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Topological properties of nearly flat bands in bilayer α − T3 lattice
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We study the effect of Haldane flux in the bilayer α-T3 lattice system, considering possible nonequivalent,
commensurate stacking configurations with a tight-binding formalism. The bilayer α-T3 lattice comprises six
sublattices in a unit cell, and its spectrum consists of six bands. In the absence of Haldane flux, threefold band
crossings occur at the two Dirac points for both valence and conduction bands. The introduction of Haldane flux
in a cyclically stacked bilayer α-T3 lattice system separates all six bands, including two low-energy, corrugated
nearly flat bands, and assigns nonzero Chern numbers to each band, rendering the system topological. We
demonstrate that the topological evolution can be induced by modifying the hopping strength between sublattices
with the scaling parameter α in each layer. In the dice lattice limit (α = 1) of the Chern-insulating phase, the
Chern numbers of the three pairs of bands, from low energy to higher energies, are ±2, ±3, and ±1. Interestingly,
a continuous change in the parameter α triggers a topological phase transition through band crossings between
the two lower energy valance and conduction band. These crossings occur at different values for two different
BZ-points and depend further on the next-nearest-neighbor hopping strength. Moreover, there are multiple
topological phase transitions are found for 0 < α < 1.
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I. INTRODUCTION

The discovery of unconventional superconductivity in
twisted-bilayer graphene (TBG) [1] has ignited significant
interest in identifying flat bands in 2D materials [2]. In magic-
angle TBG, flat bands are not isolated unless subjected to a
staggered potential and an external electric field [3]. However,
new proposals, such as twisted double bilayer graphene and
multilayer graphene aligned on boron nitride, exhibit iso-
lated flat bands under an external electric field [4–16]. These
gate-tunable isolated flat bands have been found to possess
topological properties [4–16]. The nontrivial flat band topol-
ogy inherently leads to a rich spectrum of physical phenomena
driven by Coulomb interactions, which are proportional to
the reduced kinetic energy. Moreover, topological flat bands
have enabled the observation of phenomena such as super-
conductivity [17], excitonic insulator states [18,19], fractional
quantum anomalous Hall effects [20–22], ferromagnetism
[23,24], and excited quantum anomalous or spin Hall effects
[25]. In addition to TBG, flat bands are observed in kagome
[26,27], T3 or dice [28,29], and Lieb lattices [30,31]. The
T3 or dice lattice exhibits flat bands near charge neutrality
due to destructive interference of wave functions, resulting
in electronic bands without dispersion [2,32–34]. These flat
bands are trivial in nature with nonsingular Bloch wave func-
tions [2,32–34]. Experimental realization of the dice lattice
was proposed and discussed using an optical lattice, utiliz-
ing three pairs of counterpropagating identical laser beams
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with the same wavelength of λ = 3
2a , where a is the lat-

tice constant, and a Josephson Junction array [35,36]. This
was followed by another proposal for the experimental real-
ization of the dice lattice using artificial heterostructures of
trilayer cubic lattices grown along the (111) direction, such
as SrTiO3/SrIrO3/SrTiO3 [37]. α-T3 shows a continuously
variable Berry phase from π (graphene) to 0 (dice) with the
variable α, and the Berry phase dependence of quantized
Hall conductivity, dynamical longitudinal optical conductiv-
ity, and Shubnikov–de Haas oscillation has been established
[38]. The effect of the variable Berry phase on the orbital
magnetic susceptibility of α-T3 with the variation of α is
observed [39]. Further, the magnetotransport property of α-T3

has been studied, and it is found that the Hall conductivity
undergoes a smooth transition from σyx = 2(2n + 1)(e2/h) to
σyx = 4n(e2/h) with n = 0, 1, 2, . . . as α is tuned from 0 to
1 [40]. The effect of disorder and staggered lattice poten-
tial on integer quantum Hall plateaus has been established
[41]. Floquet states and the variable Berry-phase-dependent
photoinduced gap in the α-T3 lattice irradiated by circularly
polarized on-resonant light have been studied [42]. Later, the
Floquet topological phase transition in a single-layer α-T3 lat-
tice was shown by breaking of time-reversal symmetry (TRS)
using off-resonant circularly polarized light and varying α

