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Due to the recent studies of the fracton topological phases, the host of which deconfined quasiparticle
excitations with mobility restrictions, the concept of symmetries has been updated. Focusing on one of these
new symmetries, multipole symmetries, including global, dipole, and quadruple symmetries, and gauge fields
associated with them, we construct new sets of ZN (2 + 1)-dimensional foliated background-field (BF) theories,
where BF theories of conventional topological phases are stacked in layers with couplings between them.
By investigating gauge-invariant nonlocal operators, we show that our foliated BF theories exhibit unusual
ground-state degeneracy depending on the system size; it depends on the greatest common divisor between
N and the system size. Our result provides an important connection between UV lattice models of the fracton
topological phases and other unconventional ones in view of foliated field theories.

DOI: 10.1103/PhysRevB.109.165112

I. INTRODUCTION

Topologically ordered phases are unconventional phases
of matter and have been one of the central subjects in the
condensed matter physics community [1–6]. The prominent
feature of these phases is that they host exotic fractionalized
excitations, called anyons [2,7,8]. These excitations are not
only theoretically intriguing but also may find potential ap-
plication in quantum information science as exchanging these
excitations can be utilized for quantum computers [9,10].

Recently, new types of topologically ordered phases have
been introduced, referred to as the fracton topological phases
[11–16]. The distinctive feature of these phases is that a
mobility constraint is imposed on quasiparticle excitations,
leading to the subextensive ground state degeneracy (GSD).
Due to this feature, conventional effective field theory de-
scription of the topologically ordered phases [17–20] cannot
be applied to the fracton topological phases. Fractons have
attracted a lot of interest in the field of high energy physics.
Indeed, fractons have been recently studied in the context of
the gravity theory [21–24], the branes [25], and holography
[26–28]. Given the novelty of these phases, one of the chal-
lenges is to establish a consistent framework for continuum
field theories.

One of the attempts to tackle this problem is to introduce
new types of symmetries—subsystem symmetries and multi-
pole symmetries [29–35]. Here, subsystem symmetry means
that a theory is invariant under a symmetry action which acts
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on a submanifold. The multipole symmetry, especially the
U(1) multipole symmetry, is the generalization of the global
U(1) symmetry in the sense that a theory is invariant under the
global phase rotation which depends on the spatial coordinate
in polynomial form. For instance, in the case of a scalar theory
which respects the global and dipole U(1) symmetries, the
Lagrangian is invariant under � → eiα+iβx�, where α and β

are constants and x denotes the spatial coordinate [32]. Recent
work has investigated fracton topological phases in view of
such a new type of symmetries [36–59].

Another strategy to construct effective field theories of the
fracton topological phases is to introduce the so-called foli-
ated background-field (BF) theories [60–65]. Such theories
are introduced so that (2+1)-dimensional (2+1D) BF theories
are stacked in layers. An important aspect of these theories is
that the gauge transformation is modified due to the couplings
between the layers so that a constraint is imposed on the form
of the gauge invariant operators, such as the Wilson loops,
contributing to the subextensive GSD. To our knowledge,
there are a handful of foliated BF theories that are known to
describe the fracton topological phases, such as the X -cube
model. Complete understanding of the foliated BF theories
remains elusive.

In this work, we explore new sets of 2+1D foliated BF the-
ories by taking one of the new types of symmetries, multipole
symmetries, into account. Introducing gauge fields associated
with the multipole symmetries, one can systematically con-
struct new foliated BF theories. While the previous foliated
BF theories consist of a subextensive number of layers of toric
codes [60–62], our BF theories are made of a finite number
of layers of the toric codes with couplings. We further show
that, due to these couplings which modify the gauge transfor-
mations, such theories exhibit unusual GSD dependence on
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the system size; the GSD depends on the greatest common
divisor between a quantum number N characterizing the frac-
tional charges and the system size, which is in contrast with
the previous foliated BF theories which show subextensive
GSD [60,61]. We also show that our foliated BF theories
have the UV lattice model counterparts which were studied
in the literature [66–68], sometimes referred to as the higher
rank topological phases. Consideration given in this work pro-
vides an important connection between the fracton topological
phases and the higher rank topological phases [66–70] in view
of foliated field theories.

The rest of this work is organized as follows. In Sec. II,
to see clearly how our strategy of building up the foliated BF
theories works, we discuss a simple example of construction
of a BF theory of a conventional topological phase, starting
with a theory with a global U(1) symmetry. In Sec. III, we
study a foliated BF theory with global and dipole symmetry.
We also discuss the GSD of the theory on a torus geometry and
the UV lattice model counterpart. In Sec. IV, we further ex-
plore a foliated BF theory with global, dipole, and quadrupole
symmetry. Finally, in Sec. V, we conclude our work with a
few future directions. Technical issues are relegated into the
Appendixes.

II. WARM-UP: CONSTRUCTION OF THE ZN TORIC CODE

Before going into detailed discussion of the foliated BF
theories, we demonstrate a way to construct the BF theory
of the ZN toric code [10] starting with a theory with global
U(1) symmetry and the corresponding U(1) gauge field for
clearer illustrations. Throughout this paper, we study theories
in 2 + 1 dimensions. Also, we employ the differential form
for notational simplicity.

We consider a theory with global U(1) zero-form symmetry
(i.e., symmetry operation acts on an entire space) and its
charge Q. The conserved charge is described by

Q(V ) =
∫

V
∗ j, (2.1)

where j and V represents the conserved one-form current and
two dimensional spatial volume and ∗ represents the Hodge
dual. This charge is global in the sense that it commutes with
the translation operation, PI (I = x, y), i.e.,

[iPI , Q] = 0. (2.2)

We introduce a one-form U(1) gauge field a, which couples
with the current j with the coupling term being described by

Sc =
∫

V
a ∧ ∗ j. (2.3)

With the gauge transformation (χ : gauge parameter) a →
a + dχ and the condition that the coupling term (2.3) is gauge
invariant, we have the conservation law of the current d ∗
j = 0. Defining a gauge invariant flux as f := da, we intro-
duce the following Lagrangian with discarding the coupling
term Sc:

LTC = N

2π
b ∧ f = N

2π
b ∧ da, (2.4)

where b represents a one-form U(1) gauge field. The theory
(2.4) is nothing but the BF description of the ZN toric code
[10,71]. The equation of motion of the theory (2.4) implies
that the following gauge invariant field strengths vanish [72]:

Ba = ∂xay − ∂yax, Ea
x = ∂τ ax − ∂xa0, Ea

y = ∂τ ay − ∂ya0,

Bb = ∂xby − ∂ybx, Eb
x = ∂τ bx − ∂xb0, Eb

y = ∂τ by − ∂yb0.

(2.5)

It is known that the BF theory (2.4) has nontrivial ground
state degeneracy (GSD) when we put the theory on a Riemann
surface with nonzero genus [10,18,71]. Indeed, on the torus
geometry, the number of distinct noncontractible loops of the
gauge fields, ax, and ay amounts to the GSD. To see this, we
consider the following Wilson loop:

W0x(y) = exp

[
i
∮

dx ax(x, y)

]
,

which can be intuitively understood as the trajectory of the
ZN fractional charge going around the torus in the x direction.
Since the magnetic flux vanishes, this loop does not depend
on y. Likewise, we also think of the following Wilson loop:

W0y(x) = exp

[
i
∮

dy ay(x, y)

]
,

which is associated with the trajectory of the ZN fractional
charge in the y direction. Using the fluxless condition, one can
verify that it does not depend on x. From W N

0x (y) = W N
0y (x) =

1, it follows that there are N2 distinct Wilson loops of the
gauge field a, implying that the GSD is given by N2. The
way we evaluate the GSD on the torus geometry by count-
ing a distinct number of the Wilson loops will be frequently
used in the case of the foliated BF theories discussed in the
subsequent sections.

