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Two-particle self-consistent approach for multiorbital models: Application to the Emery model
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The Emery model, or three-band Hubbard model, is a Hamiltonian that is thought to contain much of the
physics of cuprate superconductors. This model includes two noninteracting p orbitals and one interacting d
orbital per unit cell. Few methods that can solve multiorbital interacting Hamiltonians reliably and efficiently
exist. Here, we introduce an application of the two-particle self-consistent (TPSC) approach to the Emery model.
We construct this method within the framework of the TPSC + DMFT method, which can be seen as a way
to introduce nonlocal corrections to dynamical mean-field theory (DMFT). We show that interacting orbital
densities, rather than the noninteracting ones, must be used in the calculations. For the Emery model, we find
that at constant bare interaction U , the vertex for spin fluctuations, Usp, decreases rapidly with filling. This
may be one of the factors that contributes to electron-doped cuprates appearing less correlated than hole-doped
ones. More generally, our work opens the road to the application of the TPSC approach to spin fluctuations in
multiorbital models.
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I. INTRODUCTION

The one-band Hubbard model is one of the most widely
used model Hamiltonians for the study of strongly correlated
systems. A typical example is the cuprate superconductors,
which have been modeled extensively with the Hubbard
model [1]. The one-band Hubbard model is still a challenging
problem despite its apparent simplicity. The development of
multiple approximate numerical approaches has been moti-
vated by this model [2,3].

However, multiorbital interactions that are beyond the
scope of the Hubbard model need to be taken into account
in order to capture the physics of many systems of interest.
This is thought to be the case in unconventional supercon-
ductors such as the nickelates [4], strontium ruthenate [5,6],
iron-based superconductors [7–9], and heavy-fermion super-
conductors [10].

The Emery model, also called three-band Hubbard model
or Emery-VSA (Varma, Schmitt-Rink, Abrahams) model, is a
multiorbital Hamiltonian that was introduced for the study of
superconductivity in the cuprates [11,12]. Since then, numer-
ous aspects of the model were studied by different numerical
and theoretical techniques. For instance, superconductivity
in the model was studied with multiple techniques [13–20].
Moreover, general studies of the phase diagram [21,22], an-
tiferromagnetism [13], pseudogap [15,16] and Mott insulator
[23] were realized. The Emery model enabled the study of
electronic correlations in the cuprates [24–26] and of the
asymmetry between the hole- and electron-doped cuprates
[25,27]. Multiorbital Hamiltonians such as the Emery model
are even more difficult to solve numerically than the one-band
Hubbard model. However, their physical relevance makes the
development of reliable, computationally inexpensive meth-
ods of high interest.

The two-particle self-consistent approach (TPSC) is a
many-body method that was first developed for the one-band
Hubbard model [28–30]. The TPSC approach for the one-
band Hubbard model is a nonperturbative method that satisfies
the Pauli principle, the Mermin-Wagner theorem, local charge
and spin sum rules, and conservation laws. This method is
valid in the weak to intermediate interaction regime of the
Hubbard model. It cannot describe the Mott transition, but its
self-energy can reflect fluctuation-induced pseudogaps. It was
benchmarked extensively against exact quantum and diagram-
matic Monte Carlo simulations [3,28–36]. This approach is
reliable in its regime of validity and is numerically efficient.
Because of these reasons, the method has been extended to
multisite [37–40] and multiorbital [27,41–43] Hamiltonians.
Moreover, a recent improvement of TPSC for the one-band
Hubbard model, the TPSC + DMFT approach [35], has also
been applied to multiorbital Hamiltonians [44].

In this paper, we revisit the development of the multiorbital
TPSC approach with a specific focus in mind: its application
to the Emery model, which is relevant to the study of the
cuprate superconductors. The Emery model is an “extreme”
case in the sense that the two types of orbitals it describes are
highly nondegenerate. Although the extension of TPSC to the
multiorbital model presented in Ref. [41] has been applied to
the Emery model [27], here, we present a specific formulation
of the method within the TPSC + DMFT framework. This
problem highlights a specific difficulty in extending the TPSC
approach to multiorbital models that was not considered in
previous works. More specifically, we find that the densities
that enter the calculation of the sum rules for the spin and
charge susceptibilities must be calculated at the interacting
level when dealing with Hamiltonians where the orbitals are
not degenerate. This aspect of the TPSC approach for multior-
bital models has not been considered before and is important
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for further applications of the method to more generalized
Hamiltonians, including Hund’s interaction, for example.

After introducing the formalism for a generic Hamiltonian
with density-density interactions in the following section, we
apply the general formalism to the Emery model in Sec. III.
The specific TPSC + DMFT approach to that model is de-
scribed in Sec. IV. While the derivations in these sections may
seem daunting, the equations to be solved are rather simple
and intuitive. The methodology with reference to the appropri-
ate equations is summarized in Sec. IV D. Finally, in Sec. V,
we apply the method to a specific realization of the Emery
model to investigate the impacts of the choice of input orbital
densities on the results.