discovered the topological phase transition (Cn = 2 to Cn = 1)
at α = 1√

2
[43]. More recently, higher Chern numbers have

been observed in the single-layer dice lattice. A Haldane-
like model on the dice lattice (single-layer) showed Chern
numbers of the three bands ±2 (dispersive valence band and
conduction band) and 0 (flat band in the middle). Also, the
quantum anomalous Hall effect with two chiral channels per
edge was observed [44]. A topological phase transition from
Chern insulating (σxy = 2e2/h) to a trivial (σxy = 0) insulating
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FIG. 1. (a) Schematic diagram of single-layer α-T3 lattice. (b) Schematic diagram (top view) of cyclically stacked bilayer α-T3 lattice;
positions of sites Au (Cl ), Bu (Al ), and Cu (Bl ) of the upper (lower) layer denoted by red, green, and blue, respectively. The NN hopping of the
upper and lower layers are denoted as gray and red lines, and the hopping strength between sites B and C are shown as αt (dashed) and between
B and A (solid) as t . The next NNN complex hopping of strength t2eiφ for A and C sublattices is shown with black arrows for anticlockwise
direction. (c) Band structure of cyclically (Al Bu-BlCu-Cl Au) stacked bilayer α-T3 lattice, calculated along the path of high symmetry points
(�-K-M-K ′-�) in the absence of Haldane flux and the path in the hexagonal Brillouin zone (inset).

phase was observed at the semi-Dirac limit of the dice lattice
[45].

However, the flat bands near the charge neutrality in the
α-T3 lattice become dispersive at the band-touching high-
symmetric point (K and K ′) in the presence of spin-orbit
coupling and become nontrivial [37]. Interestingly, when two
layers of the α-T3 lattice stack on top of each other to form a
bilayer with four nonequivalent commensurate stacking, the
effective low-energy model shows the dispersive nature of
the flat bands near the charge neutrality [46]. The topological
properties of these nearly flat bands of bilayer α-T3 lattices
have not been explored.

This paper is organized in the following way. In Sec. II
we presented the model Hamiltonian of the bilayer sys-
tem. In Sec. III we discuss the results, where Sec. III A
shows the spectral properties for different stacking config-
urations, and Secs. III B and III C present the topological
properties and show the Chern phase diagrams. Further, in
Sec. III D we present the anomalous Hall conductivity. We
finally conclude with a brief summary of the results obtained
in Sec. IV.

II. THE MODEL HAMILTONIAN

A. Single-layer and bilayer α-T3 lattice

The α-T3 lattice is similar to a honeycomb lattice but with
an additional lattice site at the center of the hexagon, as
shown in Fig. 1(a). The two sublattice sites, A and B, form
the honeycomb lattice with a nearest-neighbor (NN) hopping
amplitude of t (solid line). Additionally, the third sublattice
site, C, located at the center of the hexagon, connects to site
B with NN hopping, and the hopping amplitude can be tuned
with a parameter α, defined as αt (dashed line). This lattice
structure is bipartite, with sites A and C referred to as “rim
atom” sites, and the B lattice sites are known as “hub atom”
sites. The rim atoms have 3 nearest neighbors, whereas hub
atoms have 6 nearest neighbors [28,29,35,36,47–50]. The real
parameter α smoothly interpolates between two limiting cases
of the model, α = 0 and 1, referred to as graphene and the
dice lattice, respectively. The intermediate values, 0 < α < 1,
are defined as the α-T3 lattice [39]. In this paper, we discuss

the bilayer structure of the α-T3 lattices. The α-T3 bilayer has
four nonequivalent vertically aligned commensurate stackings
[46]. The two layers stack on top of each other, where each
sublattice (Au, Bu,Cu) from the top layer aligns exactly on
top of each sublattice (Al , Bl ,Cl ) of the bottom layer; this
is called “aligned” (AlAu-BlBu-ClCu). A π/3 rotation of the
vertical axis passing through the aligned hub atoms (BlBu) in
the aligned bilayer gives rise to another stacking with sub-
lattice alignment changed to (AlCu-Bl Bu-ClAu), where the
two hub atoms (Bl and Bu) remain aligned and rim atoms’
alignment is exchanged; this is called “hub-aligned” stacking.
Similarly, a π/3 rotation along any of the aligned rim atoms
(AlAu or ClCu) of the aligned bilayer gives rise to different
stackings where one of the aligned rim atoms remains un-
changed and the hub atom and the second rim atom have
mixed alignment (AlAu-BlCu-ClBu) or (AlCu-BlAu-Bl Bu); this
is called “mixed” stacking. The two configurations of mixed
stacking are equivalent structures as both rim atoms are equiv-
alent. Additionally, sliding one of the layers in the aligned
stacking for a distance a0, which is the length between two
sublattices, gives rise to the cyclic alignment of the sublat-
tices (AlBu-BlCu-ClAu); this is called “cyclic” stacking. The
discrete symmetries of all four bilayer stacking arrangements
are discussed thoroughly in Ref. [46]. The single-layer of the
dice lattice preserves the in-plane inversion symmetry with
the interchange of two rim sites, which can be shown with the
3 × 3 matrix, W0,

