulse, ε > 0, the ellipticities of the even-order har-
monics are mainly greater than the ellipticity of the incident
pulse. Also, for a circularly polarized incident pulse, ε = 1,
the emitted harmonics are circularly polarized.

For a triangular graphene QD with zigzag edges, there
are degenerate edge states with zero energy. Above, we
considered the situation in which only the valence band states
are initially populated. For such a quantum dot, there is an-
other possibility when both the valence and edge states are
populated before the pulse. A comparison of the emission
spectra for these two cases is presented in Fig. 7. The results
are identical, which is a manifestation of the particle-hole
symmetry for these two systems. Namely, the situation in
which only the valence band states are initially populated by
electrons is identical to the situation in which only the con-
duction band states are initially populated by holes, i.e., the
valence band and edge states are populated by electrons before
the pulse. This symmetry is presented in the tight-binding
model of graphene QDs considered above.

One of the important characteristics of the emission spectra
is the cutoff frequency, i.e., the maximum frequency that can
be generated by the system placed in the field of a pulse.
The cutoff frequency as a function of the ellipticity ε of the
incident pulse is shown in Fig. 8. The cutoff frequency has
weak dependence on ε, with some large changes observable
near ε ≈ 0.5. Namely, for the hexagonal QD and the large
field amplitude, F0 = 0.3 V/Å, the cutoff frequency decreases
when the driver ellipticity increases from ε = 0.25 to 0.5
and is constant at larger values of ε, ε > 0.5. At a smaller
field amplitude, F0 = 0.1 V/Å, the cutoff frequency shows
nonmonotonic dependence within the interval of 0.25 < ε <

0.75, with the maximum at ε = 0.5. For the triangular QD,
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FIG. 5. Ellipticities of the first four odd high-order harmonics (Nω = 1, 3, 5, and 7) as a function of the ellipticity of the incident pulse.
The results are shown for (a) and (c) a hexagonal QD and (b) and (d) a triangular QD. The field amplitude is (a) and (b) 0.1 V/Å, and (c) and
(d) 0.3 V/Å. The pulse frequency is h̄ω0 = 1 eV. The dephasing time is τ = 10 fs.

the cutoff frequency decreases for ε > 0.75, with the smallest
value being realized for a driver ellipticity close to 1.

With increasing field amplitude, the cutoff frequency in-
creases; i.e., more harmonics are generated, which is expected
behavior for systems interacting with an optical pulse. Also,
for both types of QDs, triangular and hexagonal, the cutoff
frequency is almost the same, which suggests that the cutoff
frequency has real sensitivity to the geometry of QDs.

The generation of high-order harmonics is a manifestation
of nonlinear electron dynamics in graphene QDs placed in
the field of an optical pulse. Such electron dynamics can also
be characterized by the population of excited QD states, i.e.,
conduction band and edge states, during the pulse and after
the pulse. In Fig. 9 the total population of excited QD states
is shown as a function of time. While it is an integral charac-
teristic of the electron dynamics, the results are different for
a linearly polarized incident pulse and a circularly polarized
pulse. For a linearly polarized pulse, shown by blue lines
in Fig. 9, the population of the excited QD states shows an
oscillatory behavior during the pulse, while such behavior is
strongly suppressed for a circularly polarized pulse, which is
illustrated by the red lines. This behavior is consistent with
suppression of the high-order harmonics reported above for a
circularly polarized incident pulse. For all cases, the electron
dynamics is highly irreversible; i.e., the residual population of

the excited states is comparable to the corresponding maxi-
mum population during the pulse. Also, in terms of the total
population of the excited states, there is no fundamental dif-
ference between the triangular and hexagonal quantum dots.
For both cases, the results show similar behavior because both
systems have comparable band gaps around 1.9 eV.

Another characteristic of the electron dynamics is a resid-
ual population of the excited states of a QD after the pulse.
Such a population is shown in Fig. 10 for both triangular and
hexagonal QDs and for two polarizations of the incident pulse:
linear and circular ones. While for the total population of the
excited states shown in Fig. 9 there is no difference between
the two types of QDs, for the populations of individual levels
shown in Fig. 10, there is a fundamental difference. Namely,
for the triangular QD [see Figs. 10(b) and 10(d)], there is a
large population of edge states and a relatively small popula-
tion of conduction band states, while for the hexagonal QD,
the population of conduction band states is relatively large.
This behavior is related to the different natures of the band
gaps in these two QD systems. For the hexagonal QD, the
band gap of 1.91 eV is between the valence band states and
the conduction band states, while for the triangular QD, the
band gap of 1.89 eV is between the valence band states and
the edge states of the system. In terms of the dependence
of an incident pulse on polarization, for both types of QDs,
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FIG. 6. Ellipticities of the first three even-order harmonics (Nω =
2, 4, and 6) as a function of the ellipticity of the incident pulse. The
results are shown for a triangular QD and field amplitudes of (a) 0.1,
(b) 0.2, and (c) 0.3 V/Å. The data are shown only for an ellipticity
ε of the incident pulse greater than 0.2, while for small values of
ε, the ellipticities of the even harmonics are very large, illustrating
the fact that for a linearly polarized pulse in the x direction, the
even harmonics are linearly polarized in the y direction. The pulse
frequency is h̄ω0 = 1 eV. The dephasing time is τ = 10 fs.

the lower-energy excited states become more populated for a
circularly polarized pulse. Namely, for the triangular QD, the
edge states become more populated after a circularly polarized
pulse, while for the hexagonal QD, the excited states near
the edge of the conduction band are more populated for a

circularly polarized pulse compared to a linearly polarized
pulse.