II. GENERIC MULTIORBITAL MODEL

We first introduce a generic Hamiltonian with density-
density interactions in Sec. II A. We provide exact equa-
tions for its self-energy, susceptibilities and vertices in the
source field framework developed by Schwinger and Martin
[45,46] in Secs. II B and II C. We provide a complete, de-
tailed calculation of all the results shown in this section in
Appendix A.

A. Hamiltonian with density-density interactions

We consider a simple multiorbital Hamiltonian of the form

H =
∑

i j

∑
σ

∑
αβ

ti j,αβc†
iασ c jβσ +

∑
iαβ

Uαβniα↑niβ↓, (1)

where α and β are orbital indices, i and j are site indices,
ti j,αβ is a hopping parameter from orbital β on site j to orbital
α on site i, c(†)

iασ is the annihilation (creation) operator for an
electron of spin σ on site i and orbital α, niασ is the number
operator for electrons of spin σ on site i and orbital α, and Uαβ

is the on-site Hubbard interaction strength between orbitals α

and β. As we discuss later, the Emery model corresponds to
the specific case with three orbitals denoted by the indices d ,
px, and py, and where only the d orbitals are correlated.

B. Functional derivatives for the self-energy

In this section, we calculate the Green’s function in the
presence of a source field φ. We introduce the partition func-
tion in the presence of a source field φ,

Z[φ] = 〈Tτ exp[−c†
ᾱσ̄ (1̄)φᾱβ̄σ̄ (1̄, 2̄)cβ̄σ̄ (2̄)]〉, (2)

from which we also define

S[φ] = exp[−c†
ᾱσ̄ (1̄)φᾱβ̄σ̄ (1̄, 2̄)cβ̄σ̄ (2̄)]. (3)

We use the notation (r1, τ1) ≡ (1), where τ1 is an imaginary
time. Moreover, the bars above symbols denote sums and
integrals over all the degrees of freedom concerned: ᾱ = ∑

α ,
1̄ = ∑

r1

∫ β

0 dτ1. Then, the Green’s function in the presence
of the source field φ is defined as

Gαβσ (1, 2)φ = − δ ln (Z[φ])

δφβασ (2, 1)
(4)

= −〈Tτ cασ (1)c†
βσ (2)〉φ, (5)

where the average of an operator O(τ1, . . . , τN ) in the pres-
ence of the source field is defined as

〈Tτ O(τ1, . . . , τN )〉φ ≡ 1

Z[φ]
〈Tτ O(τ1, . . . , τN )S[φ]〉. (6)

We calculate the equations of motion for the Green’s
function by computing its imaginary time derivative
∂Gαβσ (1, 2)φ/∂τ1. As detailed in Appendix A, the self-energy
is obtained from the commutator of the annihilation operator
cασ (τ1) that appears in the Green’s function with the inter-
action term of the Hamiltonian. From Eq. (A23), we hence
define the self-energy as

	αγ̄σ (1, 3̄)φGγ̄ βσ (3̄, 2)φ

= −Uαγ̄ 〈Tτ c†
γ̄−σ (1+)cγ̄−σ (1)cασ (1)c†

βσ (2)〉φ. (7)

This result is not unique: we can consider the same ap-
proach but perform the derivative with respect to τ2 instead
of τ1. In that case, the self-energy is obtained from the com-
mutator of the creation operator c†

βσ (τ2) that appears in the
Green’s function with the interaction term of the Hamiltonian.
From Eq. (A28), the resulting second equation for the self-
energy is

Gαγ̄ σ (1, 3̄)φ	γ̄βσ (3̄, 2)φ

= −Uγ̄ β〈Tτ c†
γ̄−σ (2+)cγ̄−σ (2)cασ (1)c†

βσ (2)〉φ. (8)

Both implicit expressions for the self-energy, Eqs. (7) and
(8), should be satisfied simultaneously.

The interacting Green’s function is calculated from the
self-energy using the Dyson equation

Gαβσ (1, 2)−1
φ = G (0)

αβσ
(1, 2)−1 − φαβσ (1, 2) − 	αβσ (1, 2)φ.

(9)

C. Susceptibilities and vertices

We now turn to the calculation of the susceptibilities. The
calculations done in this section should be valid for a general
multiorbital model.

