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Magnetotransport in spin-orbit coupled noncentrosymmetric and Weyl metals
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Recently, chiral anomaly (CA) has been proposed to occur in spin-orbit coupled noncentrosymmetric metals
(SOC-NCMs), motivating CA to be a Fermi surface property rather than a Weyl node property. Although the
nature of the anomaly is similar in both SOC-NCMs and Weyl systems, here we point out significant fundamental
differences between the two. We show that the different nature of the orbital magnetic moment (OMM) in the two
systems leads to nontrivial consequences—particularly the sign of the longitudinal magnetoconductance always
remains positive in a SOC noncentrosymmetric metal, unlike a Weyl metal that displays either sign. Furthermore,
we investigate the planar Hall effect and the geometrical contribution to the Hall effect in the two systems and
point out significant differences in the two systems. We conduct our analysis for magnetic and nonmagnetic
impurities, making our study important in light of current and upcoming experiments in both SOC-NCMs and
Weyl metals.
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I. INTRODUCTION

Chiral anomaly roots its origin in high-energy
physics [1,2]. It refers to the nonconservation of left-
and right-handed Weyl fermions separately in the presence
of external gauge fields. Over the past decade, its unexpected
appearance in solid-state systems has caused great excitement
in the condensed matter community [3–31]. Specifically,
Weyl fermions, discovered as electronic excitations in
specific systems [termed as Weyl semimetals (WSMs)], can
manifest the anomaly that can be detected via relatively
simple transport [10–16] or optical [32–38] measurements.
The key requirement is that the elementary excitations should
be chiral and relativistic in odd spatial dimensions [39].

The realization of the anomaly has recently been ex-
tended to certain other systems distinct from Weyl semimet-
als [40–50]. Specifically, it has been suggested that the
anomaly can be realized in spin-orbit-coupled (SOC) non-
centrosymmetric metals (NCMs) that host nonrelativistic
fermions with only one relevant band touching point [48]. The
effect of the anomaly on charge and thermal transport prop-
erties of SOC-NCMs has recently been studied [48,49,51],
and it has been suggested that the anomaly results in pos-
itive longitudinal magnetoconductance (LMC) [48,49], akin
to Weyl semimetals. The sign of LMC has been a subject
of much debate and exploration in WSMs. It is expected
to crucially depend on the nature of impurities, the strength
of the magnetic field, and the strength of the intervalley
scattering. Under strong magnetic fields, due to Landau quan-
tization, the LMC sign depends on the nature of scattering
impurities [30,52–57].

Recently, we pointed out that the sign of LMC is, in fact,
more nuanced [58]. LMC in Weyl systems can typically be ex-
pressed as σzz = σ0 + σ (2)

zz (B − B0)2. “Strong-sign-reversal”
is characterized by the reversal of orientation of the magneto-
conductance parabola with respect to the magnetic field, while

in “weak-sign-reversal,” the magnetoconductivity depends on
the direction of the magnetic field and is not correlated with
the orientation of the LMC parabola. Figure 1(c) shows a
schematic description of strong and weak-sign-reversal of
LMC. Specifically, in the case of weak-sign-reversal, LMC
is linear in the near zero magnetic field, while the ver-
tex of the parabola (B0) is shifted from the origin, but the
quadratic coefficient of LMC (σ (2)

zz ) remains positive. In the
case of strong-sign-reversal, importantly, the quadratic co-
efficient σ (2)

zz becomes negative. When Landau quantization
can be ignored under weak magnetic fields, quasiclassical
Boltzmann analysis suggests that sufficiently strong interval-
ley scattering can reverse the sign of LMC from positive
to negative (strong-sign-reversal) [19,20,59]. Whether or not
the longitudinal magnetoconductance in SOC-NCMs shows
similar characteristics also remains an important and pertinent
question in the field. Furthermore, the focus of all the previous
works has been particularly on point-like scalar nonmagnetic
impurities. The fate of LMC in both spin-orbit-coupled and
Weyl metals in the presence of (pseudo)magnetic impurities
remains to be determined.

In SOC-NCMs, we focus on the vicinity of one nodal point
surrounded by two Fermi surfaces as depicted in Fig. 2(b).
This is in contrast to the two separate nodal points and Fermi
surfaces we are concerned with in WSMs [Fig. 2(a)]. The
role of intranode scattering in WSMs is replaced by intraband
scattering in SOC-NCMs. This scattering preserves the chi-
rality of the scattered quasiparticles. Internode scattering in
WSMs is equivalent to interband scattering in SOC-NCMs,
reversing the quasiparticle chirality. Internode scattering in
WSMs requires the transfer of large momentum of the or-
der of separation between the Weyl nodes, which is usually
weaker than intranode scattering requiring a small momentum
transfer. In contrast, in SOC-NCMs, the momentum transfer
with interband scattering is not necessarily small, as both the
Fermi surfaces surround a single nodal point. Thus, interband
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FIG. 1. Schematic figure representing weak-sign-reversal (WSR)
and strong-sign-reversal (SSR) compared to normal LMC in Weyl
systems.

scattering is expected to be at least as significant in SOC-
NCMs as it is in WSMs, and its exploration remains an open
question.