W0 =
⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠. (1)

In the case of the α-T3 lattice bilayer within the dice lattice
limits, the aligned and hub-aligned stackings preserve in-
plane inversion (W1) and full inversion (W2) symmetries with
symmetry matrices W1 = 1 ⊗ W0 and W2 = τx ⊗ W0, where
τx is the vector of the Pauli spin matrix defined in the layer
space. W1 and W2 are 6 × 6 matrices which correspond to an
interchange of rim sites in both planes and an additional inter-
change of layers, respectively. However, the cyclic stacking
preserves only W2 symmetry [46]. When α �= 1, for general

165118-2



TOPOLOGICAL PROPERTIES OF NEARLY FLAT BANDS … PHYSICAL REVIEW B 109, 165118 (2024)

α-T3 cases, both W1 and W2 inversion symmetries are no
longer preserved. The coupling between hub and rim atoms
of different layers leads to particle-hole symmetry breaking
in the case of mixed and cyclic stacking, as shown in later
sections.

B. Tight-binding Hamiltonian

The tight-binding Hamiltonian for bilayer α-T3 lattice can
be written as

H =
∑

m∈l,u

[∑
〈i, j〉

ti jC
m†
i Cm

j +
∑
〈〈i, j〉〉

t2i, je
iφm

i jCm†

i Cm
j

+
∑

i

	iC
m†
i Cm

i + H.c.

]
+

[∑
〈p,q〉

t⊥p,qCl†
p Cu

q + H.c.

]
,

(2)

where m is the layer index, which takes l (u) for the lower
(upper) indices, and Cm†

i (Cm
i ) is the creation (annihilation)

operator of the ith site of layer m. We used t = −1 eV,
t2 = 0.1t , and t⊥ = −0.4 eV. The first term implies the NN
hopping along directions δ1 = (0, a0), δ2 = (−

√
3a0
2 ,− a0

2 ),

and δ3 = (
√

3a0
2 ,− a0

2 ) with strength t among A and B sublat-
tices and αt among B and C sublattices. The second term is
the complex next-nearest-neighbor (NNN) hopping (Haldane
term) along the direction of the three vectors ν1 = δ2 − δ3,
ν2 = δ3 − δ1, and ν3 = δ1 − δ2, with hopping strength t2 or
αt2 depending on the sublattices and phase φm

i j , which takes
positive values for the electrons hopping clockwise and nega-
tive for anticlockwise hopping for each layer m. In the present
work, we consider the Haldane phase to be same for both
the layers as φm

i j = φi j . The NNN hopping from the B sub-
lattice (hub atom) along that direction is forbidden due to the
high potential barrier. The third term is the on-site energy
term that takes positive and negative values for Am and Cm

sublattices, respectively. The last term in the Hamiltonian is
the interlayer coupling term with coupling strength t⊥. We
consider t⊥ to have the same values for coupling among
different sublattices. The Fourier transform of the Hamilto-
nian [Eq. (2)] takes the form of

H =
(

Hl Hc

HT
c Hu

)
. (3)

Here, Hl and Hu are 3 × 3 Hamiltonian matrices for the lower
and upper layers, respectively, with the sublattice basis Al , Bl ,
Cl for the bottom layer, and Au, Bu, Cu for the top layer,

Hl = Hu =
⎛
⎝ f +

z (k, t2) f (k, t ) 0
f ∗(k, t ) f −

z (k, t2) − f −
z (k, αt2) f (k, αt )

0 f ∗(k, αt ) f −
z (k, αt2)