We first define generalized density and spin operators as

nαβσ (1, 2) ≡ c†
βσ

(2)cασ (1), (10)

nαβ (1, 2) ≡ nαβ↑(1, 2) + nαβ↓(1, 2), (11)

Sz
αβ (1, 2) ≡ nαβ↑(1, 2) − nαβ↓(1, 2). (12)

Next, we define generalized susceptibilities as

χ+
αβγ δ (1, 2; 3, 4)φ ≡ 〈Tτ nαβ (1, 2)nγ δ (3, 4)〉φ

− 〈Tτ nαβ (1, 2)〉φ〈Tτ nγ δ (3, 4)〉φ,

(13)

χ−
αβγ δ (1, 2; 3, 4)φ ≡ 〈

Tτ Sz
αβ (1, 2)Sz

γ δ (3, 4)
〉
φ

− 〈
Tτ Sz

αβ (1, 2)
〉
φ

〈
Tτ Sz

γ δ (3, 4)
〉
φ
.

(14)
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The noninteracting susceptibility can be written from the
Green’s functions as

χ
(0)
αβγ δ

(1, 2; 3, 4)φ ≡ −2Gαδσ (1, 4)φGγ βσ (3, 2)φ. (15)

The generalized susceptibilities can also be written as func-
tional derivatives of the Green’s function:

χ+
αβγ δ (1, 2; 3, 4)φ = −

∑
σσ ′

δGαβσ (1, 2)φ
δφδγσ ′ (4, 3)

, (16)

χ−
αβγ δ (1, 2; 3, 4)φ = −

∑
σσ ′

σσ ′ δGαβσ (1, 2)φ
δφδγσ ′ (4, 3)

. (17)

Using the Dyson equation (9), the identity

δGαβσ (1, 2)φ
δφδγσ ′ (4, 3)

= −Gαη̄σ (1, 5̄)φ
δGη̄ξ̄σ (5̄, 6̄)−1

φ

δφδγσ ′ (4, 3)
Gξ̄βσ (6̄, 2)φ, (18)

and recalling that the dependence of the self-energy on φ

occurs only through the functional dependence of the Green’s
function on φ, we can rewrite the generalized susceptibilities
as follows:

χ±
αβγ δ (1, 2; 3, 4)φ = χ

(0)
αβγ δ (1, 2; 3, 4)φ ∓ 1

2χ
(0)
αβξ̄ η̄

(1, 2; 6̄, 5̄)φ

× �±
ξ̄ η̄μ̄ν̄

(6̄, 5̄, 7̄, 8̄)φχ±
μ̄ν̄γ δ (7̄, 8̄; 3, 4)φ,

(19)

where the vertices �±
ξ̄ η̄μ̄ν̄

(6̄, 5̄, 7̄, 8̄)φ are defined as

�±
ξ̄ η̄μ̄ν̄

(6̄, 5̄, 7̄, 8̄)φ = δ	η̄ξ̄↓(5̄, 6̄)φ
δGμ̄ν̄↑(7̄, 8̄)φ

± δ	η̄ξ̄↑(5̄, 6̄)φ
δGμ̄ν̄↑(7̄, 8̄)φ

. (20)

III. APPLICATION TO THE EMERY MODEL

In Sec. III A we discuss the noninteracting part of the
Hamiltonian. The choice of interaction and its consequence
on the self-energy is in Sec. III B while the effective one-band
model that can be obtained by tracing out the oxygen orbitals
is in Sec. III C.

A. Hamiltonian

In the Emery model, we consider a bidimensional square
lattice where each unit cell (noted with the index i below)
contains three distinct orbitals: one correlated d orbital, and
two noninteracting orbitals px and py. The associated annihi-
lation (creation) operators will be noted d (†)

iσ , p(†)
x,iσ , and p(†)

y,iσ
in real space, with σ a spin index. In reciprocal space, the unit
cell index i is replaced with a momentum index k so that the
Hamiltonian becomes

H =
∑
k,σ

C†
kσ h(0)(k)Ckσ + Ud

∑
i

ndi↑ndi↓, (21)

where Ckσ = (dkσ , px,kσ , py,kσ ) [C†
kσ = (d†

kσ , p†
x,kσ , p†

y,kσ )] is
a vector of annihilation (creation) operators, nαiσ is the num-
ber operator for orbital α on unit cell i, and h(0)(k) is a 3 × 3
matrix. This noninteracting part of the Hamiltonian is, in units
where the lattice spacing is a = 1 [15,18]1

h(0)(k) =

⎛
⎜⎜⎝

εd tpd (1 − e−ikx ) tpd (1 − e−iky )

tpd (1 − eikx ) εp + 2tpp′ cos(kx ) tpp(1 − eikx )(1 − e−iky )

tpd (1 − eiky ) tpp(1 − e−ikx )(1 − eiky ) εp + 2tpp′ cos(ky)

⎞
⎟⎟⎠, (22)

where tpd is the hopping amplitude between a d and
a p orbital, tpp is the hopping amplitude between a px and
a py orbital, tpp′ is a hopping amplitude between two px or
two py orbitals across a copper, εd is the on-site energy of d
orbitals, and εp is the on-site energy of p orbitals. In Fig. 1,
we show a schematic representation of the Emery model and
of its various parameters including the gauge choice.