In this work, we probe the role of interband scattering
in SOC-WSMs and show that in the quasiclassical low-field
regime, unlike WSMs, the sign of LMC is not sensitive to
the relative strength of the interband scattering. Longitudinal
magnetoconductance in SOC-NCMs is found to be always
positive, irrespective of the strength of the interband scat-
tering. We trace the reason to the orbital magnetic moment
(OMM) in SOC-NCMs that is of equal magnitude and sign
at both the bands, as compared to the case of WSMs where
OMM has equal magnitudes but opposite signs at the two
nodes (see Fig. 2). We examine how the subtle difference
in OMM can lead to drastic differences in other transport

FIG. 2. Quasiparticle scattering in (a) WSMs and (b) SOC-
NCMs. Unlike WSMs, quasiparticle scattering in SOC-NCMs occurs
between the surfaces (FSs) associated with a single nodal point.
The two Fermi FSs in SOC-NCMs have opposite Berry curvature
[�λ(k)], but crucially, unlike WSMs, have the same orbital magnetic
moment [mλ(k)]. Blue and yellow arrows represent the internode (in-
terband for SOC-NCMs) and intranode (intraband for SOC-NCMs)
scattering, respectively, in WSMs. Here, λ is the band/node index.
The oval shape of the Fermi surfaces is due to the coupling of the
orbital magnetic moment in an external magnetic field.

properties, such as the planar Hall conductivity, and also give
rise to a finite geometrical contribution to the Hall conduc-
tivity in SOC-NCMs. Furthermore, we also analyze all the
properties of both WSMs and SOC-NCMs in the presence
of both point-like scalar and magnetic impurities, which has
remained an open problem so far.

II. MODEL AND FORMALISM

We begin with the following extended model of a spin-orbit
coupled noncentrosymmetric metal that can be expressed near
the high-symmetry point as:

Hsoc(k) = h̄2k2

2m
σ0 + h̄ϑk · σ + h̄ϑ (kxtx + kztz )σ0. (1)

Here, m is the effective electron mass. The second term repre-
sents the spin-orbit coupling term, and σ denotes the vector
of Pauli matrices in the spin space. The third term in the
Hamiltonian tilts the dispersion along a particular direction,
and the dimensionless parameters tx and tz represent the tilting
along x- and z-directions, respectively. Similar to the case of
WSMs, the tilt term may arise naturally in the bandstructure in
SOC-NCMs or may model the effect of strain in the material.

To compare our results with WSM, we use the following
prototype model of a two-node time-reversal symmetry bro-
ken WSM

Hwsm =
⎛
⎝ ∑

χ=±1

h̄vF χk · σ

⎞
⎠ + h̄vF (kxtx + kztz )σ0. (2)

Here, χ is the chirality and vF is the Fermi velocity. The
Hamiltonian in Eq. (1) has the following energy dispersion:

ελ(k) = h̄2k2

2m
+ λh̄ϑk + h̄ϑ (kxtx + kztz ). (3)

Here, λ = ∓1 is the band index. The corresponding eigenvec-
tors are |uλ〉T = [λe−iφ cos(θ/2), sin(θ/2)]. We assume that
the Fermi energy εF lies above the nodal point k = 0, and thus
we have two Fermi surfaces corresponding to the two energy
bands as shown in Fig. 2(b). The Berry curvature (�λ

k) for
both these surfaces has equal magnitudes and opposite signs,
just like the Fermi surfaces in the vicinity of two nodal points
in WSMs. Interestingly, the orbital magnetic moment (mλ

k)
carries the same sign and magnitude, distinct from WSMs
where the signs are reversed. In the presence of an external
magnetic field (B), the orbital magnetic moment couples to
the dispersion as −mλ

k · B leading to the oval-shaped Fermi
surfaces as shown in Fig. 2(b). In WSMs, the coupling is
opposite, and thus, the shapes of the surfaces are reversed.
The Berry curvature and orbital magnetic moment are given
by the following relations:

�
χ

k = i∇k × 〈uχ (k)|∇k|uχ (k)〉, (4)

mχ

k = −ie

2h̄
Im

〈
∂uχ

∂k

∣∣∣∣ × [ε0(k) − Ĥχ (k)]

∣∣∣∣∂uχ

∂k

〉
. (5)

We study charge transport in the presence of perturbative
electric and magnetic fields using the quasiclassical Boltz-
mann formalism. This is valid in the limits of weak magnetic
fields, B � Bc, where eBch̄/2mεF = 1. The nonequilibrium
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FIG. 3. (a) Orientation of magnetic field in the xz plane. (b) Sym-
bolic interpretation for the types of impurity studied in this article
[Eq. (8)].

distribution function f λ
k obeys the following steady-state

equation:

ṙλ
k · ∇r f λ

k + k̇λ · ∇k f λ
k = Icoll

[
f λ
k

]
. (6)

Here, f λ
k = f0 + gλ

k, with f0 being the Fermi-Dirac distribu-
tion and gλ

k is the deviation due to the presence of the external
fields. We restrict ourselves to the first order in the electric
field, i.e., gλ

k = −e( ∂ f0

∂μ
)εF E · �λ

k. The collision integral (Icoll)
in Eq. (6) is chosen in such a way that it can incorporate both
interband and intraband scattering, given by

Icoll
[

f λ
k

] =
∑
λ′

∑
k′

Wλλ′
kk′

(
f λ′
k′ − f λ

k

)
, (7)

where the scattering rate Wλλ′
kk′ calculated using the Fermi’s

golden rule

Wλλ′
kk′ = 2πn

V
∣∣ 〈uλ′

(k′)|U λλ′
kk′ |uλ(k)〉 ∣∣2

δ
(
ελ′

k′ − εF
)
. (8)

Here, “n” is the impurity concentration, “V” is the system
volume, |uλ(k)〉 is the spinor wave function, U λλ′

kk′ is the scat-
tering potential profile, and εF is the Fermi energy. Here we
choose U λλ′

kk′ in such a manner that it can include both mag-
netic and nonmagnetic point-like scattering centers. In general
U λλ′

kk′ = U λλ′
σi with i = 0, 1, 2, 3, where U λλ′

distinguishes
the interband (λ �= λ′) and intraband (λ = λ′) scattering. Here,
we work in the geometry represented in Fig. 3(a), i.e., we
fix the direction of the electric field along the z direction
and rotate the magnetic field in the xz plane that makes
an angle γ with respect to the x axis. Further calculation
details for the solution of the distribution function f λ

k are
presented in the Appendix. Finally, the current is evaluated
as j = −e

∑
χ

∑
k ṙχ f χ

k , and the conductance tensor σ̂ is
given by jα = σαβEβ . Unless otherwise specified, we choose
the following values for our calculations: m = 10−32 kg, ϑ =
5 × 105 ms−1, vF = 106 ms−1, εF = 50 meV.