One can construct the UV Hamiltonian corresponding to
the BF theory (2.4). Focusing on the field strength of the gauge
field a, that is, Ba, Ea

x , and Ea
y in (2.5), the Hamiltonian of the

lattice can be constructed in a way that the ground state does
not have the electric and magnetic charges. Such a task can be
accomplished by defining the Hamiltonian so that the ground
state is the trivial eigenstate of the operators of the Gauss law
G = ∂xEa

x + ∂yEa
y and the magnetic flux Ba. To implement

this construction, we think of a 2D discrete lattice and on each
link we define a local Hilbert space spanned by

|η〉(x̂+1/2,ŷ) , |η〉(x̂,ŷ+1/2) , (2.6)

where the subscripts (x̂ + 1/2, ŷ) and (x̂, ŷ + 1/2) denote the
coordinate of the horizontal and vertical links, respectively,
while η labels ZN i.e., η = 0, 1, . . . , N − 1 (mod N ). We
also introduce the ZN Pauli operators X(x̂+1/2,ŷ) and Z(x̂+1/2,ŷ)

acting on the state on the horizontal link |η〉(x̂+1/2,ŷ) as

X(x̂+1/2,ŷ) |η〉(x̂+1/2,ŷ) = |η + 1〉(x̂+1/2,ŷ) ,

Z(x̂+1/2,ŷ) |η〉(x̂+1/2,ŷ) = ωη |η〉(x̂+1/2,ŷ) , (2.7)

with ω := e2π i/N . We also define the ZN Pauli operators
X(x̂,ŷ+1/2) and Z(x̂,ŷ+1/2) acting on the state on the vertical link
in a similar way. Using these Pauli operators, we define the
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FIG. 1. Two types of the terms defined in (2.8). The black dot
represents the ZN Pauli operator.

following two types of operators (Fig. 1):

V(x̂,ŷ) = X †
(x̂−1/2,ŷ)X(x̂+1/2,ŷ)X

†
(x̂,ŷ−1/2)X(x̂,ŷ+1/2),

P(x̂,ŷ) = Z†
(x̂,ŷ+1/2)Z(x̂+1,ŷ+1/2)Z

†
(x̂+1/2,ŷ)Z(x̂+1/2,ŷ+1), (2.8)

which correspond to the Gauss law and the magnetic flux,
respectively. Then we introduce the Hamiltonian as [10]

HTC = −
∑
x̂,ŷ

[V(x̂,ŷ) + P(x̂,ŷ)] + (H.c.). (2.9)

The ground state |�〉 of this Hamiltonian does not have elec-
tric or magnetic excitations:

V(x̂,ŷ) |�〉 = P(x̂,ŷ) |�〉 = |�〉 ∀ x̂, ŷ (2.10)

and the number of the ground states on the torus agrees with
the one of the BF theory (2.4).

In what follows, we will discuss a way to construct foliated
BF theories, starting with a theory with multipole symmetries
as well as a global one [73,74]. The spirit of obtaining such
phases is essentially the same as what we have discussed
here. Namely, starting with conserved charges associated with
multipole symmetries, and introducing gauge fields related to
them, we define gauge invariant fluxes to introduce the BF
theory. We also discuss the UV lattice Hamiltonian in the
same way as we describe the Hamiltonian (2.9) from the BF
theory. The crucial difference between the present argument
and what we will see in the following is that, due to the
multipole symmetries, we obtain richer foliated BF theories.

III. DIPOLE SYMMETRIES

We turn to the case with global and dipole symmetries
[73,74]. We also discuss the relation between the foliated BF
theory and the UV lattice model. Technically, we gauge global
U(1) and dipole symmetries (to be defined soon) and Higgs
the gauge fields by introducing a BF theory. Suppose that we
have a theory with conserved charges associated with global
U(1) and dipole symmetries, described by Q, Qx, and Qy.
These charges are subject to the following relations:

[iPI , Q] = 0, [iPI , QJ ] = δI,JQ (I = x, y), (3.1)

where the first relation is the same as (2.2). We write the
charges Q, Qx, and Qy via the integral expression using the
conserved currents as

Q =
∫

V
∗ j, QI =

∫
V

∗KI .

To reproduce the relation (3.1), we demand that

∗KI = ∗kI − xI ∗ j, (3.2)

with kI being a local (not necessarily conserved) current and
(x1, x2) = (x, y). A straightforward calculation verifies the re-
lation (3.1). This can be seen as follows [74]. Noting that the
translation operator PI acts as a derivative on quantum fields
and does not act on explicit coordinates, we obtain

[iPI , QJ ] =
∫

V
[∂I (∗kJ ) − xJ (∂I ∗ j)]

=
∫

V
∂I (∗kJ − xJ ∗ j) +

∫
V

(∂I xJ ) ∗ j = δI,JQ,

where, in the second equation, we have performed the partial
integration and, in the last equation, we have dropped the total
derivative term.

Corresponding to (2.3), we introduce the U(1) one-form
gauge fields a and AI with the coupling term defined by [75]

Sdip =
∫

V

(
a ∧ ∗ j +

∑
I

AI ∧ ∗kI

)
. (3.3)

We need to have a proper gauge transformation in such a way
that the condition of the coupling term being gauge invariant
yields the conservation law of the currents. The following
gauge transformation does the job [76,77]:

a → a + d +
∑

I

σI dxI , AI → AI + dσI , (3.4)

where , σI are the gauge parameters. Indeed, one can verify
that the gauge invariance of the coupling term Sdip under the
gauge transformation (3.4) yields

d ∗ j = 0, d (∗kI − xI ∗ j) = d ∗ KI = 0.

Now we are in a good place to introduce the foliated BF
theory. We define gauge invariant fluxes as

f := da −
∑

I

AI ∧ dxI , F I := dAI . (3.5)

We put these fluxes in the BF theory format, namely, we
introduce the following BF theory:

Ldip = N

2π
b ∧ f +

∑
I=x,y

N

2π
cI ∧ F I , (3.6)

where b and cI (I = x, y) represent the U(1) one-form gauge
fields. To proceed, we also introduce the foliation fields
eI (I = x, y) [60,61]. Generally, foliation is defined to be
codimension one submanifold, which is orthogonal to the
one-form foliation field eI . Setting the foliation field by ex :=
dx, ey := dy, and rewriting (3.6), we arrive at the following
foliated BF theory:

Ldip = N

2π
a ∧ db +

∑
I=x,y

N

2π
AI ∧ dcI + N

2π
AI ∧ b ∧ eI .

(3.7)
Compared with the foliated BF theories that were previously
studied [60,61], where a subextensive number of 2 + 1D BF
theories are placed in layers, in our theory (3.7), there are
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only three layers of the 2 + 1D BF theories, corresponding
to the first two terms, with coupling between the layers being
described by the last term. Note that the similar form of the
coupling term appears in other foliated BF theories in fracton
topological phases.

We study the GSD of our foliated BF theory on a torus. In
addition to the gauge symmetry (3.4), the foliated BF theory
(3.7) admits the following gauge symmetry with respect to b
and cI :

b → b + dλ, cI → cI + dγ I + λeI . (3.8)

Similar to the foliated BF theory of the X-cube model [60], the
unusual gauge symmetries (3.4) and (3.8) put constraints on
the form of the gauge invariant operators, which contributes
to the unconventional GSD dependence on the system size.
To see this point more explicitly, we integrate out some of the
fields in (3.7) to transform the Lagrangian to a simpler form
with a fewer number of the gauge fields.

Integrating out b0 gives the following condition
(i, j = x, y):

∂ia jε
i j − AI

i δ
I
jε

i j = 0. (3.9)

We also integrate out AI
0 and obtain the following condition:

∂ic
I
jε

i j + biδ
I
jε

i j = 0. (3.10)

One can eliminate the gauge fields b and AI by substituting the
relations (3.9) and (3.10) into (3.7). In doing so, we introduce
gauge fields

A(i j) := ∂ia j − Aj
i (i, j = x, y), (3.11)

whose gauge transformation coming from (3.4) reads

A(i j) → A(i j) + ∂i∂ j, (3.12)

with the property that A(xy) = A(yx) due to (3.9). After the
substitution, the Lagrangian (3.7) becomes

Ldip = N

2π

[−cx
0(∂xA(yx) − ∂yA(xx) ) − cy

0(∂xA(yy) − ∂yA(xy) )

+ c̃(∂τ A(xy) − ∂x∂yA0) − cx
y

(
∂τ A(xx) − ∂2

x A0
)

+ cy
x

(
∂τ A(yy) − ∂2

y A0
)]

, (3.13)

where we have defined A0 := a0 and c̃ := cx
x − cy

y with the
gauge transformation c̃ → c̃ + ∂xγ

x − ∂yγ
y.

Similar to the other fracton models, investigating the BF
theory (3.13), such as evaluation of the form of the Wilson
loops and the GSD, is more challenging than the conventional
BF theory due to the presence of the higher order spatial
derivatives, giving rise to UV/IR mixing. To circumvent this
issue, we follow an approach proposed in [45] and imple-
ment a mapping (3.13) to what is called “integer BF theory”
[45,67,73], where the gauge fields take integer values defined
on a discrete lattice. Relegating the details to Appendix. A, we
map the theory (3.13) to the following integer BF theory:

Ldip = 2π

N

[−ĉx
0(�xÂ(yx) − �yÂ(xx) ) − ĉy

0(�xÂ(yy) − �yÂ(xy) )

+ ˆ̃c
(
�τ Â(xy) − �x�yÂ0

) − ĉx
y

(
�τ Â(xx) − �2

x Â0
)

+ ĉy
x

(
�τ Â(yy) − �2

y Â0
)]

, (3.14)

where gauge fields with hat (·̂) take ZN values, which are
defined on a discrete lattice. Also, we set the spatial coordinate
of the lattice to be (x̂, ŷ), which take integer number in the
unit of the lattice spacing, and define a derivative operator �x

which acts on a function f defined on a site via �x f (τ, x̂, ŷ) =
f (τ, x̂ + 1, ŷ) − f (τ, x̂, ŷ) (�y,�τ is similarly defined). Note
that we put the hat on top of the gauge fields in (3.14) to
emphasize that they are integer gauge fields. The gauge fields
A0, cx

0, and cy
0 reside on the τ links and ĉy

x and ĉx
y on the x

and y links, respectively. Also, Â(xx) Â(yy) are defined on sites,
whereas Âxy and ˆ̃c are on the plaquettes in the xy plane.