B. Interaction and self-energy for the Emery model

In the Emery model, the on-site interaction takes the form

Uαβ = Udδdαδdβ. (23)

Using this in equations (7) and (8) for the self-energy, we
obtain

	αγ̄σ (1, 3̄)φGγ̄ βσ (3̄, 2)φ = −Udδdαδd γ̄ 〈Tτ c†
γ̄−σ (1+)cγ̄−σ (1)cασ (1)c†

βσ (2)〉φ, (24)

⇒ 	αβσ (1, 2)φ = −Udδdα〈Tτ c†
d−σ

(1+)cd−σ (1)cασ (1)c†
γ̄ σ (4̄)〉φGγ̄ βσ (4̄, 2)−1

φ , (25)

Gαγ̄ σ (1, 3̄)φ	γ̄βσ (3̄, 2)φ = −Udδdβδd γ̄ 〈Tτ c†
γ̄−σ (2+)cγ̄−σ (2)cασ (1)c†

βσ (2)〉φ, (26)

⇒ 	αβσ (1, 2)φ = −UdδdβGαγ̄ σ (1, 4̄)−1
φ 〈Tτ c†

d−σ
(2+)cd−σ (2)cγ̄ σ (4̄)c†

βσ (2)〉φ. (27)

1The gauge transformation px → −ieikx/2 px , py → ieiky/2 py on this complex Hermitian Hamiltonian leads to the real Hamiltonian in Ref. 25.
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FIG. 1. Schematic representation of the Emery model in position
space. The orbitals are real and the signs of their lobes is indicated by
the color. This is the gauge chosen for our basis states. The unit cell
is the square delimited by dashed lines. tpd is the hopping amplitude
between a d and a p orbital, tpp is the hopping amplitude between a
px and a py orbital, tpp′ is a hopping amplitude between two px or
two py orbitals across a copper, εd is the on-site energy of d orbitals,
and εp is the on-site energy of p orbitals. The on-site interaction Ud

is on the copper only.

Since equations (25) and (27) should be satisfied at the same
time, our first result for the Emery model is that the only
nonzero element of the self-energy matrix is the one corre-
sponding to the d orbitals

	αβσ (1, 2) ∝ δαβδαd . (28)

The vertices hence become

�±
ξ̄ η̄μ̄ν̄

(6̄, 5̄, 7̄, 8̄)φ

= δ	η̄ξ̄↓(5̄, 6̄)φ
δGμ̄ν̄↑(7̄, 8̄)φ

± δ	η̄ξ̄↑(5̄, 6̄)φ
δGμ̄ν̄↑(7̄, 8̄)φ

,

= δη̄dδξ̄d

(
δ	dd↓(5̄, 6̄)φ
δGμ̄ν̄↑(7̄, 8̄)φ

± δ	dd↑(5̄, 6̄)φ
δGμ̄ν̄↑(7̄, 8̄)φ

)
. (29)

C. Effective one-band problem

Since only the d orbitals are correlated in the Emery model,
it is possible to cast it into an effective one-band model.
Detailed calculations can be found in Appendix B. We first
note that, to simplify the notation, we use the following matrix

notation in orbital space, dropping spin indices

A =
⎛
⎝Add Ad px Ad py

Apxd Apx px Apx py

Apyd Apy px Apy py

⎞
⎠, (30)

≡
(

Ad Ad p

Apd Ap

)
. (31)

In matrix form, where the matrix elements are orbital com-
ponents, the Dyson equation is

G(k)−1 = G(0)(k)−1 − �(k), (32)

where we use the notation (k) ≡ (k, ikn), with ikn a fermionic
Matsubara frequency. The noninteracting Green’s function
matrix is

G(0)(k)−1 = (ikn + μ)1 − h(0)(k). (33)

As seen previously, the self-energy in the Emery model
is nonzero only for the d orbital elements: [�(k)]αβ =
	d (k)δαdδβd .

We obtain the following expression for the Green’s func-
tion of the d orbitals

Gd (k) = [
ikn + μ − h(0)

d (k) − 	d (k) − �d p(k, ikn)
]−1

,

(34)
where �d p is a hybridization function between the p and d
orbitals, defined as

�d p(k) ≡ h(0)
d p (k)

[
(ikn + μ)1 − h(0)

p (k)
]−1

h(0)
pd (k). (35)

Hence, the Emery model can be cast as an effective
one-band problem. In principle, it can be solved by usual
many-body methods for the Hubbard model, provided that the
hybridization function is included in the calculation.

IV. TPSC + DMFT APPROACH FOR THE EMERY MODEL

In TPSC, there are two steps (or levels of approxima-
tion). The calculation of the spin and charge susceptibilities
and corresponding vertices are obtained first, as discussed in
Sec. IV A. The frequency-dependent self-energy is obtained
at the second level of approximation in Sec. IV B. The cal-
culations are done at constant total density at all stages, as
explained in Sec. IV C. The method and equations to be solved
are summarized in Sec. IV D.