For comparison with an inversion asymmetric WSM
(IWSM), we use the following minimum model Hamiltonian
that consists of four nodes:

H =
4∑

n=1

χnh̄vF k · σ + h̄vFtn
z kzσ0. (9)

Here, χn denotes the chirality of the nth node and t n
z denotes

the corresponding tilt parameter. To break inversion sym-
metry, we chose the tilt configuration as (1, tz ) = (χ1, t1

z ) =
(−χ2, t2

z ) = (χ3,−t3
z ) = (−χ4,−t4

z ).

FIG. 4. LMC in Weyl semimetals and SOC-NCMs as a function
of the magnetic field for different values of the relative interband
(internode for WSMs) scattering strengths α. As we move in the
direction of the arrow from the blue to the green curve, α is increased
from 0.35 to 1.25. We obtain the same behavior for a nonmagnetic
impurity profile, i.e., U λλ′

k,k′ = U λλ′
σ0, as well as magnetic impurity,

i.e, U λλ′
k,k′ = U λλ′

σz. (a) For WSM there is strong-sign-reversal above
α > αc, (b) For SOC-NCM, there is no sign-reversal for any in-
terband scattering strength. (c) For IWSM, we obtain strong sign
reversal for α14 > αc similar to the case for time reversal symmetry
broken WSM. (d) A gain, for IWSM, we obtain strong sign reversal
for α12 > αc.

III. RESULTS

A. Longitudinal magnetoconductance

We first discuss longitudinal magnetoconductance for
SOC-NCM and compare it with a standard WSM. We ex-
amine the behavior of each impurity type (magnetic and
nonmagnetic) individually. In Fig. 4(b) we plot the LMC in
SOC-NCM as a function of the magnetic field for different
values of the relative interband scattering strengths α (the
ratio of interband scattering strength to intraband scattetring
strength), for nonmagnetic σ0 impurities. The LMC is always
positive for any value of α. This behavior is in striking contrast
to WSMs where LMC changes sign (strong sign-reversal [58])
when α > αc [Fig. 4(a)]. We understand this behavior as
follows. Let us denote the Weyl spinor for a state with momen-
tum k and chirality quantum number ν by |ψk〉ν . The Weyl
spinors obey the following symmetry: |ψ+k〉+ = |ψ−k〉− and
|ψ−k〉+ = |ψ+k〉−. Within a valley, backscattering of an elec-
tron implies |ψ+k〉ν → |ψ−k〉ν . Since |ψ−k〉ν is identical to
|ψ+k〉−ν , internode scattering evades backscattering, while
intranode scattering does not. Furthermore, the quasiclassi-
cal velocity ṙν ∝ (B · �ν

k ) [28]. Since �ν
k = −χ k̂/k2, this

contribution is identical for |ψ+k〉ν and |ψ−k〉−ν . Therefore,
internode scattering, associated with chiral anomaly can result
in negative longitudinal magnetoresistance unlike intranode
scattering that always increases resistance [60]. Now, in
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FIG. 5. LMC in Weyl semimetals and SOC-NCMs as a function
of the relative interband (internode for WSMs) scattering strengths
α and the parameter tz. The dashed black line shows the contour
separating positive and negative LMC regions.

WSMs, the sign of the OMM is different at Fermi surfaces
at both nodes. This breaks the symmetry between them, thus
also breaking the symmetry between the chiral partners |ψk〉ν
and |ψ−k〉−ν . This has been attributed to result in a strong-
sign-reversal of LMC [19,20,58]. On the other hand, OMM
shifts the energy dispersion in SOC-NCMs in both the Fermi
surfaces by the same amount as shown in Fig. 2(b). The
symmetry between the chiral partners between both the Fermi
surfaces thus remains intact and therefore no sign-reversal is
observed.

Since the magnetic-σz impurity does not flip the chirality of
the quasiparticles in both SOC-NCMs and WSMs, we observe
the same effect on LMC as a nonmagnetic impurity (σ0). The
σx and σy impurities, on the other hand, flip the chirality of
the quasiparticles. We obtain quadratic and positive LMC for
both WSMs and SOC-NCMs for σx and σy impurities (not
plotted explicitly). It is also possible to have a fair compari-
son of magnetotransport with an inversion asymmetric WSM
(IWSM) as well. The LMC profile of IWSM, as shown in
Figs. 4(c) and 4(d), also shows strong sign reversal for suffi-
ciently strong values of intervalley scattering. Note that due to
the presence of multiple nodes, multiple internode scatterings
are possible. We denote the scattering strength from node 1 to
node 2 and node 3 to node 4 by α12, and the scattering strength
from node 1 to node 4 and node 2 to node 3 by α14.

Next, we examine LMC as a function of the parameter tz
and α for σ0 and σz impurities in Fig. 5. Here δσ zz is the
normalized change in the magnetoconductance evaluated at
some small finite positive magnetic field. We obtain strikingly
different behavior for WSMs and SOC-NCMs. For WSMs,
the zero-LMC contour αc(tz ), which separates positive and
negative LMC, is now a function of tz [Fig. 5(a)]. This
change of sign corresponds to strong-sign-reversal. For SOC-

FIG. 6. LMC in WSMs and SOC-NCMs in the presence of tx pa-
rameter. The dashed black line shows the contour separating positive
and negative LMC regions.