The integer BF theory (3.14) admits the following gauge
symmetry:

ĉx
0 → ĉx

0 + �τξ
x, ĉx

y → ĉx
y + �yξ

x, ĉy
0 → ĉy

0 + �τξ
y,

ĉy
x → ĉy

x + �xξ
y, ˆ̃c → ˆ̃c + �xξ

x − �yξ
y,

Â0 → Â0 + �τη, Â(i j) → Â(i j) + �i� jη, (3.15)

where ξ x ξ y and η denote gauge parameters with integer
values. Also, the BF theory (3.14) consists of the gauge field
(ĉx

0, ĉy
0,

ˆ̃c, ĉx
y, ĉy

x ) and the field strength for (Â0, Â(i j) ). The
equations of motion of the BF theory imply that the following
gauge invariant field strengths vanish:

Bx = �xÂ(yx) − �yÂ(xx), By = �xÂ(yy) − �yÂ(xy),

E(i j) = �τ Â(i j) − �i� j Â0,

B̃ = �2
x ĉx

y − �2
y ĉy

x − �x�y ˆ̃c, Ex
y = �τ ĉx

y − �yĉx
0,

Ey
x = �τ ĉy

x − �xĉy
0, Ẽ = �τ

ˆ̃c − �xĉ0
x + �yĉy

0.

(3.16)

It is worth mentioning that the field strength Bx, By,
E(xx), E(yy), E(xy) has the same form as the one which was
found in the symmetric tensor gauge theory, unconventional
Maxwell theory with the two-rank spatial-symmetric-tensor
space components, admitting dipole charges [78–80].

The equation of motions ensure that there are no nontrivial
local gauge invariant operators. However, analogous to the
other BF theories, the theory has nonlocal gauge-invariant
operators, which can be constructed from the gauge fields
either Â(i j) or ( ˆ̃c, ĉx

y, ĉy
x ). Especially, when placing on a torus,

the theory admits the noncontractible Wilson loops of the
gauge fields which contribute to the nontrivial GSD. In the
following, we evaluate the GSD of our theory on the torus
with system size Lx/y in the x/y direction, by counting the
number of distinct noncontractible Wilson loops of the gauge
fields Â(i j) [81]. We set the periodic boundary condition of the
lattice via (x̂, ŷ) ∼ (x̂ + Lx, ŷ) ∼ (x̂, ŷ + Ly).

Let us first focus on the form of the noncontractible Wilson
loops of Â(xx) in the x direction. Due to the gauge symmetry
(3.11), there are two types of the loops, described by

Wx(ŷ) = exp

[
i
2π

N

Lx∑
x̂=1

Â(xx)(x̂, ŷ)

]
,

Wdip:x(ŷ) = exp

[
i
2π

N
αx

Lx∑
x̂=1

x̂Â(xx)(x̂, ŷ)

]
, (3.17)
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where αx = N
gcd(N,Lx ) and gcd stands for the greatest common

divisor. The first loop in (3.17) describes the noncontractible
loops of the ZN fractional charge with W N

x (ŷ) = 1, which can
also be found in the other topological phases such as the toric
code. The second loop can be interpreted as the “dipole of
the Wilson loop,” i.e., the loops are formed by trajectory of
the fractional charge with its intensity increasing linearly as
going around the torus in the x direction, which is reminiscent
of the integration of a dipole moment, xρ. These two loops,
Wx(ŷ) and Wdip:x(ŷ), are characterized by quantum number ZN

and Zgcd(N,Lx ), respectively. We also derive the same Wilson
loops from a different perspective; see Appendix C.

Likewise, there are two types of the noncontractible loops
of Â(yy) in the y direction, which have the form

Wy(x̂) = exp

[
i
2π

N

Ly∑
ŷ=1

Â(yy)(x̂, ŷ)

]
,

Wdip:y(ŷ) = exp

[
i
2π

N
αy

Ly∑
ŷ=1

ŷÂ(yy)(x̂, ŷ)

]
, (3.18)

with αy = N
gcd(N,Ly ) , implying that these are labeled by ZN ×

Zgcd(N,Ly ).
We turn to introducing noncontractible loops of the gauge

field Â(xy) in either the x or y direction. To this end, we
consider the following gauge invariant loops:

Wxy:x(ŷ) = exp

[
i
2π

N

Lx∑
x̂=1

Â(xy)(x̂, ŷ)

]
,

Wxy:y(x̂) = exp

[
i
2π

N

Ly∑
ŷ=1

Â(xy)(x̂, ŷ)

]
. (3.19)

Naively, there are N2 distinct loops; however, a set of con-
straints reduce this number, as we discuss below.

After having defined gauge invariant noncontractible loops
(3.17), (3.18), and (3.19), we need to check the coordinate
dependence of the loops to count the distinct number of the
loops. As we will see, there are several constraints imposed
on the loops of the gauge field Â(xy). We first check the ŷ
dependence of the loops, Wx(ŷ) and Wdip:x(ŷ) (3.17). From the
equation of motion of the BF theory By = 0, where By is given
in (3.16), and summing the field along the x direction, we have

Lx∑
x̂=1

(�xÂ(yx) − �yÂ(xx) ) = 0 ↔ �y

Lx∑
x̂=1

Â(xx) = 0, (3.20)

implying that the loop Wx(ŷ) (3.17) does not depend on ŷ.
Furthermore, multiplying x̂ on the equation of motion Bx = 0
and summing along the x direction, one finds

�y

Lx∑
x̂=1

x̂Â(xx) = −
Lx∑

x̂=1

Â(xy), (3.21)

from which we have

Wdip:x(ŷ) = Wdip:x(ŷ − 1)
(
W αx

xy:x(ŷ)
)†

. (3.22)

The iterative use of (3.22) gives

Wdip:x(ŷ) = Wdip:x(ŷ0)
(
W αx (ŷ−ŷ0 )

xy:x (ŷ0)
)†

, (3.23)

implying that, in order to deform the loop Wdip:x(ŷ) from ŷ to
ŷ0, we need to multiply additional loops. Due to the periodic
boundary condition, Wdip:x(ŷ) = Wdip:x(ŷ + Ly), we must have

W
αxLy

xy:x (ŷ) = 1. (3.24)

Therefore, there are N × gcd(N, Lx ) distinct loops (3.17) with
the condition of (3.24).

We turn to checking the x̂ dependence of the loops Wy(x̂)
and Wdip:y(x̂) (3.18). A similar line of thought shows that
Wy(x̂) does not depend on x̂ and that

Wdip:y(ŷ) = Wdip:y(x̂0)
(
W

αy (x̂−x̂0 )
xy:y (x̂0)

)†
, (3.25)

from which one finds

W
αyLx

xy:y (x̂) = 1. (3.26)

Hence there are N × gcd(N, Ly) distinct loops (3.18) with the
condition of (3.26).

We move onto investigating the coordinate dependence
of the loops Wxy:x(ŷ) and Wxy:y(x̂) given in (3.19). From the
equation of motion Bx = 0, and summing over the field along
the x direction, we have

Lx∑
x̂=1

(�xÂ(yy) − �yÂ(xy) ) = 0 ↔ �y

Lx∑
x̂=1

Â(xy) = 0, (3.27)

from which it can be shown that the loop Wxy:x(ŷ) can be
deformed so that it can go up or down in the y direction,
namely, Wxy:x(ŷ) = Wxy:x(ŷ − 1) = · · · = Wxy:x(ŷ0), where ŷ0

denotes an arbitrary y coordinate [i.e., the loop Wxy:x(ŷ) does
not depend on ŷ]. Likewise, one can show that the loop
Wxy:y(x̂) can go left or right, i.e., Wxy:y(x̂) = Wxy:y(x̂ − 1) =
· · · = Wxy:y(x̂0), with x̂0 being an arbitrary x coordinate. Using
this property, it follows that

W
Ly

xy:x(ŷ) = W Lx
xy:y(x̂). (3.28)

With the conditions (3.24), (3.26), and (3.28), one can count
the distinct number of the Wilson loops involving Â(xy) (3.19).
Let us consider a set of loops (3.19) with the following form:

W kx
xy:x(ŷ)W ky

xy:y(x̂), (3.29)

with (kx, ky) being integers. We need to count the distinct
combination of (kx, ky). Relegating the details to Appendix B,
we find that there are N × gcd(N, Lx, Ly) distinct loops of
Â(xy).