A. First level of approximation for the self-energy
and TPSC ansatz

Following the original formulation of the TPSC approach,
we start by recalling the form of the self-energy within the
Emery model. We first consider the self-energy obtained by
the equation of motion with τ1, Eq. (24). We obtain the first
level of approximation by postulating a Hartree-Fock-like de-
coupling in Eq. (24):

	
(1)
αγ̄ σ (1, 3̄)φG (1)

γ̄ βσ (3̄, 2 �= 1)φ

= Aαβ

φ δdαG (1)
αα−σ (1, 1+)φG (1)

αβσ (1, 2)φ, (36)
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where the superscript (1) denotes the first level of approxima-
tion and Aαβ

φ is to be determined below by first relating it to
the spin vertex and then using the Migdal-Galitskii relation
(51) of 	G to double occupancy. We obtain an expression for
the self-energy by multiplying each side by an inverse Green’s
function:

	
(1)
αβσ (1, 2)φ = Aαβ

φ δdαG (1)
αα−σ (1, 1+)φδαβδ(1 − 2). (37)

We can now evaluate the vertex �−
βαδγ with this first approxi-

mation of the self-energy:

�−
βαδγ (2, 1; , 3, 4)φ

= δ	
(1)
αβσ (1, 2)φ

δG (1)
δγ−σ

(3, 4)φ
− δ	

(1)
αβσ (1, 2)φ

δG (1)
δγ σ

(3, 4)φ

= Aαβ

φ δαδδβγ δ(3 − 1)δ(4 − 1)δαβδ(1 − 2)δdα. (38)

In the original TPSC approach, the functional derivatives
of Aαβ

φ with respect to G (1)
δγ−σ (3, 4)φ and to G (1)

δγ σ (3, 4)φ cancel
each other out. We find that, here also, this vertex is local and
that its only nonzero component is for the d orbital. We obtain
an expression for the spin vertex by setting the source field to
zero:

�−
βαδγ (2, 1; , 3, 4)φ

= U sp
d δdαδdβδdγ δdδδ(3 − 1)δ(4 − 1)δ(2 − 1). (39)

The exact same result can be obtained using the self-energy
defined from the derivative with respect to τ2 [Eq. (8)] instead
of τ1 [Eq. (7)].

Following the original TPSC approach for the one-band
Hubbard model, we obtain the value of the spin vertex U sp

d
by enforcing the local spin susceptibility sum rule. To do so,
we return to the susceptibilities χ± introduced in Sec. II C
and evaluate them with the first level of approximation for the
Green’s function, self-energy and vertices. We assume that
the charge vertex is also local. In that case, Eq. (19) for the
generalized susceptibilities becomes

χ±
αβγ δ (1, 2; 3, 4) = χ

(1)
αβγ δ (1, 2; 3, 4) ∓ 1

2χ
(1)
αβξ̄ η̄

(1, 2; 5̄, 5̄+)

× �
ch,sp
ξ̄ η̄μ̄ν̄

χ±
μ̄ν̄γ δ (5̄, 5̄+; 3, 4). (40)

In that equation and in the following, we use the notation
χ (1) to specify that the Green’s functions used in the calcula-
tion of this bubble susceptibility are evaluated at the first level
of approximation:

χ
(1)
αβγ δ

(1, 2; 3, 4) ≡ −2G (1)
αδσ

(1, 4)G (1)
γ βσ

(3, 2). (41)

The spin and charge susceptibilities are obtained by tak-
ing the limits 2 → 1+ and 4 → 3+ in the general RPA-like
equation Eq. (40). Moreover, we simplify the notation with
the following definitions:

χ±
αβδγ (1, 1+; 2, 2+) ≡ χ

ch,sp
αβδγ (1, 2), (42)

χ
(1)
αβδγ (1, 1+; 2, 2+) ≡ χ

(1)
αβδγ (1, 2). (43)

Hence, the spin and charge susceptibilities are

χ
ch,sp
αβδγ (1, 2) = χ

(1)
αβδγ (1, 2) ∓ 1

2χ
(1)
αβξ̄ η̄

(1, 3̄)�ch,sp
ξ̄ η̄μ̄ν̄

χ
ch,sp
μ̄ν̄δγ (3̄, 2).