IV. CONCLUSION

The emission spectra of graphene quantum dots in the
field of an optical pulse depend not only on its intensity but
also on its polarization. Namely, for an elliptically polarized
pulse, the ellipticity of the pulse can be used as a tuning
parameter to change the generation of high-order harmonics
in QD systems. In the present paper, we considered two types
of graphene QDs: hexagonal and triangular QDs, which have
D6h and D3h symmetries, respectively. The radiation spectra
of such QDs show strong sensitivity to the ellipticity of an
optical pulse when its polarization becomes close to circular.
Such sensitivity is visible as the suppression of some high-
order harmonics in the radiation spectra. The orders that are
suppressed are determined by the symmetry of the QD; for a
triangular QD, every third harmonic is suppressed, while for
a hexagonal QD, every sixth harmonic is suppressed. While
for small field amplitudes the suppression of the correspond-
ing harmonics is realized mainly for a circularly polarized
pulse, for large field amplitude, the suppression occurs also
for an elliptically polarized pulse with ellipticities that are in
some range close to a circularly polarized pulse. Also, for a
hexagonal QD, which has inversion symmetry, all even-order
harmonics are suppressed for all ellipticities of an optical
pulse and not only for a circularly polarized pulse.

Interaction of an elliptically polarized pulse with graphene
QDs also generates elliptically polarized radiation. The el-
lipticities of the corresponding high-order harmonics depend
on the parameters of the incident pulse, and in some cases,
for large enough harmonic orders or large intensities of an

FIG. 7. Emission spectra of a triangular graphene QD. In each panel, different lines correspond to different ellipticities of the incident
pulse. In (a), only the valence band states with negative energies are occupied before the pulse, while in (b), both the valence band states and
all edge states are initially populated. The parameter NPES shows the number of populated edge states. The pulse frequency is h̄ω0 = 1 eV. The
field amplitude of the incident pulse is F0 = 0.3 V/Å. The dephasing time is τ = 10 fs. The intensity is shown on a logarithmic scale.
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FIG. 8. Cutoff frequency as a function of the ellipticity of the
incident pulse. The results are shown for (a) a hexagonal QD and
(b) a triangular QD. The frequency of the pulse is h̄ω0 = 1 eV. The
field amplitudes are shown next to the corresponding lines.

incident pulse, the corresponding polarization ellipse of high-
order harmonics is effectively rotated by 90◦ compared to the
polarization ellipse of the incident pulse.

FIG. 9. Conduction band populations of graphene QDs as a func-
tion of time. The results are shown for (a) the hexagonal QD and
(b) the triangular QD. In each panel, the results are shown for a
linearly polarized pulse, ε = 0, and a circularly polarized pulse,
ε = 1, by the blue and red lines, respectively. The frequency of the
pulse is h̄ω0 = 1 eV, and the field amplitude is 0.3 V/Å.

FIG. 10. Residual populations of individual excited states of
graphene QDs. The results are shown (a) and (c) for the hexagonal
QD and (b) and (d) for the triangular QD. The polarization of an in-
cident pulse is linear in (a) and (b) and circular in (c) and (d). For the
triangular QD, the results at zero energy correspond to populations
of initially unoccupied edge states of the QD. The frequency of the
pulse is h̄ω0 = 1 eV, and the field amplitude is 0.3 V/Å.

We studied the ultrafast electron dynamics of graphene
QDs under an elliptically polarized pulse. The harmonic in-
tensities depend on the amplitude of the optical pulse, its
ellipticity, and the symmetry of the QD. The symmetry of the
QD system plays a vital role in the occurrence of even- or
odd-order harmonics. Here, we observed only odd harmonics
for the hexagonal dots, which possess D6h symmetry, while
for triangular dots with D3h symmetry, both the even- and
odd-order harmonics were observed. More importantly, the
suppression of the harmonics was observed for both hexag-
onal and triangular dots. Such suppression of the high-order
harmonics by varying the ellipticity of the incident pulse could
provide an excellent way to control the HHG in graphene QDs
and other 2D systems. The harmonic conversion efficiency for
graphene QDs is of the order of 10−14 per quantum dot. To en-
hance the conversion efficiency, an array of the corresponding
quantum dots should be considered.

Thus, for graphene quantum dots interacting with an el-
liptically polarized optical pulse, both the intensity and the
polarization of the generated high-order harmonics can be
controlled by tuning the ellipticity of an incident pulse.
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