NCMs, the zero-LMC contour appears for nonzero values
of tz and this change of sign is associated with weak-sign-
reversal [Fig. 5(b)]. Specifically, the tz-term tilts the parabola
along a particular direction but does not flip its orientation.
We understand the general behavior due to tilt as follows.
Tilting the Weyl cones makes the Fermi velocity (and the
Fermi momentum) anisotropic across the Fermi surface. For
example, when tz �= 0, kF (θ ) = εF /(1 + tz cos θ ). Note that,
in general, the Fermi contour depends on the magnitude as
well as the sign of the tilt parameter. Flipping the sign of
the tilt parameter amounts to switching left movers into right
movers and vice versa. Furthermore, the quasiclassical veloc-
ity has an additional contribution from the Berry curvature:
ṙν ∝ (B · �ν

k ) [28]; its contribution is dependent on the sign
of the magnetic field. Due to tilt-induced asymmetry in the
Fermi surface, its contribution is also different for left and
right movers. This interplay between tilt, anomalous velocity,
and the direction of the B field results in the behavior obtained
in Fig. 5. In WSMs, the different signs of the orbital magnetic
moment associated with the two nodes induce further asym-
metry.

In Figs. 5(c) and 5(d) we examine the behavior of LMC
as a function of α and tz for σx and σy magnetic impurities.
In WSMs, we observe weak-sign-reversal for large values of
the tilt parameter tz, and no sign-reversal for smaller values
of tz. Furthermore, increasing internode scattering restores
positive LMC. This is in sharp contrast to the effect of σ0

and σz impurities in WSMs, where we observe strong-sign-
reversal and decreasing internode scattering restoring positive
LMC. In SOC-NCMs, for σx and σy impurities, the effect of
weak-sign-reversal is more pronounced as shown in Fig. 5(d).
Again, larger interband scattering restores positive LMC. This
feature is understood as follows. The σx (or σy) impurities
flip the chirality of the fermions; further imposing interband
scattering back-flips the reversed chirality, and thus interband
σx scattering behaves like intraband scattering.

In Fig. 6 we compare the behavior of LMC of WSM with
that of SOC-NCM in the presence of the tilt parameter tx.
In WSM, just like the case when tz �= 0, we find that the
behavior in the presence of nonmagnetic and σz impurities
is similar; we observe strong-sign-reversal. The zero-LMC
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FIG. 7. Planar Hall conductivity for WSM and SOC-NCM for different impurity types in the presence of parameter tz. Plots are
appropriately normalized.

contour αc(tx ) is qualitatively similar to the case of nonzero
tz, but nevertheless exhibits quantitative differences. In SOC-
NCM, weak-sign-reversal is observed. Unlike the tz �= 0 case,
we observe quantitative differences between nonmagnetic and
σz impurities [Figs. 6(b) and 6(c)]. Surprisingly, WSMs in
the presence of σx or σy impurities, exhibit neither weak-
sign-reversal nor strong-sign-reversal in the presence of tx
parameter [Fig. 6(d)]. This can be again understood from the
fact that either of these impurity types changes the roles of in-
ternode scattering and that tilting the Weyl cone in a direction
orthogonal to the direction of the magnetic field does not add
an overall linear component to the magnetoconductivity. For
SOC-NCM, we observe weak-sign-reversal, with quantitative
differences between σx and σy impurities.

Before closing this subsection, we discuss how the inter-
band scattering strength can be tuned. Intraband scattering
involves a small momentum transfer while interband scatter-
ing involves a relatively large momentum transfer. Since the
radial separation of the bands in momentum space is larger for
higher values of spin-orbit coupling parameter ϑ , interband
scattering is expected to be suppressed in materials that have
large ϑ . Furthermore, since the Zeeman field also spin-splits
the bands causing an increase in the radial separation of the
two Fermi surfaces, this can also lead to reduced interband
scattering. Finally, the type of impurities (scalar or charged)
also affects the momentum transfer during electron-impurity
scattering. Therefore tuning the scattering ratio would require
tuning the strength of the magnetic field and/or doping the
sample with different impurities.

B. Planar Hall conductance

We next discuss the planar Hall conductance in SOC-NCM
and compare the results with a standard WSM. In WSMs, the
PHC can be expressed as [58]

σxz(B) = σ (2)
xz (B − B0)2 + σ (0)

xz , (10)

where B0 is the vertex of the parabola and σ (2)
xz is the quadratic

coefficient. The above form allows us to generalize PHC
away from the origin, i.e., B0 �= 0. The angular dependence
for WSM is sin (2γ ) for a point-like nonmagnetic impurity
profile. We find that this dependence is retained for magnetic
impurities pointing in the z direction as well [Fig. 7(a)], and
tilting the Weyl cones (tz �= 0) only has a quantitative effect.
In contrast, SOC-NCMs have a qualitatively different depen-
dence on tz [Fig. 7(b)]. We observe that unlike in WSMs,

the planar Hall conductance in SOC-NCMs exhibits weak-
sign-reversal as a function of the parameter tz. For σx and
σy impurities, PHC in both WSMs and SOC-NCMs exhibit
weak-sign-reversal and exhibit similar qualitative behavior
[Figs. 7(c) and 7(d)]. In both systems, interband (internode)
scattering is found to have no significant qualitative effect on
planar Hall conductance.

For the nodes tilted along the x direction, we observe qual-
itatively very different behavior. For σ0 point-like impurities,
the sin 2γ trend is observed irrespective of the value of tx,
as expected for Weyl cones that are oriented in the same
direction. We find qualitatively similar behavior irrespective
of the impurity type [Fig. 8(a)]. Note that if the Weyl cones
were oriented opposite to each other, one instead finds a sin γ

behavior of PHC [16]. In the case of SOC-NCMs, one finds
a transition from sin 2γ trend to sin γ as the parameter tx is
increased from zero in either direction (Fig. 8). Like WSMs,
we observe qualitatively similar behavior for both magnetic
(any direction) and nonmagnetic impurities.