(44)

Performing a Fourier transform to momentum and Matsub-
ara frequency space, using the notation q ≡ (q, iqn), leads to

χ
ch,sp
αβδγ (q) = χ

(1)
αβδγ (q) ∓ 1

2χ
(1)
αβξ̄ η̄

(q)�ch,sp
η̄ξ̄ ν̄μ̄

χ
ch,sp
μ̄ν̄δγ (q). (45)

Since the self-energy is only for the d orbital, we assume,
as in the spin case, that the charge vertex acts only on d
orbitals so that the susceptibilities obey

χ
ch,sp
αβδγ (q) = χ

(1)
αβδγ (q) ∓ 1

2χ
(1)
αβdd (q)U ch,sp

d χ
ch,sp
ddδγ

(q). (46)

The charge and spin susceptibilities of the d orbitals are
hence fully decoupled from the other matrix elements

χ
ch,sp
d (q) = χ

(1)
d (q) ∓ 1

2
χ

(1)
d (q)U ch,sp

d χ
ch,sp
d (q), (47)

⇒ χ
ch,sp
d (q) = χ

(1)
d (q)

1 ± 1
2U ch,sp

d χ
(1)
d (q)

. (48)

We obtain the local spin and charge sum rules for the d-
orbital susceptibilities from this last equation. Enforcing the
Pauli principle, these sum rules are

T

N

∑
q

χ
(1)
d (q)

1 − 1
2U sp

d χ
(1)
d (q)

= 〈nd〉 − 2〈nd↑nd↓〉, (49)

T

N

∑
q

χ
(1)
d (q)

1 + 1
2U ch

d χ
(1)
d (q)

= 〈nd〉 + 2〈nd↑nd↓〉 − 〈nd〉2. (50)

We can use these sum rules to compute the values of the spin
and charge vertices U sp

d and U ch
d .

The first option to do so is to use the original TPSC ansatz
to enforce that the exact Migdal-Galitskii result

	αγ̄σ (1, 3̄)Gγ̄ ασ (3̄, 1+) = Udδdα〈Tτ nαα−σ (1)nαασ (1)〉 (51)

is satisfied by the Hartree-like decoupling of the first-level
self-energy Eq. (36) evaluated at equal times (τ2 = τ+

1 ). For
this equation to be satisfied, the spin vertex must take the form

U sp
d = Ud

〈nd↑nd↓〉
〈nd↑〉〈nd↓〉 . (52)

A solution for the spin vertex and the double occupancy
is then obtained in a self-consistent way by solving si-
multaneously the ansatz (52) and the sum rule for the
spin susceptibility. We note that Eq. (52) does not satisfy
particle-hole symmetry. In the one-band case, even when the
Hamiltonian itself does not satisfy particle-hole symmetry, the
most reliable way to obtain the spin vertex when the density is
larger than 1 (electron doping) is to use a symmetrical ansatz
of the form

U sp =
⎧⎨
⎩

U 〈n↑n↓〉
〈n↑〉〈n↓〉 , n < 1

U 〈(1−n↑ )(1−n↓ )〉
〈(1−n↑ )〉〈(1−n↓ )〉 , n > 1.

(53)

We use the same symmetrical ansatz (53) for the Emery
model, with the d-orbital densities ndσ .

The second option is to use the TPSC + DMFT approach
introduced in Ref. [35] for the one-band Hubbard model. In
this approach, the values of the spin and charge vertices are
still obtained by satisfying the sum rules. However, instead
of using the ansatz (52), the double occupancy used for the
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computation of the sum rules is obtained by a DMFT calcu-
lation. This method can also be applied to the Emery model
since, as mentioned earlier, this model can be mapped to an
effective one-band model that can be solved by single-site
DMFT calculations. The TPSC + DMFT formalism was also
applied in a different formulation of the multiorbital TPSC
approach in Ref. [44].

B. Second level of approximation for the self-energy

In TPSC, we obtain a better approximation for the self-
energy at the second level of approximation. We concluded
in Sec. IV A that the TPSC irreducible spin vertex matrix is
nonzero only for the d orbitals, and in Sec. III B that this
is also true for the self-energy matrix. Hence, in the TPSC
approach for the Emery model, the self-energy at the second
level of approximation follows the same crossing-symmetric
equation as in the one-band Hubbard model [33,47], namely,

	
(2)
d (k) = Ud

〈nd〉
2

+ Ud

8

T

N

∑
q

[
3U sp

d χ
sp
d (q)

+U ch
d χ ch

d (q)
]
G (1)

d (k + q). (54)

C. Chemical potentials and densities

Having developed an effective one-band model, it would
be tempting to follow the TPSC formalism formulated for the
one-band Hubbard model. The steps necessary to solve the
first level of approximation within the original TPSC are as
follows:

(1) Calculate the Green’s function at the first level of ap-
proximation from an input total density.

(2) Calculate the noninteracting correlation function χ (1).
(3) Calculate the spin vertex U sp

d from the local sum rule
for the spin susceptibility and the TPSC ansatz or the DMFT
double occupancy.

(4) Calculate the charge vertex U ch
d from the local sum rule

for the spin susceptibility and the TPSC ansatz or the DMFT
double occupancy.