To recap the argument, we have counted the distinct num-
ber of the noncontractible loops of the gauge fields Â(i j).
For the loops involving Â(xx) and Â(yy), there are [N ×
gcd(N, Lx )] × [N × gcd(N, Ly )] distinct loops, whereas there
are N × gcd(N, Lx, Ly) distinct loops of Â(xy). The total num-
ber of the distinct loops amounts to be the GSD. Hence we
arrive at

GSD = N3 × gcd(N, Lx ) × gcd(N, Ly ) × gcd(N, Lx, Ly).

(3.30)
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Compared with previous foliated BF theories [60–62], where
coupling between the layers of the toric codes yields the
subextensive GSD, in our foliated BF theory, the coupling be-
tween the three layers of the toric codes gives rise to unusual
GSD dependence on the system size.

A. UV stabilizer model

Analogous to the fact that the BF theory description of the
ZN toric code can be mapped to the stabilizer model in the
UV lattice, one can implement a similar mapping from the
BF theory to the lattice model. Focusing on gauge-invariant
field strengths, Bx, By, and E(i j) (3.16), we introduce the UV
lattice Hamiltonian in such a way that the ground state does
not admit the ZN electric and magnetic charge excitations.

To this end, we envisage a 2D square lattice and introduce
two types of local Hilbert space of the ZN spin, denoted by
|a〉(x̂,ŷ) |b〉(x̂,ŷ) with a, b = 0, 1, . . . , N − 1, as well as the ZN

Pauli operators Xi,(x̂,ŷ), Zi,(x̂,ŷ) (i = 1, 2) that act on the Hilbert

space with

Z1,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = ωa |a〉(x̂,ŷ) |b〉(x̂,ŷ) ,

Z2,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = ωb |a〉(x̂,ŷ) |b〉(x̂,ŷ) ,

X1,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = |a + 1〉(x̂,ŷ) |b〉(x̂,ŷ) ,

X2,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = |a〉(x̂,ŷ) |b + 1〉(x̂,ŷ) . (3.31)

At each plaquette, labeled by the coordinate (x̂ + 1/2, ŷ +
1/2), we also introduce a local Hilbert space represented by
|c〉(x̂+1/2,ŷ+1/2) with c = 0, . . . , N − 1 mod N and the ZN

Pauli operators, X0,(x̂+1/2,ŷ+1/2), Z0,(x̂+1/2,ŷ+1/2), which act on
the state as

Z0,(x̂+1/2,ŷ+1/2) |c〉(x̂+1/2,ŷ+1/2) = ωc |c〉(x̂+1/2,ŷ+1/2) ,

X0,(x̂+1/2,ŷ+1/2) |c〉(x̂+1/2,ŷ+1/2) = |c + 1〉(x̂+1/2,ŷ+1/2) .

(3.32)

With these preparations, we define the following mutually
commuting operators:

V(x̂,ŷ) := X1,(x̂+1,ŷ)X1,(x̂−1,ŷ)(X
†
1,(x̂,ŷ) )

2X2,(x̂,ŷ+1)X2,(x̂,ŷ−1)(X
†
2,(x̂,ŷ) )

2

× X0,(x̂+1/2,ŷ+1/2)X
†
0,(x̂−1/2,ŷ+1/2)X0,(x̂−1/2,ŷ−1/2)X

†
0,(x̂−1/2,ŷ−1/2),

P(x̂,ŷ+1/2) := Z†
1,(x̂,ŷ+1)Z1,(x̂,ŷ)Z0,(x̂+1/2,ŷ+1/2)Z

†
0,(x̂−1/2,ŷ+1/2),

Q(x̂+1/2,ŷ) := Z2,(x̂+1,ŷ)Z
†
2,(x̂,ŷ)Z0,(x̂+1/2,ŷ+1/2)Z

†
0,(x̂+1/2,ŷ−1/2), (3.33)

which are portrayed in Figs. 2(a) and 2(b). The operator
V(x̂,ŷ) corresponds to the Gauss law term involving the eclec-
tic fields, E(i j), G = �2

xE(xx) + �2
yE(yy) + �x�yE(xy), whereas

the operators P(x̂,ŷ+1/2) and Q(x̂+1/2,ŷ) are associated with the
magnetic flux Bx and By, respectively [78]. The Hamiltonian
is defined in such a way that the ground state does not contain
the electric and magnetic excitations, namely,

Hdip := −
∑
x̂,ŷ

[V(x̂,ŷ) + P(x̂,ŷ+1/2) + Q(x̂+1/2,ŷ)] + (H.c.).

(3.34)

FIG. 2. Two types of the terms that constitute Hamiltonian
(3.34). The red (blue) square represents the Pauli operator acting on
the local Hilbert space |a〉(x̂,ŷ) (|b〉(x̂,ŷ)), whereas the small square with
black line denotes the Pauli operator that acts on |c〉(x̂+1/2,ŷ+1/2). A
purple square indicates the composite of the Pauli operators which
act on both |a〉(x̂,ŷ) and |b〉(x̂,ŷ).

It is interesting to note that, in [66,70], the same Hamiltonian
was obtained by placing the tensor gauge theory [78] on the
lattice and Higgs it, which is in contrast with the present case
where we Higgs the continuum gauge theory with the dipole
symmetries and put it on the lattice.

IV. QUADRUPOLE

After having seen the example of the BF theories with
dipole symmetries, in this section, we extend the previous
argument to the case with quadrupole symmetry.

A. Construction of the foliated BF theory

We envisage a theory with quadrupole U(1) symmetry in
addition to the global charge and dipole ones whose charges
are denoted as Q, Qx, Qy, and Qxy. These charges are subject
to the following commutation relation with the translation
operators:

[iPI , Q] = 0, [iPI , QJ ] = δI,JQ, [iPI , Qxy] = QĪ , (4.1)

where

Ī =
{

x for I = y,
y for I = x.

We also write the charges via integral expression of one-form
currents as

Q =
∫

V
∗ j, QI =

∫
V

∗KI , Qxy =
∫

V
∗�. (4.2)
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If we set

∗KI = ∗kI − xI ∗ j, ∗� := ∗J + xy ∗ j − xI ∗ kI , (4.3)

where kI and J represent nonconserved local current, then
a simple calculation shows that the form (4.2) jointly with
(4.3) yields the commutation relations (4.1). We introduce
one-form U(1) gauge fields as a, AI , and a′ that are coupled
with the currents with coupling term

Sqp =
∫

V
a ∧ ∗ j +

∑
I

AI ∧ ∗kI + a′ ∧ ∗J. (4.4)

With the following gauge transformation (, σI , ′: gauge
parameters):

a → a + d +
∑

I

σI dxI , AI → AI + dσI + ′dxĪ ,

a′ → a′ + d′, (4.5)

jointly with the condition Sqp is invariant under the gauge
transformation, one can verify the three kinds of currents are
conserved, i.e., d ∗ j = d ∗ KI = d ∗ � = 0.

We further introduce gauge invariant fluxes by

f := da −
∑

I

AI ∧ dxI , F I := dAI − a′ ∧ dxĪ ,

f ′ := da′. (4.6)

Using these fluxes, we defined a BF theory as

Lqp = N

2π

[
b ∧ f +

∑
I=x,y

cI ∧ F I + D ∧ f ′
]
, (4.7)

where cI and D denote U(1) one-form gauge fields. Writing
the foliated field as eI = dxI , Eq. (4.7) is transformed into the
following foliated BF theory:

Lqp = N

2π
a ∧ db + N

2π
a′ ∧ dD +

∑
I=x,y

N

2π
AI ∧ dcI

+ N

2π
AI ∧ b ∧ eI + N

2π
a′ ∧ cI ∧ eĪ . (4.8)

Compared with the previous foliated BF theory (3.7), we
now have four layers of the toric codes, corresponding to the
first three terms in (4.8), with the coupling terms between the
layers being given by the last two terms. In the next subsec-
tion, we show that the foliated BF theory exhibits unusual
GSD dependence on the system size on torus geometry by
studying the noncontractible Wilson loops.

B. Ground state degeneracy

In addition to (4.5), the theory respects the following gauge
symmetry:

D → D + dλ +
∑

I

ξ I eĪ , cI → cI − dξ I . (4.9)

Analogous to the previous foliated BF theory (3.7), the theory
admits unusual gauge symmetries due to the presence of the
couplings between the layers. This puts constraints on the
form of the gauge invariant operators, contributing to the

lattice dependence of the GSD. To see this point, we simplify
the Lagrangian (4.8) by integrating out some of the fields.