C. Anomalous contribution to the Hall Conductance

In WSMs, the nonvanishing anomalous Hall conductance
(AHC) has been attributed to the presence of a finite vector k0

that separates Weyl cones of opposite chiralities. The net AHC
is given by σ a

xy = e2k0/h̄. In the presence of time-reversal
symmetry, multiple such vectors add up to zero, and AHC
is zero. It is noteworthy that the intrinsic AHC contribution
of one node, which is given by the integral of the Berry
curvature of the filled band up to the Fermi surface, exactly
cancels the contribution of the other node. The nonzero AHC
in TR-broken WSMs is understood by considering a gapped

FIG. 8. Planar Hall conductivity for WSM and SOC-NCM for
different impurity types in the presence of parameter tx . Plots are
appropriately normalized.
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FIG. 9. Geometrical contribution to the Hall conductivity show-
ing a nonmonotonic behavior. The legends indicate the strength of
spin-orbit coupling parameter ϑ in units of 105 ms−1. We chose
g = 2. The dashed lines show the normal Hall response.

two-dimensional (2D) Chern insulator H (k⊥, kz ) that under-
goes a topological phase transition at the Weyl node [7].

In SOC-NCMs, we particularly focus on a single nodal
point. It is expected that the two Fermi surfaces that enclose
the nodal point cancel out their contributions of anomalous
Hall conductivity, but as we will show next, the presence of
an external magnetic field induces finite anomalous contribu-
tion to the Hall conductivity. In the presence of an external
magnetic field, Zeeman coupling will introduce an additional
term in the Hamiltonian given by [61–63]

Hz = −gμBσ · B. (11)

This causes an opposite energy shift in both bands. Further-
more, the anomalous shift in the energy dispersion due to
the orbital magnetic moment (ελ

k → ελ
k − mλ

k · B). Both of
these effects, in concurrence, lead to a finite and measurable
anomalous contribution to the Hall conductance, which at zero
temperature is calculated as

σ a
xy = e2

h̄

∑
λ=±1

∫
d3k

(2π )3
Dλ

kθ
(
εF − ελ

k

)
�λ

z (k), (12)

where Dλ
k = (1 + eB · �λ

k/h̄). In Fig. 9 we plot the geomet-
rical contribution to the Hall conductivity for SOC-NCM
as evaluated from Eq. (12). Interestingly, the behavior is
nonmonotonic with respect to the magnetic field, and for low-
enough magnetic field, the anomalous contribution is found
to be independent of the strength of the spin-orbit coupling
parameter. The nonmonotonicity can be understood as fol-
lows. With an increasing magnitude of the magnetic field,
the net Berry curvature contribution increases, but eventually
decreases for larger magnetic fields as the magnitude of the
Berry curvature itself reduces. This can be easily tested in
current and upcoming transport experiments in SOC-NCMs.
We may also compare the magnitude of the anomalous con-
tribution to the normal Hall contribution driven by Lorentz
force. The normal Hall contribution is given by

σxy = −e3τ 2B

h̄2

∫
d3k

(2π )3

(−∂ f0

∂εk

)(
v2

x ∂
2εk

∂k2
y

− vxvy∂
2εk

∂kx∂ky

)
.

(13)

It is important to note that the magnitude of the normal Hall
effect depends crucially on the scattering time τ . In Fig. 9,
we also plot the normal Hall response for a typical value
of τ ∼ 10−12s. We may expect a much lesser (higher) nor-
mal Hall response for disordered (cleaner) samples. Before
closing this section, we briefly comment on the prospect of
observing a similar effect in time-reversal symmetric WSMs.
A TR-symmetric WSM must have at least four Weyl nodes.
The orbital magnetic moment will shift the energy bands with
positive chirality and negative chirality by equal amounts but
differing in their overall sign. Therefore a net nonzero con-
tribution from the Berry curvature is expected that will give
rise to the anomalous contribution in the Hall conductivity. A
similar nonmonotonicity maybe expected as well.

IV. CONCLUSION AND DISCUSSION

Chiral anomaly is a Fermi surface property with similar
characteristics in Weyl and spin-orbit coupled noncentrosym-
metric metals. It manifests itself in the measurement of
longitudinal magnetoconductance and the planar Hall conduc-
tance. However, in striking contrast to WSMs, where the sign
of the LMC is sensitive to the internode scattering strength,
the sign of the LMC in SOC-NCMs is independent of the
interband scattering strength and always remains positive. The
reason is traced down to the subtle difference in the orbital
magnetic moment in WSMs and SOC-NCMs. Orbital mag-
netic moment in SOC-NCMs is of equal magnitudes and signs
in both the bands but has opposite signs at the two nodes in
WSMs. This difference also yields drastic differences in other
transport properties, such as the planar Hall conductivity. To
be more precise, sign-reversal is induced by sufficiently strong
intervalley scattering only in conjunction with the chiral en-
ergy shift induced by OMM. Since chiral energy shift does
not occur in SOC-NCMs in the presence of OMM, we do
not see sign-reversal even for very strong interband scattering
strengths. Therefore, OMM effect is more crucial for transport
properties such as strong-sign-reversal. We also examined all
the properties in the presence of a tilt parameter (tz and tx)
and for different impurity types (magnetic and nonmagnetic).
The behavior for σ0 and σz impurities was found to be quali-
tatively similar to each other as they do not flip with chirality.
On the other hand, σx and σy flip the chirality and behave
qualitatively similar to each other. Lastly, we predict that the
combination of the anomalous orbital magnetic moment and
the Zeeman field gives rise to a geometrical contribution to the
Hall conductivity in SOC-NCMs that is nonmonotonic in the
magnetic field. Our study is highly pertinent in light of current
and upcoming experiments in the field of spin-orbit-coupled
noncentrosymmetric and Weyl metals.
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APPENDIX: MAXWELL BOLTZMANN
TRANSPORT THEORY

Due to Berry phase effects, in the presence of elec-
tric and magnetic fields, the semiclassical dynamics of the
Bloch electrons are modified and governed by the following
equation [19,28]:

ṙλ = Dλ

(
e

h̄
(E × �λ) + e

h̄
(vλ · �λ)B + vλ

k

)
,

ṗλ = −eDλ

(
E + vλ

k × B + e

h̄
(E · B)�λ

)
, (A1)

where vλ
k = 1

h̄
∂ελ(k)

∂k is the band velocity, �λ = −λk/2k3 is
the Berry curvature, and Dλ = (1 + eB · �λ/h̄)−1 is the factor
modifying the density of the states in the presence of the
Berry curvature. The self-rotation of the Bloch wave packet
also gives rise to an orbital magnetic moment, mλ

k [64]. In
the presence of a magnetic field, the orbital magnetic mo-
ment shifts the energy dispersion as ελ

k → ελ
k − mλ

k · B. Using
Eqs. (A1) and (7) and retaining terms only up to linear order
in electric and magnetic fields, the Boltzmann transport equa-
tion becomes[(

∂ f λ
0

∂ελ
k

)
E ·

(
vλ

k + eB
h̄

(
�λ · vλ

k

))]

= − 1

eDλ

∑
λ′

∑
k′

W λλ′
kk′

(
gλ

k′ − gλ
k

)
. (A2)

We fixed the direction of the electric field along increasing
x-direction, and the magnetic field is rotated in xz-plane (see
Fig. 3). Therefore, E = E (0, 0, 1) and B = B(cos γ , 0, sin γ ).
In this case, only the z-component of � is relevant. Therefore
Eq. (A2) reduces to

Dλ(k)

[
vλ,z

k + eB sin γ

h̄

(
vλ

k · �λ
k

)] =
∑
λ′k′

Wλλ′
kk′

(
�λ′

k′ − �λ
k

)
.

(A3)

We define the valley scattering time (τλ
k ) as follows:

1

τλ
k (θ, φ)

=
∑
λ′

V
∫

d3k′

(2π )3

(
Dλ′

k′
)−1

Wλλ′
kk′ . (A4)

Wλλ′
kk′ is defined in Eq. (8) and the corresponding overlap of the

Bloch wave function is Gλλ′
i (θ, φ) = [1 + λλ′ξi(cos θ cos θ ′ +

αi sin θ sin θ ′ cos φ cos φ′ + βi sin θ sin θ ′ sin φ sin φ′] with
i = 0, 1, 2, 3 (see Table I). Taking the Berry phase into
account and corresponding change in the density of states,

TABLE I. The signs of α, β, and ξ are used in the expression
of overlap of the Bloch wave function [see Eq. (A4)]. σx,y,z are the
components of the Pauli spin vector and I2×2 is the identity matrix.

i σi αi βi ξi

0 I2×2 +1 +1 +1
1 σx −1 +1 −1
2 σy +1 −1 −1
3 σz −1 −1 +1

∑
k −→ V

∫
d3k

(2π )3 Dλ(k), Eq. (A3) becomes

hλ
μ(θ, φ) + �λ

μ,i(θ, φ)

τλ
μ,i(θ, φ)

=
∑
λ′

V
∫

d3k′

(2π )3
Dλ′

(k′)Wλλ′
kk′�

λ′
μ,i(θ

′, φ′). (A5)

Here hλ
μ(θ, φ) = Dλk [vλ

z,k + eB sin γ (�λ
k · vλ

k )]. In the zero-
temperature limit, for a constant Fermi energy surface,
Eq. (A4) and right-hand side of Eq. (A5) is reduced to the
integration over θ ′ and φ′:

1

τλ
μ,i(θ, φ)

= V
∑
λ′

�λλ′
∫∫

(k′)3 sin θ ′∣∣vλ′
k′ · k′λ′ ∣∣ dθ ′dφ′Gλλ′

i

(
Dλ′

k′
)−1,

(A6)

V
∑
λ′

�λλ′
∫∫

f λ′
(θ ′, φ′)Gλλ′

i dθ ′dφ′ × [
dλ′ − hλ′

μ (θ ′, φ′)

+ aλ′
cos θ ′ + bλ′

sin θ ′ cos φ′ + cλ′
sin θ ′ cos φ′], (A7)

where �λλ′ = N |U λλ′ |2/4π2 h̄2, f λ(θ, φ)= (k)3

|vλ
k·kλ| sin θ (Dη

k )−1

τλ
μ(θ, φ). Using ansatz �λ

k = [dλ − hλ
k′ + aλ cos φ +

bλ sin θ cos φ + cλ sin θ sin φ]τλ
μ(θ, φ) the above equation is

written in the following form:

dλ + aλ cos φ + bλ sin θ cos φ + cλ sin θ sin φ

=
∑
λ′

V�λλ′
∫∫

f λ′
(θ ′, φ′)dθ ′dφ′[dλ′ − hλ′

k′

+ aλ′
cos θ ′ + bλ′

sin θ ′ cos φ′ + cλ′
sin θ ′ sin φ′]. (A8)

When the aforementioned equation is explicitly put out (for
each value of i), it appears as seven simultaneous equa-
tions that must be solved for eight variables. The particle
number conservation provides another restriction

∑
λ

∑
k

gλ
k = 0. (A9)

For the eight unknowns (d±1, a±1, b±1, c±1), Eqs. (A8)
and (A9) are simultaneously solved with Eq. (A6). Due to
the intricate structure of the equations, all two-dimensional
integrals with respect to θ ′ and φ′ the simultaneous equations’
solution are carried out numerically.
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Fedorov, R. Zhong, J. Schneeloch, G. Gu, and T. Valla, Chiral
magnetic effect in ZrTe5, Nat. Phys. 12, 550 (2016).

[26] J. Xiong, S. K. Kushwaha, T. Liang, J. W. Krizan, M.
Hirschberger, W. Wang, R. J. Cava, and N. P. Ong, Evidence
for the chiral anomaly in the Dirac semimetal Na3Bi, Science
350, 413 (2015).