The first challenge we face in trying to follow these steps
concerns the local spin and charge sum rules defined in
Eqs. (49) and (50).

In the one-band case, we take the density n as an input and
calculate the chemical potential so that the Green’s function at
the first level of approximation G (1) returns the right density.
The self-energy at the first level of approximation being a
constant, it can be absorbed in the definition of the chemical
potential of G (1). Previous formulations of the TPSC approach
for multiorbital Hamiltonians have kept the same methodol-
ogy, computing the sum rules with a noninteracting density
for orbital α 〈nα〉0 that is obtained from an input total density
n. Mathematically, this means that the chemical potential is
first calculated from the total density from the equation

n = 1

N

∑
k,α

G (0)
αα (k, τ = 0−), (55)

where the noninteracting Green’s function follows:

G (0)
αα (k, ikn)−1 = ikn + μ(0) − h(0)

αα (k). (56)

Then, the noninteracting density 〈nα〉0 is obtained from

〈nα〉0 = 1

N

∑
k

G (0)
αα (k, τ = 0−). (57)

Hence, in these formulations, the total density is kept
constant and is used to compute the chemical potential of a
noninteracting Green’s function G (0), from which the orbital-
resolved densities are deduced. This approach should work in
the specific case of degenerate orbitals. However, this approx-
imation is not valid in general due to two (related) reasons:

(1) Noninteracting vs first level of approximation. In the
TPSC approach for the one-band Hubbard model, the self-
energy at the first level of approximation is a constant that is
usually absorbed in the definition of the chemical potential.
In the previous section, we saw that the self-energy 	

(1)
αβ in

a multiorbital case is a constant in the sense that it does
not depend on the momentum or the frequency. However, it
does depend on the orbital indices. This should be true in
general for multiorbital Hamiltonians. Since this self-energy
is orbital-dependent, the usual TPSC-way of computing the
susceptibilities with the noninteracting Green’s function con-
taining an adjusted chemical potential should not be valid
anymore (except for degenerate orbitals). More specifically,
computing a single chemical potential from a total density at
the “zeroth” level amounts to taking the same constant self-
energy for all orbitals: 	(1)

αα = C ∀ α. Such an approximation
is not valid for nondegenerate models such as the Emery
model.

(2) Noninteracting vs interacting orbital densities. The
densities that appear in the sum rules for the spin and charge
susceptibilities should be calculated in the presence of inter-
action. In the case of degenerate orbitals, we can expect that
these values are the same: 〈nα〉0 = 〈nα〉. However, this is not
the case for the Emery model [15].

In other words, in multiorbital models the Green’s function
that should be used at the first level of approximation should
be computed from interacting densities 〈nα〉, by solving the
set of equations

G (1)
αα (k, ikn)−1 = ikn + μ(1) − h(0)

αα (k) − 	(1)
αα , (58)

〈nα〉 = G (1)
αα (k, τ = 0−). (59)

Unfortunately, this system of equations has too many un-
knowns to be solved on its own: assuming we input a total
density n, the orbital densities 〈nα〉, the chemical potential μ(1)

and the self-energies 	(1)
αα are all unknown. This is resolved in

the following section.

D. Methodology for the TPSC + DMFT approach

We circumvent the issue raised in the previous section by
using the TPSC + DMFT approach developed in Ref. [35].
This approach, which we mentioned briefly in Sec. IV A,
follows the steps outlined below:

(1) For a given parameter set (hopping parameters, inter-
action strength, temperature), perform a DMFT calculation
at a specific chemical potential μDMFT corresponding to the
desired total density.

(2) The DMFT calculation yields observables such as the
total density n and the double occupancy 〈n↑n↓〉DMFT.
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(3) Perform a TPSC calculation with the same parameter
set for the total density obtained with the DMFT calculation.

(4) Instead of using the TPSC ansatz, use the double occu-
pancy from DMFT 〈n↑n↓〉DMFT as an input to obtain the spin
and charge vertices from the spin and charge sum rules.

We adapt this method for the Emery model by using more
inputs from DMFT than in the one-band case. More specifi-
cally, we need:

(1) the orbital densities of the p and d orbitals, 〈np〉DMFT

and 〈nd〉DMFT;
(2) the double occupancy in the d orbitals, 〈nd↑nd↓〉.
TPSC + DMFT for the Emery model. In summary then,

using as input densities those calculated for the interacting
model with DMFT, we find the chemical potential and the
self-energy at the first level of approximation by solving the
set of equations (58) and (59). Then, we use again the input
density 〈nd〉DMFT to calculate the spin and charge vertices
from the sum rules (49) and (50) where the double occupancy
〈nd↑nd↓〉DMFT on the right-hand side of these equations is also
taken from DMFT. We can alternatively use the TPSC ansatz
(53) for double occupancy, as discussed in the following
section. At this stage, the spin and charge susceptibilities have
been calculated. The improved self-energy (54) obtained at
the second level of approximation follows from the vertices,
susceptibilities and Green’s functions computed at the first
level.