By integrating out b0 and a′
0, we have

∂ia jε
i j − AI

i δ
I
jε

i j = 0 ↔ ∂xay − Ay
x = ∂yax − Ax

y (4.10)

and

∂iD jε
i j +

∑
I 
=J

cI
i δ

J
j ε

i j = 0 ↔ cx
x − cy

y = −∂iD jε
i j . (4.11)

Furthermore, integrating out the gauge field AI
0 and cI

0 gives
rise to the following two conditions:

∂ic
I
jε

i j + biδ
I
jε

i j = 0, ∂iA
I
jε

i j + a′
iδ

Ī
jε

i j = 0, (4.12)

which can be rewritten as(
bx

by

)
=

(
−∂ic

y
jε

i j

∂icx
jε

i j

)
,

(
a′

x

a′
y

)
=

(
∂iAx

jε
i j

−∂iA
y
jε

i j

)
. (4.13)

To proceed, we introduce gauge fields as

A(xx) := ∂xax − Ax
x, A(yy) := ∂yay − Ay

y,

and eliminate the gauge fields a′ and b by use of the relations
(4.10)–(4.13); the Lagrangian is rewritten as

Lqp = N

2π

[
A0

(
∂2

x B(yy) − ∂2
y B(xx)

) + A(xx)
(
∂τ B(yy) − ∂2

y B0
)

− A(yy)
(
∂τ B(xx) − ∂2

x B0
)]

,

(4.14)

where

A0 := a0, B0 := D0, B(xx) := ∂xDx + cy
x,

B(yy) := ∂yDy + cx
y . (4.15)

Analogous to the previous section, in order to study the BF
theory, we implement a mapping from (4.14) to the following
integer BF theory defined on a discrete lattice (see Appendix.
A):

Lqp = 2π

N

[
Â0

(
�2

x B̂(yy) − �2
yB̂(xx)

) + Â(xx)
(
�τ B̂(yy) − �2

y B̂0
)

− Â(yy)
(
�τ B̂(xx) − �2

x B̂0
)]

, (4.16)

where B̂0, B̂(xx), B̂(yy), Â0, Â(xx), and Â(yy) denote the gauge
fields which take integer values. The gauge fields Â0 and B̂0

are defined on the τ links, whereas Â(ii) and B(ii) (i = x, y)
are on sites. The gauge fields respect the following gauge
symmetry (ξ, ξ ′: integer gauge parameters):

B̂0 → B̂0 + �τξ, B̂(xx) → B̂(xx) + �2
xξ,

B̂(yy) → B̂(yy) + �2
yξ, Â0 → Â0 + �τξ

′,

Â(xx) → Â(xx) + �2
xξ

′, Â(yy) → Â(yy) + �2
yξ

′. (4.17)

The theory (4.16) reminds us of the BF theory description
of the ZN toric code (2.4) with the difference being that the
spatial derivatives are replaced with the second order. The
equations of motion in the Lagrangian imply that the follow-
ing gauge invariant field strengths vanish:

FA = �2
x Â(yy) − �2

yÂ(yy), ExA = �τ Â(xx) − �2
xÂ0,

EyA = �τ Â(yy) − �2
y Â0, FB = �2

x B̂(yy) − �2
y B̂(yy),

ExB = �τ B̂(xx) − �2
x B̂0, EyB = �τ B̂(yy) − �2

yB̂0. (4.18)
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As in the case with the other BF theories, the equations of
motion ensure that there are no nontrivial local gauge invari-
ant operators, yet the theory admits nonlocal gauge-invariant
operators, contributing to the GSD. With the simplified La-
grangian (4.16), we evaluate the GSD on the torus geometry
by counting the distinct number of the noncontractible Wilson
loops of the gauge fields Â(xx) and Â(yy). Below, similar to the
previous section, we think of the theory (4.16) on a discrete
2D lattice with periodic boundary condition and evaluate the
GSD [82].

As for the noncontractible loops of the gauge field, Â(xx),
referring to the gauge transformation (4.17), we have two
types of such loops in the form of

Wx(ŷ) = exp

[
i
2π

N

Lx∑
x̂=1

Â(xx)(x̂, ŷ)

]
,

Wdip:x(ŷ) = exp

[
i
2π

N
αx

Lx∑
x̂=1

x̂Â(xx)(x̂, ŷ)

]
, (4.19)

with αx = N
gcd(N,Lx ) . Justification of the existence of these

loops is given in Appendix C, where we discuss thoroughly
the Wilson loops in the UV lattice model. In order to count
the number of distinct such loops, we need to check whether
these loops depend on ŷ. Let us first focus on the loop Wx(ŷ).
From the equation of motion, FA = �2

x Â(yy) − �2
y Â(yy) = 0,

and summing over the field along the x direction, we have

�2
y

Lx∑
x̂=1

Â(xx)(x̂, ŷ) = 0 ↔ �y

(
Lx∑

x̂=1

�yÂ(xx)(x̂, ŷ)

)
= 0,

(4.20)
from which it follows that

∑Lx
x̂=1 �yÂ(xx)(x̂, ŷ) is independent

of ŷ. For an arbitrary ŷ0, we set

Lx∑
x̂=1

�yÂ(xx)(x̂, ŷ) =
Lx∑

x̂=1

�yÂ(xx)(x̂, ŷ0), (4.21)

which can be rewritten as
Lx∑

x̂=1

Â(xx)(x̂, ŷ + 1) −
Lx∑

x̂=1

Â(xx)(x̂, ŷ) =
Lx∑

x̂=1

�yÂ(xx)(x̂, ŷ0).

(4.22)

Iterative use of (4.22) gives

Lx∑
x̂=1

Â(xx) (̂x, ŷ) =
Lx∑

x̂=1

Â(xx)(x̂, ŷ0) + (ŷ − ŷ0)
Lx∑

x̂=1

�yÂ(xx)(x̂, ŷ0),

(4.23)
from which we have

Wx(ŷ) = Wx(ŷ0)[W̃x(ŷ0)](ŷ0−ŷ),

W̃x(ŷ0) := exp

[
i
2π

N

Lx∑
x̂=1

Â(xx)(x̂, ŷ0 + 1) − Â(xx)(x̂, ŷ0)

]
,

(4.24)

indicating that, in order to deform the loop Wx(ŷ) from ŷ to
ŷ0, we need to multiply other loops. The relation (4.24) is
corroborated by a close investigation of the stabilizer model
presented in Appendix C.

The distinct loops of Wx(ŷ) are labeled by two quantum
numbers, corresponding to two loops, Wx(ŷ0) and W̃x(ŷ0). The
loop Wx(ŷ0) is labeled by ZN as we have W N

x (ŷ0) = 1. Due
to the periodic boundary condition, Wx(ŷ + Ly) = Wx(ŷ) and

(4.24), the loop W̃x(ŷ0) is subject to W̃
Ly

x (ŷ0) = W̃ N
x (ŷ0) = 1,

from which it follows that the loop W̃x(ŷ0) is labeled by
Zgcd(N,Ly ). In total, the distinct number of the loop Wx(ŷ) is
given by N × gcd(N, Ly).

The similar consideration shows that there are
gcd(N, Lx ) × gcd(N, Lx, Ly) distinct loops of Wdip:x(ŷ). Over-
all, there are N × gcd(N, Lx ) × gcd(N, Lx ) × gcd(N, Lx, Ly )
distinct noncontractible loops of the gauge field Â(xx) in the
x direction. One can analogously count the number of the
distinct noncontractible loops of Â(yy) in the y direction,
arriving at the same number. Therefore, the GSD, which is
equivalent to the distinct number of loops of the gauge fields
Â(xx) and Â(yy), is given by

GSD = [N × gcd(N, Lx ) × gcd(N, Lx ) × gcd(N, Lx, Ly)]2.

(4.25)
Analogous to the previous case, the foliated BF theory shows
the GSD dependence on the UV lattice, involving the greatest
common divisor between N and the system size, which is in
sharp contrast with the subextensive GSD dependence found
in the preexisting foliated BF theories.

C. UV stabilizer model

Similar to the previous section, we can map from the BF
theory to the UV lattice stabilizer model. To start, we intro-
duce a 2D square lattice where we place two types of N-qubit
states (ZN clock states) on each vertex. We represent the basis
of the two types of the clock states as |a〉(x̂,ŷ) |b〉(x̂,ŷ), with
a, b ∈ ZN , and the ZN Pauli operators acting on the state as

Z1,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = ωa |a〉(x̂,ŷ) |b〉(x̂,ŷ) ,

Z2,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = ωb |a〉(x̂,ŷ) |b〉(x̂,ŷ) ,

X1,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = |a + 1〉(x̂,ŷ) |b〉(x̂,ŷ) ,

X2,(x̂,ŷ) |a〉(x̂,ŷ) |b〉(x̂,ŷ) = |a〉(x̂,ŷ) |b + 1〉(x̂,ŷ) . (4.26)

With this preparation, we introduce the following terms (see
Fig. 3):

V(x̂,ŷ) := X1,(x̂+1,ŷ)X1,(x̂−1,ŷ)(X
†
1,(x̂,ŷ) )

2X2,(x̂,ŷ+1)X2,(x̂,ŷ−1)(X
†
2,(x̂,ŷ) )

2,

P(x̂,ŷ) := Z†
1,(x̂,ŷ+1)Z

†
1,(x̂,ŷ−1)Z

2
1,(x̂,ŷ)Z2,(x̂+1,ŷ)Z2,(x̂−1,ŷ)(Z

†
2,(x̂,ŷ) )

2.