[27] M. Hirschberger, S. Kushwaha, Z. Wang, Q. Gibson, S. Liang,
C. A. Belvin, B. A. Bernevig, R. J. Cava, and N. P. Ong, The
chiral anomaly and thermopower of Weyl fermions in the half-
Heusler GdPtBi, Nat. Mater. 15, 1161 (2016).

[28] D. T. Son and N. Yamamoto, Berry curvature, triangle anoma-
lies, and the chiral magnetic effect in Fermi liquids, Phys. Rev.
Lett. 109, 181602 (2012).

[29] P. Goswami and S. Tewari, Axionic field theory of (3 + 1)-
dimensional Weyl semimetals, Phys. Rev. B 88, 245107 (2013).

[30] P. Goswami, J. H. Pixley, and S. Das Sarma, Axial anomaly and
longitudinal magnetoresistance of a generic three-dimensional
metal, Phys. Rev. B 92, 075205 (2015).

[31] S. Zhong, J. Orenstein, and J. E. Moore, Optical gyrotropy from
axion electrodynamics in momentum space, Phys. Rev. Lett.
115, 117403 (2015).

[32] P. Goswami, G. Sharma, and S. Tewari, Optical activity as a test
for dynamic chiral magnetic effect of Weyl semimetals, Phys.
Rev. B 92, 161110(R) (2015).

[33] A. L. Levy, A. B. Sushkov, F. Liu, B. Shen, N. Ni, H. D. Drew,
and G. S. Jenkins, Optical evidence of the chiral magnetic
anomaly in the Weyl semimetal TaAs, Phys. Rev. B 101, 125102
(2020).

[34] J.-M. Parent, R. Côté, and I. Garate, Magneto-optical Kerr effect
and signature of the chiral anomaly in a Weyl semimetal in
magnetic field, Phys. Rev. B 102, 245126 (2020).

[35] Z. Song, J. Zhao, Z. Fang, and X. Dai, Detecting the chiral
magnetic effect by lattice dynamics in Weyl semimetals, Phys.
Rev. B 94, 214306 (2016).

[36] P. Rinkel, P. L. S. Lopes, and I. Garate, Signatures of the chiral
anomaly in phonon dynamics, Phys. Rev. Lett. 119, 107401
(2017).

[37] X. Yuan, C. Zhang, Y. Zhang, Z. Yan, T. Lyu, M. Zhang, Z. Li,
C. Song, M. Zhao, P. Leng et al., The discovery of dynamic
chiral anomaly in a Weyl semimetal NbAs, Nat. Commun. 11,
1259 (2020).

[38] B. Cheng, T. Schumann, S. Stemmer, and N. Armitage, Probing
charge pumping and relaxation of the chiral anomaly in a Dirac
semimetal, Sci. Adv. 7, eabg0914 (2021).

[39] K. Fujikawa and H. Suzuki, Path Integrals and Quantum
Anomalies (Oxford University Press, New York, 2004).

[40] Y. Gao, S. A. Yang, and Q. Niu, Intrinsic relative magneto-
conductivity of nonmagnetic metals, Phys. Rev. B 95, 165135
(2017).

165114-8

https://doi.org/10.1103/PhysRev.177.2426
https://doi.org/10.1007/BF02823296
https://doi.org/10.1103/RevModPhys.90.015001
https://doi.org/10.1016/0370-2693(81)91026-1
https://doi.org/10.1016/0370-2693(83)91529-0
https://doi.org/10.1103/PhysRevB.83.205101
https://doi.org/10.1103/PhysRevLett.107.186806
https://doi.org/10.1103/PhysRevB.85.165110
https://doi.org/10.1103/PhysRevB.88.104412
https://doi.org/10.1103/PhysRevB.89.195137
https://doi.org/10.1103/PhysRevB.90.165115
https://doi.org/10.1103/PhysRevB.94.241105
https://doi.org/10.1103/PhysRevB.93.035116
https://doi.org/10.1103/PhysRevB.95.245128
https://doi.org/10.1103/PhysRevLett.119.176804
https://doi.org/10.1103/PhysRevB.100.085406
https://doi.org/10.1088/1367-2630/aba98d
https://doi.org/10.1103/PhysRevB.101.201402
https://doi.org/10.1103/PhysRevB.102.205107
https://doi.org/10.1103/PhysRevResearch.2.023124
https://doi.org/10.1103/PhysRevLett.113.246402
https://doi.org/10.1038/nmat4143
https://doi.org/10.1038/ncomms10735
https://doi.org/10.1038/nphys3648
https://doi.org/10.1126/science.aac6089
https://doi.org/10.1038/nmat4684
https://doi.org/10.1103/PhysRevLett.109.181602
https://doi.org/10.1103/PhysRevB.88.245107
https://doi.org/10.1103/PhysRevB.92.075205
https://doi.org/10.1103/PhysRevLett.115.117403
https://doi.org/10.1103/PhysRevB.92.161110
https://doi.org/10.1103/PhysRevB.101.125102
https://doi.org/10.1103/PhysRevB.102.245126
https://doi.org/10.1103/PhysRevB.94.214306
https://doi.org/10.1103/PhysRevLett.119.107401
https://doi.org/10.1038/s41467-020-14749-4
https://doi.org/10.1126/sciadv.abg0914
https://doi.org/10.1103/PhysRevB.95.165135


MAGNETOTRANSPORT IN SPIN-ORBIT COUPLED … PHYSICAL REVIEW B 109, 165114 (2024)

[41] X. Dai, Z. Z. Du, and H.-Z. Lu, Negative magnetoresistance
without chiral anomaly in topological insulators, Phys. Rev.
Lett. 119, 166601 (2017).

[42] A. V. Andreev and B. Z. Spivak, Longitudinal negative magne-
toresistance and magnetotransport phenomena in conventional
and topological conductors, Phys. Rev. Lett. 120, 026601
(2018).