⎞
⎠,

(4)

and the general form of the coupling Hamiltonian

Hc =

⎛
⎜⎝

t am
⊥ t c

⊥ t h
⊥

0 t ah
⊥ tmc

⊥
t hc
⊥ tm

⊥ t a
⊥

⎞
⎟⎠, (5)

where f ±
z (k, t ′

2) = f1(k, t ′
2) ± f2(k, t ′

2) and f (k, t ′) =
fx(k, t ′) − i fy(k, t ′), and t ′(t ′

2) takes the values of either

t (t2) or αt (αt2),

fx(k, t ′) = t ′
{

cos a0ky + 2 cos

√
3a0kx

2
cos

a0ky

2

}
,

fy(k, t ′) = t ′
{

sin a0ky − 2 cos

√
3a0kx

2
sin

a0ky

2

}
,

f1(k) = 2t2 cos φ

{
2 cos

√
3a0kx

2
cos

3a0ky

2
+ cos

√
3a0kx

}
,

f2(k) = 	 − 2t2 sin φ

{
2 sin

√
3a0kx

2
cos

3a0ky

2

− sin
√

3a0kx

}
.

All the t⊥ terms vanish except t am
⊥ , t ah

⊥ , and t a
⊥ for the aligned

case, t hc
⊥ , t ah

⊥ , and t h
⊥ for the hub aligned, t am

⊥ , tm
⊥ , and tmc

⊥
for the mixed, and t hc

⊥ , t c
⊥, and tmc

⊥ for the cyclic stacking
cases, respectively. The magnitude of the interlayer coupling
strength take values αt when hopping from the ‘C’ sublattices
of any of the layer are considered. Hamiltonian Hl (Hu) for
the lower (upper) layer in terms of spin-1 matrices is given as

Ht = Hb = f1(k)S0 + f2(k)Sz + fx(k, t ′)Sx + fy(k, t ′)Sy,

(6)

where

Sx =
⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠, Sy = i

⎛
⎝0 −1 0

1 0 −1
0 1 0

⎞
⎠,

Sz =
⎛
⎝1 0 0

0 0 0
0 0 −1

⎞
⎠, S0 =

⎛
⎝1 0 0

0 0 0
0 0 1

⎞
⎠.

In the absence of NNN hopping, this Hamiltonian can be
linearized for momentum around the Dirac points, taking the
form of a pseudospin-1 Dirac-Weyl Hamiltonian [36],

Hξ (q) = h̄v f (ξqxSx + qySy), (7)

where q = k − K is the momentum around Dirac points,
ξ = ±1 are the valley indices, and v f is the Fermi velocity.

III. RESULTS AND DISCUSSION

A. Electronic spectrum

Now we discuss the energy spectrum of single-layer and
bilayer α-T3 lattices of different stackings, obtained using
the tight-binding Hamiltonian discussed above under the in-
fluence of Haldane flux. The band structures are calculated
along the high-symmetry points: �(0, 0), K (− 4π

3
√

3a0
, 2π

3a0
),

M(0, 2π
3a0

), and K ′( 4π

3
√

3a0
, 2π

3a0
) in the hexagonal Brillouin zone

(BZ). In the single-layer α-T3 lattice, the three sublattices per
unit cell result in three bands in the energy spectrum: one
nondispersive flat band at zero energy and two conical bands
from the valence band (VB) and conduction band (CB). All
three bands intersect each other at K and K ′ with the flat band
near the charge neutrality, similarly to graphene. We intro-
duced the Haldane terms in the Hamiltonian and the threefold
degeneracy is lifted, opening a gap at the Dirac points
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FIG. 2. Electronic band structure of all four nonequivalent commensurate stackings of bilayer α-T3 lattice, i.e., aligned (Al Au-Bl Bu-ClCu),
hub-aligned (AlCu-Bl Bu-ClCu), mixed (Al Au-BlCu-Cl Bu), and cyclic (Al Bu-BlCu-Cl Au) for zero and nonzero values of t2.

(K and K ′), as shown in Fig. 10(a). Furthermore, we varied
α from 1 to 0, which makes the flat bands more dispersive. It
is worth noting that the flat band energy shows dispersion near
the two Dirac points and remains nearly flat in the remaining
high-symmetry path in the BZ. The bilayer α-T3 lattice’s
energy spectrum appears to be sensitive to the choice of the
coupling strengths among the different sublattices of the two
layers. All four nonequivalent commensurate stackings for the
dice lattice limit (α = 1) with and without the inclusion of the
Haldane flux are shown in Fig. 2. In the bilayer geometry, the
inclusion of the Haldane flux breaks TRS in all four stackings
of the bilayer α-T3 lattice. Interestingly, particle-hole symme-
try is preserved in aligned and hub-aligned stacking due to the
hub-hub and rim-rim interlayer interactions, while it is broken
in the mixed and cyclic stacking due to the presence of hub-
rim interactions between the two layers. Furthermore, the low-
energy bands dynamically change with increasing strengths of
the NNN complex hopping strength (t2), as shown in Fig. 3.
These changes are symmetric at both the Dirac points (K and
K ′). In the case of aligned stacking, the valence and conduc-