(4.27)

Note that V(x̂,ŷ) and P(x̂,ŷ) is what corresponds to the Gauss law
and flux operator in the BF theory (4.8), where it reads as G =
�2

xExA + �2
yEyA and FA = �2

x Â(yy) − �2
yÂ(yy), respectively. It

is straightforward to check that these operators mutually com-
mute. The Hamiltonian is defined by

Hqp = −
∑
x̂,ŷ

[V(x̂,ŷ) + P(x̂,ŷ)] + (H.c.). (4.28)

This model is exactly solvable as individual terms in the
Hamiltonian commute with one another. Further, the model
exhibits unusual behavior of the ground state degeneracy on
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FIG. 3. Two types of the terms defined in (4.27). The red and blue
squares distinguish between the Pauli operators that act on the state
|a〉 and those on |b〉, respectively, whereas the pink square represents
the composite of the Pauli operators that act on both |a〉 and |b〉.

torus geometry, depending on the system size [68]. Differing
the details to Appendix C, we derive the GSD of the stabilizer
model, arriving at the same value as (4.25).

D. Multipole one-form symmetries

It is known that in the 2 + 1D toric code, there are one-
form symmetries [83], which are prototype examples of the
generalized global symmetries [84]. In condensed matter
physics language, the one-form symmetries in the toric code
are nothing but the closed loops of the fractionalized charges

on the lattice. Since our UV lattice model (4.28) has the
simple form, one can explicitly see that there are such one-
form symmetries, corresponding to closed loops. In addition,
such symmetries follow the similar relation of the multipole
symmetries that we started with (4.1), which is not seen in the
regular toric code.

To this end, we focus on the case with N = 2, while other
N cases can be argued in a similar way. In this case, two types
of the terms Vx̂,ŷ and P(x̂,ŷ) constituting the Hamiltonian (4.28)
become [Fig. 4(a)]

V(x̂,ŷ) = X1,(x̂+1,ŷ)X1,(x̂−1,ŷ)X2,(x̂,ŷ+1)X2,(x̂,ŷ−1),

P(x̂,ŷ) = Z1,(x̂,ŷ+1)Z1,(x̂,ŷ−1)Z2,(x̂+1,ŷ)Z2,(x̂−1,ŷ). (4.29)

There are four types of closed loops of the operators Z1

and Z2 that commute with the Hamiltonian, as portrayed in
Figs. 4(b)–4(e). The first loop [Fig. 4(b)], denoted by Q̃xy,
consists of two horizontal lines of Z1 and two vertical lines
of Z2, where each Z1 (Z2) is separated by a single site in the
horizontal (vertical) direction. The second loop [Fig. 4(c)],
labeled by Q̃x, is formed in such a way that there are four
horizontal lines of Z1, each of which is separated by a single
site, and there are two vertical lines of Z2. The role of Z1

and Z2 is switched in the third loop, Q̃y [Fig. 4(d)]. The
fourth loop, Q̃, consists of four horizontal lines of Z1 and four
vertical lines of Z2. We consider translating these operators
by one lattice site in either the x or y direction and see how
these loops change. Denoting a translation operator in the I
direction by one lattice site by TI , we investigate the change

FIG. 4. (a) Two types of the terms V(x̂,ŷ) and P(x̂,ŷ) constituting Hamiltonian (4.28) with N = 2. [(b)–(d)] Four closed loops of the operators
Z1 and Z1 that commute with the Hamiltonian. The red and blue squares distinguish between the Pauli operators that act on the state |a〉 and
those on |b〉.

165112-9



EBISU, HONDA, AND NAKANISHI PHYSICAL REVIEW B 109, 165112 (2024)

of the translation by taking the ratio between a loop after the
translation and the one before the translation. We have

T −1
x Q̃xyTx

Q̃xy
= Q̃y,

T −1
y Q̃xyTy

Q̃xy
= Q̃x,

T −1
x Q̃xTx

Q̃x
= Q̃,

T −1
y Q̃yTy

Q̃y
= Q̃. (4.30)

This relation is inherited from our original consideration of
a theory with multipole symmetries (4.1) in the sense that, if
we translate a loop, it gives rise to another loop, similar to the
fact that translating a quadruple gives a dipole (or translating a
dipole gives a charge) in (4.1). It would be interesting to study
these one-form symmetries from the perspective higher-form
gauging and anomaly. Also, since these one-form symmetries
are qualitatively different from those found in the regular toric
code due to (4.30), it could be intriguing to address whether
the lattice model (4.28) has different features in view of quan-
tum error corrections [9]. We will leave these issues for future
works.

V. CONCLUSION AND DISCUSSIONS

Symmetry has been one of the fundamental laws of
physics, and is a guiding principle, allowing us to analyze var-
ious physical properties. In this work, we have demonstrated
that symmetry plays a pivotal role to construct new field
theories in the context of the fracton topological phases. We
have demonstrated a way to construct the 2 + 1D foliated BF
theories based on the argument of the multipole symmetries.
By introducing gauge fields associated with these symmetries,
one can systematically construct new foliated BF theories.
These theories exhibit unusual GSD dependence on the sys-
tem size, involving the greatest common divisor between N
and the length of the lattice. We have also shown that these
foliated BF theories are an effective field theory description
of unconventional topological phases, referred to as the higher
rank topological phases. Our consideration provides an impor-
tant connection between various unconventional topological
phases such as fracton and higher rank topological phases in
terms of the foliated topological field theories.

One obtains the preexisting foliated BF theories from ours
by imposing additional constraints on the gauge fields. For
instance, if we replace the gauge field cI with φI eI (I is not
summed over) in (3.7), where φI is a zero-form field, we have

LEX = N

2π
a ∧ db+

∑
I=x,y

N

2π
AI ∧ dφI ∧ eI + N

2π
AI ∧ b ∧ eI ,

(5.1)

which is known as the foliated field theory description of the
exotic ZN gauge theory [39]. Compared with (3.7), which has
the dipole symmetries, the theory (5.1) respects an additional
symmetry–subsystem symmetry. The theory is invariant under
AI → AI + eI g, with g being an arbitrary function. Manifesta-
tion of the subsystem symmetry in the theory (5.1) is that a
gauge invariant operator constructed by the gauge field AI is
mobile only along a submanifold, which forbids moving in the
direction parallel to eI .

Other foliated BF theories of fracton phases, such as the
X-cube model, can also be obtained by similar steps [65,74],
i.e., starting with the 3 + 1D analog of (3.7), and replacement
of the gauge fields with the one which depends on the foliation
field. Such a procedure might be related to discussion in [85],
where one places 3 + 1D tensor gauge theory on the lattice
and Higgs it, which yields the X-cube model. Conversely,
it could be interesting to see whether our theories (3.7) and
(4.8) can be obtained by the preexisting foliated BF theories
[60]. These theories might be related with one another via
dimension reduction. We leave elaborating on these issues,
including investigating whether our theories describe other
higher rank topological phases such as the one in [86], for
future studies.

There are several research directions regarding the present
work that we would like to pursue for future studies. In this
paper, we focus on the construction of the 2 + 1D foliated
BF theories, which can be generalized in several ways. For
instance, one could study the construction of the 3 + 1D or
even higher dimensional foliated BF theories, with various
multipole symmetries higher than dipole or quadrupole, such
as ocutopoles. Also, one could think of higher-form symme-
tries analog of the multipole symmetries in the same way as
we did in this paper and see what the resulting foliated BF
theories are. Studying a boundary theory and topological de-
fects of our foliated BF theories to see how multipole degrees
of freedom are incorporated could be an interesting direction.

It would be also interesting to study whether our model
can be useful in the context of quantum computing. The UV
stabilizer lattice models that we have discussed here are dis-
tinct from the conventional toric code due to the sensitivity
to the local geometry. Also, as seen from Sec. IV D, the
model admits one-form symmetries which have the similar
commutation relation with the translation operators as the
ones of the multipole symmetries that we started with. In
the case of the toric code, it is known that the capability of
the quantum error correction is characterized by the classical
Ising universal class [9]. Since the UV lattice model that we
discuss respects the multipole symmetries, one naively would
expect that robustness of the model against errors is qualita-
tively different (see [87] for relevant discussion.). It would be
intriguing to investigate whether the UV lattice models dis-
cussed in the present paper show different universality classes
that characterize the capability of the error correction.
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APPENDIX A: MAPPING BETWEEN REAL BF
AND INTEGER BF THEORY

Generally, the BF theory with multipole symmetry studied
in the present paper contains higher order spatial derivatives,
making analysis much more challenging compared with con-
ventional BF theories of topologically ordered phases. To
circumvent this problem, we make use of a mapping from
the BF theory to what is called integer BF theory where
gauge fields take integer values defined on a discrete lattice,
proposed in [45]. The latter BF theory is especially useful to
study the properties of the model with multipole symmetries,
such as the Wilson loops. For clearer illustration purposes, we
first review how such a mapping works in the case of the toric
code and then we apply this mapping to our BF theory.