[43] H.-W. Wang, B. Fu, and S.-Q. Shen, Intrinsic magnetoresistance
in three-dimensional Dirac materials with low carrier density,
Phys. Rev. B 98, 081202(R) (2018).

[44] S. Nandy, A. Taraphder, and S. Tewari, Berry phase theory of
planar Hall effect in topological insulators, Sci. Rep. 8, 14983
(2018).

[45] B. Fu, H.-W. Wang, and S.-Q. Shen, Quantum magnetotrans-
port in massive Dirac materials, Phys. Rev. B 101, 125203
(2020).

[46] O. Pal, B. Dey, and T. K. Ghosh, Berry curvature induced
magnetotransport in 3D noncentrosymmetric metals, J. Phys.:
Condens. Matter 34, 025702 (2022).

[47] H.-W. Wang, B. Fu, and S.-Q. Shen, Helical symmetry breaking
and quantum anomaly in massive Dirac fermions, Phys. Rev. B
104, L241111 (2021).

[48] S. Cheon, G. Y. Cho, K.-S. Kim, and H.-W. Lee, Chiral anomaly
in noncentrosymmetric systems induced by spin-orbit coupling,
Phys. Rev. B 105, L180303 (2022).

[49] S. Das, K. Das, and A. Agarwal, Chiral anomalies in
three-dimensional spin-orbit coupled metals: Electrical, ther-
mal, and gravitational anomalies, Phys. Rev. B 108, 045405
(2023).

[50] B. Sadhukhan and T. Nag, Effect of chirality imbalance
on Hall transport of PrRhC2, Phys. Rev. B 107, L081110
(2023).

[51] S. Verma, T. Biswas, and T. K. Ghosh, Thermoelectric and
optical probes for a Fermi surface topology change in noncen-
trosymmetric metals, Phys. Rev. B 100, 045201 (2019).

[52] H.-Z. Lu, S.-B. Zhang, and S.-Q. Shen, High-field magnetocon-
ductivity of topological semimetals with short-range potential,
Phys. Rev. B 92, 045203 (2015).

[53] C.-Z. Chen, H. Liu, H. Jiang, and X. C. Xie, Positive magne-
toconductivity of Weyl semimetals in the ultraquantum limit,
Phys. Rev. B 93, 165420 (2016).

[54] S.-B. Zhang, H.-Z. Lu, and S.-Q. Shen, Linear magnetoconduc-
tivity in an intrinsic topological Weyl semimetal, New J. Phys.
18, 053039 (2016).

[55] J. Shao and L. Yan, Magneto-conductivity of tilted type-I Weyl
semimetals with different types of impurities, AIP Adv. 9,
045319 (2019).

[56] X. Li, B. Roy, and S. Das Sarma, Weyl fermions with arbi-
trary monopoles in magnetic fields: Landau levels, longitudinal
magnetotransport, and density-wave ordering, Phys. Rev. B 94,
195144 (2016).

[57] X.-T. Ji, H.-Z. Lu, Z.-G. Zhu, and G. Su, Effect of the screened
coulomb disorder on magneto-transport in Weyl semimetals, J.
Appl. Phys. 123, 203901 (2018).

[58] A. Ahmad, K. V. Raman, S. Tewari, and G. Sharma, Longitu-
dinal magnetoconductance and the planar Hall conductance in
inhomogeneous Weyl semimetals, Phys. Rev. B 107, 144206
(2023).

[59] C. Xiao, H. Chen, Y. Gao, D. Xiao, A. H. MacDonald, and
Q. Niu, Linear magnetoresistance induced by intra-scattering
semiclassics of Bloch electrons, Phys. Rev. B 101, 201410(R)
(2020).

[60] G. Sharma, S. Nandy, K. V. Raman, and S. Tewari, Revisit-
ing magnetotransport in Weyl semimetals, Phys. Rev. B 107,
115161 (2023).

[61] G. Sharma, C. Moore, S. Saha, and S. Tewari, Nernst effect in
Dirac and inversion-asymmetric Weyl semimetals, Phys. Rev. B
96, 195119 (2017).

[62] G. Sharma, Tunable topological Nernst effect in two-
dimensional transition-metal dichalcogenides, Phys. Rev. B 98,
075416 (2018).

[63] K. Gadge, S. Tewari, and G. Sharma, Anomalous Hall and
Nernst effects in Kane fermions, Phys. Rev. B 105, 235420
(2022).

[64] D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on
electronic properties, Rev. Mod. Phys. 82, 1959 (2010).

165114-9

https://doi.org/10.1103/PhysRevLett.119.166601
https://doi.org/10.1103/PhysRevLett.120.026601
https://doi.org/10.1103/PhysRevB.98.081202
https://doi.org/10.1038/s41598-018-33258-5
https://doi.org/10.1103/PhysRevB.101.125203
https://doi.org/10.1088/1361-648X/ac2fd4
https://doi.org/10.1103/PhysRevB.104.L241111
https://doi.org/10.1103/PhysRevB.105.L180303
https://doi.org/10.1103/PhysRevB.108.045405
https://doi.org/10.1103/PhysRevB.107.L081110
https://doi.org/10.1103/PhysRevB.100.045201
https://doi.org/10.1103/PhysRevB.92.045203
https://doi.org/10.1103/PhysRevB.93.165420
https://doi.org/10.1088/1367-2630/18/5/053039
https://doi.org/10.1063/1.5091852
https://doi.org/10.1103/PhysRevB.94.195144
https://doi.org/10.1063/1.5021181
https://doi.org/10.1103/PhysRevB.107.144206
https://doi.org/10.1103/PhysRevB.101.201410
https://doi.org/10.1103/PhysRevB.107.115161
https://doi.org/10.1103/PhysRevB.96.195119
https://doi.org/10.1103/PhysRevB.98.075416
https://doi.org/10.1103/PhysRevB.105.235420
https://doi.org/10.1103/RevModPhys.82.1959