tion bands degenerate at the Dirac point and around the Dirac
points, while the flat bands are pushed away from zero energy.
For a large value of NNN complex hopping strength (t2), the
degeneracy among all six bands is lifted, and the flat bands
are around zero energy. Similarly to the single layer [45],
the presence of NNN complex hopping strength (t2) does not
make them nontrivial, and their Chern numbers remain zero.
In the hub-aligned and mixed stacking cases, the bands are
strongly degenerate and are not separated with varying values
of the NNN complex hopping strength (t2). The most interest-
ing case is the cyclic stacking of the bilayer α-T3 lattice. In
this stacking, the conduction and valence bands are separated
at charge neutrality with t2 = 0, and all the bands become sep-
arated with the inclusion of Haldane flux with t2 = 0.1t . The
Haldane flux breaks the time-reversal symmetry of the system,
and all six bands become separated, leaving a finite gap at
zero energy, which makes the system insulating. The energy
spectrum of cyclic stacking consists of two isolated, nearly
flat bands near the Fermi level and four dispersive higher-
energy bands, two in each conduction and valence band. The

FIG. 3. Zoomed figure of the spectrum at the Dirac points K and K ′. The dotted lines show the Fermi energy.

165118-4



TOPOLOGICAL PROPERTIES OF NEARLY FLAT BANDS … PHYSICAL REVIEW B 109, 165118 (2024)

bandwidth of the two nearly flat bands (0.19 eV for valence
and 0.21 eV for conduction) is found to decrease (0.16 eV
for valence and 0.19 eV for conduction) for t2 = 0.1 eV and
becomes more flattened for t2 = 0.2 eV. These flat bands are
intriguing in a simple bilayer geometry when compared to
complex systems like twisted bilayer graphene. Furthermore,
we found that these flat bands are nontrivial, with nonzero
Chern numbers, making the cyclic-stacked bilayer α-T3 lattice
a potential candidate to study topological properties. Addi-
tionally, by changing the hopping strength αt [see Fig. 1(b)],
the inversion symmetry is broken in the system, causing the
two nearly flat bands to become dispersive.

B. Topological properties

Furthermore, we have conducted an extensive study of the
cyclic stacking to investigate the topological properties of the
bilayer α-T3 lattice. We calculated the Berry curvatures for
the energy spectrum in the BZ for all six isolated bands and
determined their respective Chern numbers. The z component
of the Berry curvature was calculated numerically using [51]

�n(kx, ky) = −2
∑
n′ �=n

Im

[ 〈un| ∂H
∂kx

|un′ 〉 〈un′ | ∂H
∂ky

|un〉
(En′ − En)2

]
(8)

for the nth band for each k point, summing over all neigh-
boring n′ bands. Here, |un〉 are the block states, and En are
the eigenvalues of the Hamiltonian given in Eq. (3) for the
nth band. The surface integral of the Berry curvature over the
first BZ yields 2πCn for the nth band, where Cn is an integer
called the Chern number or TKNN index [52,53]. The com-
plex NNN hopping term plays a crucial role in determining
the topological properties of the cyclic-stacked α-T3 bilayer
lattice. In the bilayer cyclic α-T3 lattice, all six bands become
topologically nontrivial. These include the flat bands VB1 and
CB1, and the higher-energy dispersive bands VB2, VB3, CB2,
and CB3 [see Fig. 1(c)]. We began from the dice lattice limit
and varied α from 1 to 0 to observe the topological evolution
in the system. At the dice lattice limit, the system becomes
topological due to nonzero Chern numbers. VB1 (CB1), VB2
(CB2), and VB3 (CB3) possess Chern numbers of +2 (−2),
+3 (−3), and +1 (−1), respectively. The continuous variation
of α shows multiple phase transitions from one topological
insulating phase to another through a band crossing between
VB1 (CB1) and VB2 (CB2) in the valance (conduction) band
at α = 0.58 between the �(M ) and K (K ′) point and at α =
0.608 at the K (K ′) point. After the transition, the nearly flat
bands (VB1 and CB1) acquire very high Chern numbers of
Cn = ±4, while the middle bands (VB2 and CB2) acquires a
chern number ±2. The Chern number of the lowest(highest)
energy bands VB3 (CB3) changes from +1(−1) to +2(−2)
due to a band crossings between VB3 (CB3) and VB2 (CB2)
at the Dirac point K (K ′). Figures 4(a) and 4(b) show the
dispersive nearly flat band structures for three different values
of α aside from 1. The red dashed curve shows the band
crossing in both Figs. 4(a) and 4(b). Figures 4(c) and 4(d)
show the Chern number line plots as a function of α for all six
bands, clearly showing the switching of Chern numbers at the
transition points. This behaviour of multiple phase transition
is not observed for its single-layer counterpart in the presence