Let us introduce the following BF theory defined on a
discrete infinite Euclidean lattice:

L = 2π

N
[âτ (�xb̂x − �yb̂x ) + âx(�yb̂τ − �τ b̂y)

+ ây(�τ b̂x − �xb̂τ )]. (A1)

Here, gauge fields âμ b̂μ (μ = τ, x, y) take integer values
defined on a μ link of the infinite Euclidean lattice. Following
the terminology in [45,67,73], we term such a theory integer
BF theory. This integer BF theory corresponds to the BF
theory of the toric code (2.4). To see why, we first think of
the equivalent description of (A1) which is given by

L = N

2π
[aτ (�xbx − �ybx − 2πmxy) + ax(�ybτ − �τ by − 2πmyτ ) + ay(�τ bx − �xbτ − 2πmτx )]

− Nnxybτ − Nnτybx − Nnτxby + nxy�τ φ̃ + nyτ�xφ̃ + nτx�yφ̃ + mxy�τφ + myτ�xφ + mτx�yφ. (A2)

Here, aμ bμ (μ = τ, x, y) represent gauge fields with real values. Note the distinction between the fields with or without hat. We
put a hat on top of the fields to emphasize that they are the fields with integer values. Further, we have intruded the Stueckelberg
fields, φ, φ̃ to ensure that aμ bμ respects the gauge symmetry and mμν , nμν as the integer fields defined on a plaquette in the μν

plane, which take the role of the Lagrangian multiplier. Indeed, summing over the integer fields mμν , nμν gives the following
constraints:

aμ = 2π

N
âu + 1

N
�μφ, bμ = 2π

N
b̂u + 1

N
�μφ̃, (A3)

where âμ b̂μ (μ = τ, x, y) are integer fields. Substituting (A3) to (A2), we come back to (A1). The theory (A2) admits the
following gauge symmetry:

aμ → aμ + �μα + 2π k̂μ, bμ → bμ + �μβ + 2π q̂μ, φ → φ + Nα + 2π k̂φ, φ̃ → φ̃ + Nβ + 2π q̂φ̃ ,

mxy → mxy + �xk̂y − �yk̂x, myτ → myτ + �yk̂τ − �τ k̂y, mτx → mτx + �τ k̂x − �xk̂τ ,

nxy → nxy + �xq̂y − �yq̂x, nyτ → nyτ + �yq̂τ − �τ q̂y, nτx → nτx + �τ q̂x − �xq̂τ . (A4)

Here, α, β represent the real gauge parameters, whereas k̂μ, q̂, k̂φ, q̂φ̃ denote the integer gauge parameters. To see the relation
to the original BF theory of the toric code (2.4), we sum over the Stueckelberg fields, φ φ̃, in (A2), which gives the following
fluxless condition:

�τ mxy + �xmyτ + �ymτx = 0 (A5)

and similarly for nμν . Since we think of the infinite Euclidean lattice, using the gauge symmetry (A4), jointly with the fluxless
condition (A5) allows us to set the fields mμν nμν to be zero. (In the case of the lattice with periodic boundary condition, mμν nμν

can be set to be zero except for a few cells, which capture the holonomy. Accordingly, one needs to take into account the
transition function of the gauge fields, aμ, bν ; see [45] for more discussion on this point.) What remains in (A2) is

L = N

2π
[aτ (�xbx − �ybx ) + ax(�ybτ − �τ by) + ay(�τ bx − �xbτ )]. (A6)

After taking the continuum limit appropriately, Eq. (A6) becomes the original BF theory of the toric code (2.4).
After having reviewed the mapping between real BF theory and the integer BF theory, now we apply this technique to our

theories. In Sec. III, we considered the BF theory with dipole symmetry given in (3.13). Since the way we carry out the mapping
between theories closely parallels the one in the case of the toric code, we succinctly describe how the mapping works. The
corresponding integer BF theory defined on the infinite discrete Euclidean lattice is given by

Ldip = 2π

N

[ − ĉx
0(�xÂ(yx) − �yÂ(xx) ) − ĉy

0(�xÂ(yy) − �yÂ(xy) ) + ˆ̃c(�τ Â(xy) − �x�yÂ0)

− ĉx
y

(
�τ Â(xx) − �2

x Â0
) + ĉy

x

(
�τ Â(yy) − �2

y Â0
)]

, (A7)
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where the gauge fields with hat (·̂) take integer values. To see such a mapping work, let us first rewrite (A7) as

Ldip = N

2π

[−cx
0

(
�xA(yx) − �yA(xx) − 2πmx

xy

) − cy
0

(
�xA(yy) − �yA(xy) − 2πmy

xy

)
+ c̃

(
�τ A(xy) − �x�yA0 − 2πm̃

) − cx
y

(
�τ A(xx) − �2

xA0 − 2πmx
τx

) + cy
x

(
�τ A(yy) − �2

yA0 − 2πmy
yτ

)]
− NA0nxy − NA(xy)ñ − NA(xx)nyτ − NA(yy)nτx − mx

xy�τφ
x − my

xy�τφ
y

+ m̃(�xφ
x − �yφ

y) + mτx�yφ
x + nxy�τ φ̃ + �̃x�yφ̃ + nyτ�

2
x φ̃ + nτx�

2
y φ̃. (A8)

Here, (cx
0, cy

0, cx
y, cy

x, c̃), (A0, A(xx), Ayy, A(xy) ) denote the gauge
fields which take real values with the Stueckelberg fields
φx, φy, φ̃ to ensure the gauge symmetry. Also, integer fields
mi

μν, m̃, ni
μν, ñ (μ, ν = x, y, τ , i = x, y) are Lagrangian multi-

pliers; summing over these fields yields

ci
0 = 2π

N
ĉi

0 + 1

N
�iφ

i (i = x, y), cy
x = 2π

N
ĉy

x + 1

N
�xφ

y,

cx
y = 2π

N
ĉx

y + 1

N
�yφ

x, c̃ = 2π

N
ˆ̃c + 1

N
(�xφ

x − �yφ
y),

A0 = 2π

N
Â0 + 1

N
�τ φ̃, A(i j) = 2π

N
Â(i j) + 1

N
�i� j φ̃,

(A9)

where the fields with a hat represent integer fields. One can
easily check that substituting this into (A8) gives (A7). Similar
to the previous case of the toric code, summing over the
Stueckelberg fields φx, φy, φ̃ gives the fluxless condition of
the fields mi

μ,ν, m̃, ni
μν, ñ. Using this condition jointly with

the gauge symmetries of these fields allows us to suppress the
fields mi

μ,ν, m̃, ni
μν, ñ. What remains in (A8) is given by

Ldip = N

2π

[− cx
0(�xA(yx) − �yA(xx) ) − cy

0(�xA(yy) − �yA(xy) )

+ c̃(�τ A(xy) − �x�yA0) − cx
y

(
�τ A(xx) − �2

xA0
)

+ cy
x

(
�τ A(yy) − �2

yA0
)]

. (A10)

Taking the continuum limit, we obtain the original BF theory
(3.13). Based on this argument, to study the original BF theory
(3.13), we instead study the integer BF theory defined on
the discrete lattice (A7), allowing us to study its physical
properties.

By the analogous lines of thoughts, we study the integer
BF theory (4.16) with quadrupole instead of the BF theory
introduced in (4.14) in Sec. IV.

APPENDIX B: DERIVATION OF EQ. (3.30)

In this Appendix, we provide an argument to derive (3.30).
The composite of loops (3.29) is subject to the conditions

(kx, ky ) ∼ (kx + N, ky ) ∼ (kx + αyLy, ky) (B1)

and

(kx, ky) ∼ (kx, ky + N ) ∼ (kx, ky + αxLy), (B2)

with αx/y = N
gcd(N,Lx/y ) . Also, (kx, ky ) has to satisfy

(kx, ky) ∼ (kx + Lx, ky − Ly). (B3)

From (B1) and (B3), there are gcd(N, αyLx, Lx ) distinct
number of kx and, for these distinct values of kx, there
are gcd(N, αxLy) distinct number of ky. In total, there are
gcd(N, αyLx, Lx ) × gcd(N, αxLy) distinct number of the com-
posite loops (3.29). Since gcd(N, αyLx, Lx ) = gcd(N, Lx ), it
follows that

gcd(N, αyLx, Lx ) × gcd(N, αxLy)

= gcd(N, Lx ) × gcd

(
N,

N

gcd(N, Lx )
Ly

)

= N gcd[gcd(Lx, N ), Ly] = N gcd(N, Lx, Ly). (B4)

Hence there are N gcd(N, Lx, Ly) distinct loops of the gauge
field Â(xy). Taking the other noncontractible loops into ac-
count, we arrive at the fact that the GSD, which is the number
of the distinct noncontractible loops of the gauge fields Â(i j),
is given by (3.30).