FIG. 4. Band structure of cyclic bilayer α-T3 for different values
of α showing band closing and opening for phase transition in the VB
(CB) (a) between �(M ) and K (K ′), α = 0.5 (green), α = 0.58 (red)
and α = 0.7 (black); (b) at K (K ′), α = 0.5 (green), α = 0.608 (red)
and α = 0.7 (black). For all three cases we use t2 = 0.1t , φ = π

2 ,
	 = 0. The bands are no longer symmetric under the exchange of
valley for α �= 1. (c) The variation of Chern number as a function of
α for three (c) VB and (d) CB.

of the Haldane term. However, a similar study of topological
phase transition has been observed for the single-layer α-T3

lattice when irradiated with off-resonant circularly polarized
light [43] or using intrinsic spin-orbit coupling [1]. The vari-
ation in α breaks the W2 inversion symmetry, as visualized in
the Berry curvature distribution shown in Fig. 5. The Berry
curvature distribution over the kx-ky plane at the dice lattice
limit (α = 1) exhibits the same features at the K and K ′ points,
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FIG. 5. Berry curvature distribution in the kx-ky plane for the nearly flat valance (VB1) and conduction (CB1) bands for α = 1 (dice lattice
limit), 0.608, 0.58, and α = 0.2. Here t2, 	, and φ are fixed at 0.1t , 0, and π

2 , respectively.

reflecting the preserved W2 inversion symmetry in the system.
For α values other than 1, the symmetry breaks, resulting in
different Berry curvature distributions at K and K ′.

C. Chern phase diagrams

The bilayer cyclic α-T3 lattice exhibits a rich interplay
between time-reversal and inversion asymmetry controlled
by the flux phase φ and the parameter α, respectively. The
simultaneous variation of φ and α gives rise to a multi-
tude of new topological phases. In Fig. 4, we demonstrate
how the Chern insulating phase evolves as we fix φ = π

2
while varying α. However, there is more to explore within
the parameter space 0 < φ < π . Our investigations reveal
additional Chern phases, which we have summarized in the
Chern number phase diagram shown in Fig. 6. Here, we ex-
amine the dependencies of the Chern numbers for VB1 (CB1),
VB2 (CB2), and VB3 (CB3) on α and φ. Here we change

FIG. 6. Chern number phase diagram of three valance bands (top
row) and conduction bands (bottom row) of cyclic bilayer α-T3

lattice in the parameter space α (0 ∼ 1) and φ (0 ∼ π ). t2 = 0.1t ,
	 = 0 for all bands.

the Haldane phase for both layers simultaneously. Notably,
the Chern numbers of the lower energy valance/conduction
bands exhibit sensitivity to both α and φ. Meanwhile, the
second set of dispersive bands (VB3 and CB3) displays a
negligible dependence on φ within a very small range. In
the phase diagram, we also present the conventional Haldane
phase diagram (see Fig. 7) for the nearly flat valence band
(VB1) and conduction band (CB1). This diagram depicts the
Chern number as a function of 	 and φ for specific values
of α. Also, we have shown the sinusoidal phase boundary
separating the trivial and topological phase for the ordinary
Haldane model of graphene, 	 = ±3

√
3t2 sin φ, with a black

curve [54]. It is essential to note that for intermediate values
of α when the flat bands become dispersive, the topological
phase depends on the NNN neighbor hopping strength t2 (see
Fig. 8). We illustrate this by displaying the Chern number
plots as a function of α for band VB3 with varying values of t2.