APPENDIX C: INVESTIGATION OF THE LATTICE
MODEL BY THE LAPLACIAN

In this Appendix, we analyze the stabilizer model (4.28)
obtained from the foliated BF theory, especially investigating
the Wilson loops that contribute to the nontrivial GSD on a
torus geometry from a different perspective. As we discussed
in the main text, the model contains the second order spatial
derivatives, involving the nearest neighboring states. Due to
this property, one can make use of the Laplacian, which is the
graph theoretical analog of the second order derivatives [89],
allowing us to systematically investigate the lattice model,
such as the Wilson loops. To see how, we first recall the
Hamiltonian has the following form:

Hqp = −
∑
x̂,ŷ

[V(x̂,ŷ) + P(x̂,ŷ)] + (H.c.), (C1)

and that the ground state |�〉 satisfies V(x̂,ŷ) |�〉 = P(x̂,ŷ) |�〉 =
|�〉, i.e., the ground state does not admit an electric and
magnetic excitation. To discuss the Wilson loops, we also
investigate the excitations. When acting on an operator Z1,(x̂,ŷ)

on the ground state, it violates the condition V(x̂,ŷ) = 1; that is,

V(x̂,ŷ)(Z1,(x̂,ŷ) |�〉) = ω−2(Z1,(x̂,ŷ) |�〉),

V(x̂±1,ŷ)(Z1,(x̂,ŷ) |�〉) = ω(Z1,(x̂,ŷ) |�〉), (C2)

yielding electric charges. This implies that, by acting on an
operator Z1,(x̂,ŷ), an electric charge is induced at the coordi-
nate (x̂ ± 1, ŷ) and two conjugate of the electric charges are
obtained at (x̂, ŷ). Denoting the ZN eclectic charge as e(x̂,ŷ)

(and its conjugate as e(x̂,ŷ)), Eq. (C2) can be described by the
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FIG. 5. (a) Examples of the two types of the loops given in (C8) [left: Wx (ŷ); right: Wdip(ŷ)] in the case of N = Lx = 6. The red dots denote
the operators Z1,(x̂,ŷ). The integer numbers correspond to the power entering in the form of the loops (C8). The periodic boundary condition is
imposed so that the left and right edges are identified. (b) Configuration corresponding to the second term of (C14), which is the composite of
the loops with opposite charge located adjacent in the y direction.

fusion rule, reading

I → e(x̂−1,ŷ)e
2
(x̂,ŷ)e(x̂+1,ŷ). (C3)

The fusion rule of the magnetic charges can be similarly
discussed.

Using this property, one can study the GSD of the model
on a torus geometry by counting the distinct number of Wilson
loops. To this end, the Laplacian comes into play. We consider
the model (C1) on a 2D lattice with periodic boundary con-
dition and the system size being Lx × Ly. In this lattice, we
think of a closed loop of the electric charge in the horizontal
direction at ŷ, described by

∏Lx
x̂=1 Zax̂

1,(x̂,ŷ) with ax̂ ∈ ZN . From
(C3), the electric charges induced by acting this operator on
the ground state are described by the fusion rule

I →
Lx∏

x̂=1

⊗erx̂
(x̂,ŷ) (rx̂ ∈ ZN ), (C4)

with

r = −LLx×Lx a. (C5)

Here, a := (a1, . . . , aLx )T , r := (r1, . . . , rLx )T , and Lx × Lx

matrix, LLx×Lx , is the Laplacian, the graph theoretical analog
of the second order spatial derivative, which has the following
form:

LLx×Lx =

⎛
⎜⎜⎜⎜⎜⎝

2 −1 −1
−1 2 −1

−1 2 . . .
. . .

. . . −1
−1 −1 2

⎞
⎟⎟⎟⎟⎟⎠. (C6)

Since the closed noncontractible loop
∏Lx

x̂=1 Zax̂
1,(x̂,ŷ) has to

commute with the Hamiltonian, the fusion rules (C4) and (C5)
have to be trivial, i.e., r = 0 mod N . Thus the closed loops
of the electric charges are characterized by the kernel of the
Laplacian.

By evaluating the Laplacian (C6), the solution of
LLx×Lx a = 0 is given by [68]

a = α0(1, 1, . . . , 1)T + α1 × N

gcd(N, Lx )
(1, 2, 3, . . . , Lx )T .

(C7)

Here, α0 ∈ ZN and α1 ∈ Zgcd(N,Lx ). Hence there are two kinds
of closed loops in the horizontal direction (αx = N

gcd(N,Lx ) ):

Wx(ŷ) =
Lx∏

x̂=1

Z1,(x̂,ŷ), Wdip:x(ŷ) =
Lx∏

x̂=1

(
Zx̂

1,(x̂,ŷ)

)αx
. (C8)

The first loop is interpreted as the conventional Wilson loop
[Fig. 5(a), left], which is formed by the trajectory of the ZN

electric charge, traveling around the torus in the x direction.
This corresponds to the first term of (4.19) in the BF theory.
The second loop can be interpreted as the “dipole of the Wil-
son loop” [Fig. 5(a), right] in the sense that the loop is formed
by the ZN electric charge going around the torus with its
intensity increasing linearly. This corresponds to the second
term in (4.19). The first loop Wx(ŷ) is labeled by ZN , whereas
the second one Wdip:x(ŷ) is by Zgcd(N,Lx ). By evaluating the
fusion rules, one can similarly discuss the configuration of
the (part of) closed loops in the lattice model (3.34) obtained
from the foliated BF theory with dipole symmetry (3.7). For
instance, the form of the loops given in (3.17) can be similarly
derived.

Having identified loops of the electric charges in the x
direction (C8), one needs to check whether these loops are
ŷ dependent or not to count the distinct number of config-
urations of the loops. Let us focus on the loop Wx(ŷ). By
multiplying the following operator:

M(ŷ) =
Lx∏

x̂=1

P(x̂,ŷ), (C9)

where P(x̂,ŷ) is given in (4.27), the loop Wx(ŷ) is deformed as

M(ŷ)Wx(ŷ) = Wx(ŷ − 1)W †
x (ŷ)Wx(ŷ + 1). (C10)

We need to count the distinct configuration of the loop Wx(ŷ)
up to the deformation (C10). To this end, we think of deform-
ing the composite of the loops,

∏Ly

ŷ=1 W
bŷ

x (ŷ), with bŷ ∈ ZN .
Multiplying it with the following operator:

Ly∏
ŷ=1

Mcŷ (ŷ) (cŷ ∈ ZN ) (C11)
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and referring to (C10), it follows that the composite of the
loops after multiplying (C11) becomes

Ly∏
ŷ=1

W b̃ŷ (ŷ) (b̃ŷ ∈ ZN ), (C12)

with

b̃ = b − LLy×Ly c. (C13)

Here, b = (b1, . . . , bLy )T with other vectors b̃, c being sim-
ilarly defined and the Ly × Ly matrix LLy×Ly denotes the
Laplacian, which has the same form as (C6), where the matrix
size is replaced with Ly × Ly. It follows that the composite

of loops,
∏Ly

ŷ=1 W
bŷ

x (ŷ), labeled by the vector b and the ones,∏Ly

ŷ=1 W
b̃ŷ

x (ŷ), labeled by b̃ which are related via (C13) with ∃c
are identified. Therefore, the number of distinct configurations
of the loop Wx(ŷ) is found to be s := Z

Ly

N /Im(LLy×Ly ), which
is the cokernel of the Laplacian. Note that this corresponds
to the discussion around Eq. (4.20) in the main text, where
we count the distinct number of the loops W (ŷ) subject to
the condition (4.20). Namely, in (4.20), we discuss the dis-
tinct configuration of the loops up to the operation of the
second order derivative ∂2

y , which corresponds to the present

consideration where we need to find distinct configurations of
the loops up to the Laplacian, LLy×Ly .

The cokernel is given by [68]

s = β0(0, . . . , 0, 1)T + β1(0 . . . , 0, 1,−1)T , (C14)

with β0 ∈ ZN , β1 ∈ Zgcd(N,Ly ). Equation (C14) indicates that
the distinct configurations of the loops are characterized by
a single loop and the composite of loops [Fig. 5(b)], which
have the opposite charge, located adjacent to each other in the
y direction. These two types of loops are labeled by ZN and
Zgcd(N,Ly ). This corresponds to the discussion around (4.24).

Overall, we have counted the distinct number of loops
Wx(ŷ), which is given by N × gcd(N, Ly ). An analogous line
of thought shows that there are gcd(N, Lx ) × gcd(N, Lx, Ly )
distinct configurations of the loops Wdip:x(ŷ). Thus, in total,
there are N × gcd(N, Ly ) × gcd(N, Lx ) × gcd(N, Lx, Ly) dif-
ferent configurations of the loops of the electric charge. So
far, we have considered closed loops of the electric charges.
Regarding the closed loops of the magnetic charges, a similar
argument follows as the electric charges; thus they are labeled
by the same quantum numbers. Taking this into consideration,
we finally arrive at the fact that the GSD is the same value
as (4.25).
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y,

˜̂c), highly depend on the spatial
coordinate. Here, we employ an alternative simpler approach to
obtain the GSD by focusing on the Wilson loops of the gauge
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