FIG. 7. The Haldane phase diagram shown for VB1 (n = 3) and
CB1 (n = 4) for different values of α along with the sinusoidal
Haldane phase boundary (black curve).
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FIG. 8. Chern number variation of VB1 (n = 3) with α for differ-
ent values of NNN hopping parameter t2. We kept 	 = 0 and φ = π

2
here.

For instance, when t2 = 0.06t eV, we observe a Chern number
phase transition from |C| = 0 to |C| = 1 at α = 0.545, leading
to a smaller C = 1 region in the Chern number phase diagram
compared to t2 = 0.1t in Fig. 6, irrespective of the value of φ.
As we increase t2, the transition occurs at lower values of α.

D. Anomalous Hall conductivity

In this section, we calculate the anomalous Hall conduc-
tivity for the bilayer cyclic α-T3 lattice. This conductivity,
a measure of how electrons respond to an external electric
field, can provide insights into the topological properties of
the material. We compute the Hall conductivity by numeri-
cally integrating the Berry curvature of all occupied electronic
states over the entire BZ. This involves summing up contribu-
tions from all the bands in the material [51],

σxy = σ0

2π

∑
n

∫
�n(kx, ky) f

(
En

kx,ky

)
dkxdky, (9)

where �n is the Berry curvature for the nth band from Eq. (7),
f (E ) = 1/[1 + e(E−E f )/KBT ] is the Fermi-Dirac distribution
function where E f and T signify Fermi energy and absolute
temperature, En

kx,ky
are the energy eigenvalues for the nth band,

and σ0 = e2/h. The anomalous Hall conductivity arises due
to the nonzero Berry curvature contributions of all occupied
states. As the Fermi energy lies in a band gap, the Fermi-
Dirac distribution function f (E ) at zero absolute temperature
is 1, and the total contribution of all occupied states comes
from bands below the Fermi energy. Then the integration over
the BZ gives the total Chern number of the bands below
the Fermi energy and we get a plateau σxy = |Cn|e2/h. The
conductivity decays when the Fermi energy lies outside of
the gap. The anomalous Hall conductivity (AHC) for this
system at the α = 1 limit is plotted as a function of Fermi
energy (E f ) in units of σ0 as shown in Fig. 9(a). From the
AHC we noticed three different plateau regions with respect
to the Fermi energies. As we move the Fermi energy from
zero energy to higher values to the gap between VB1 and
VB2, the AHC is solely contributed by the VB3 (Cn = 1)
and VB2 (Cn = 3), resulting in σxy = |4|e2/h, and the total

FIG. 9. The Hall conductivity depicted as a function of Fermi
energy, Ef (a) for α = 1, for several values of α for (b) Fermi
energy near CB phase transition and (c) Fermi energy near VB phase
transition, the other parameters taken as t2 = 0.1t , φ = π/2, 	 = 0.

Chern number Cn = 4 is just some of the two Chern numbers
of VB3 and VB2. We see from the plot a plateau at 4e2/h re-
mains quantized within the gap. Similarly, we observe another
plateau at 4e2/h for the energy gap between CB2 and CB1 as
the Chern number of VB1 and CB1 being +2 and −2; the total
Chern number remains 4. The system attains its maximum
conductivity when the Fermi energy lies in the gap between
VB1 and CB1. For the Fermi energy lying in this region, the
total Chern number of all the bands below the Fermi energy
is 6 and we see a plateau at 6e2/h. The asymmetry in the
plot arises due to the particle-hole asymmetry present in the
cyclic bilayer system. In order to visualize the nature of AHC
plateaus after the phase transition, we have depicted the Hall
conductivity for several values of α, for Fermi energies near
the CB and VB phase transition point, i.e., E f lying in the
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FIG. 10. Single layer α-T3 (a) spectrum for α = 1 (black) and α = 0.4 (blue) and α = 0 (green), (b) Berry curvature for bands corre-
sponding to the Chern number +2 (VB) and −2 (CB) for α = 1, and +1 (VB) and −1 (CB) for α = 0.4 are presented. (c) Anomalous
hall conductivity is shown for various values of α, which are indicated in the inset. The values of t2, φ, 	 are taken as 0.1t , π/2 and zero
respectively.

gap between CB1, CB2 and VB1, VB2, respectively. As we
have discussed before (see Fig. 4), a topological phase transi-
tion accompanied by a band closure and opening is observed
by changing hopping strength using α for both VB in the
energy range (0.3 eV - 0.5 eV) and (−0.5 eV - −0.3 eV),
respectively. And for the Fermi energy in any of the gaps
mentioned above, we see a conductivity plateau at 4e2/h. As
we lower the value of α, this plateau gradually diminishes
as the gap becomes narrower and completely vanishes at the
transition point when the band gap closes, and eventually, we
see a new plateau arising at 2e2/h as the gap opens again.
The new plateau at 2e2/h arises because the Chern numbers
associated with both the band changes after the transitions
leading to the total Chern number of the bands below the
Fermi energy always being CT = 2 for both VB and CB.
Figures 9(b) and 9(c) show the conductivity for Fermi energies
near the transition point for CB and VB, respectively, for
different α values.

IV. CONCLUSION

We introduced the Haldane model for four nonequivalent
vertically aligned commensurate stackings for a bilayer α-T3

lattice in the Dice lattice limit. We found that both aligned
and cyclic stackings open up a band gap when the TRS is
broken and the gap depends on both t2 and interlayer coupling.
We investigated the topological properties of cyclic stacking
within the tight-binding formalism. The cyclic stacking has
all six bands topologically nontrivial including two nearly
flat bands with a higher Chern number, Cn = ±3. Further,
we allowed the variation of α starting from the Dice lattice
limit and observed multiple topological phase transitions in
the valance band and the conduction band for different values
of α. The phase transition occurs at the gap closing between
VB1 and VB2 in the valance band and CB1 and CB2 in
the conduction band, while the third band becomes trivial.
The partial flat bands acquire a Chern number as high as
Cn = ±4 after the transition. We obtained the phase diagram
in the parameter space α and φ for all six bands that exhibit
multiple Chern phase regions. A higher Chern number arises
for the low energy bands and a trivial region arises for higher
energy bands. We also calculated the anomalous Hall con-
ductivity for the Dice lattice limit as well as for different

α values for Fermi energy close to the transition point. The
conductivity plateau shows a jump from 4e2/h to 2e2/h which
supports the phase transition from one Chern insulating phase
to another.

ACKNOWLEDGMENTS

We acknowledge support provided by the Kepler Com-
puting Facility, maintained by the Department of Physical
Sciences, IISER Kolkata, for various computational needs.
P.P. and S.G. acknowledge support from the Council of Sci-
entific and Industrial Research (CSIR), India, for a doctoral
fellowship. B.L.C. acknowledges the SERB with Grant No.
SRG/2022/001102 and IISER Kolkata Start-Up Grant, Ref.
No. IISER-K/DoRD/SUG/BC/2021-22/376. P.P. thanks Dr.
P. Sinha for meaningful discussions.

APPENDIX: SINGLE-LAYER α-T3 FOR α �= 1

Here we discuss in more detail the effect of broken in-
version symmetry in the presence of Haldane flux in a
single-layer α-T3 Hamiltonian [Eq. (4)] and the fate of topo-
logical bands and anomalous Hall conductivity as we evolve
the hopping strength between sites B and C [Fig. 1(a)] using
the real parameter α. The single layer α-T3 lattice preserves
the W0 inversion symmetry in the dice lattice limit. For α

values �= 0, 1 the inversion symmetry breaks. Introducing
Haldane flux breaks time-reversal symmetry, Kramer’s degen-
eracy is lifted, and the energy becomes an odd function of k
as can be seen for the red curve (α = 0.4) in the spectrum
of Fig. 10(a). The Berry curvature plots for the VB and CB
(as shown in Fig. 10(b)) show different values at K and
−K for α �= 1 showing the inversion symmetry breaking in
the system. Though the middle band becomes dispersive and
acquires a finite Berry curvature value, the total Berry curva-
ture over BZ is zero and the band remains trivial in nature.
Figure 10(c) presents the Hall conductivity as a function of
Fermi energy for various values of α. α = 1 corresponds to a
completely flat middle band and this band has no contribution
to the Berry curvature integral which leads to a Hall conduc-
tivity plateau at 2σ0 when E f lies in the gap. When α �= 1 the
dispersive middle band has a finite contribution to the Berry
curvature integral and it reduces the overall contributions of
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all occupied states and we see a dip around zero energy.
As the middle band becomes more dispersive with α values

away from 1, we see a broader and deeper dip in the Hall
conductivity.
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