V. RESULTS

In this section, we apply the method we outlined above to
a specific realization of the Emery model. The goal of this
section is not to provide specific, new physical insights into
the model, but rather to compare the results obtained with the
TPSC and TPSC + DMFT approaches to the Emery model.
We consider the Emery model described in Sec. III A. We
set the hopping parameter tpp = 1 as the unit of energy. The
other hopping parameters are chosen as tpd = 2.15, tpp′ = 0.2,
and the on-site energies as εd = −5.92 and εp = 0. These
parameters are inspired by the parameters for the electron-
doped cuprate Nd2−xCexCuO4 (NCCO) detailed in Ref. [25].
The value of the parameter tpp′ is inspired by further work
on the hole-doped cuprates [14] and again on NCCO [27].
In the following, we take the Hubbard interaction strength
on the d orbitals as Ud = 10, which is lower than the value
suggested in Ref. [25] for NCCO (Ud � 14.82). We choose
this value of Ud in order to stay away from the Mott tran-
sition. All our calculations are performed at the temperature
T = 0.1.

We start this section by discussing the difference between
the interacting and noninteracting orbital densities inSec. V A.
Then, we study the double occupancy and the irreducible spin
vertex U sp

d in Sec. V B, and the self-energy in Sec. V C. In the
Sec. V C 3 of our discussion for the self-energy, we include a
comment on an additional step to the TPSC + DMFT method,
which is to substitute the local part of the TPSC self-energy
with the DMFT local self-energy.

The single-site DMFT calculations are performed using the
TRIQS library [48,49], with the CT-HYB quantum Monte Carlo
impurity solver [50,51]. The TPSC calculations are performed
using the SPARSE-IR library [52–54].

FIG. 2. Orbital densities 〈nα〉 (a) of the d orbitals (〈nα〉 = 〈nd 〉)
and (b) of the p orbitals (〈nα〉 = 〈npx + npy 〉) as a function of the
total density n. In blue, the densities are calculated from the nonin-
teracting Hamiltonian. In red, the densities are obtained from DMFT
calculations with the interacting Hamiltonian. The d-orbital den-
sity decreases when interactions are included, whereas the p-orbital
density increases. The model parameters are tpp = 1, tpd = 2.15,
tpp′ = 0.2, εd = −5.92, εp = 0, Ud = 10.

A. Interacting vs noninteracting densities

We first calculate the densities with (Ud = 10) and without
(Ud = 0) interactions with single-site DMFT. We show our
results in Figs. 2(a) and 2(b), where we illustrate the d-orbital
density and the px- and py-orbital densities, respectively, as
a function of the total density n. We show that the d-orbital
density decreases when the interaction Ud is present, while the
p-orbital densities increase. This is due to the asymmetry of
the on-site energies εd �= εp as well as the on-site interaction
Ud . Without interactions, the p-orbital densities are smaller
than the d-orbital one since the on-site energy on the d or-
bital is lower than on the p orbitals. When the interactions
are turned on, the on-site interaction U leads to a decrease of
the double occupancy on the d orbitals, which in turn lowers
the orbital occupancy on these orbitals. As a specific example,
we consider the undoped case with total density n = 5. In the
noninteracting case, the orbital densities are 〈nd〉0 � 1.82 and
〈npx + npy〉0 � 3.18. In contrast, in the interacting case, the
orbital densities are 〈nd〉DMFT � 1.47 and 〈npx + npy〉DMFT �
3.53. It is self-evident that performing a TPSC calculation
with the noninteracting density 〈nd〉0 � 1.82 will yield results
drastically different (incorrect) from those with the interacting
density 〈nd〉DMFT � 1.47.

B. Double occupancy and spin vertex

We now turn to the calculation of the double occupancy
on the d orbitals D = 〈nd↑nd↓〉. As mentioned in Sec. IV A,
the double occupancy can be obtained either self-consistently
with the TPSC ansatz or as an input from DMFT. Hence,
we perform the TPSC calculation in three different ways: (1)
from the noninteracting density 〈nd〉0 and the TPSC ansatz
[Eq. (53)], (2) from the interacting density obtained with
DMFT 〈nd〉DMFT and the TPSC ansatz, and (3) with both
the interacting density and the double occupancy obtained
with DMFT, which will be denoted DDMFT. As seen in the

165111-7



C. GAUVIN-NDIAYE et al. PHYSICAL REVIEW B 109, 165111 (2024)

FIG. 3. Effect of the input density on (a) the double occupancy
and (b) the irreducible spin vertex U sp

d . In blue, the TPSC calculation
is performed with the noninteracting orbital densities. In red, the
TPSC calculation is performed with the interacting orbital densi-
ties from DMFT and the ansatz. In green, the TPSC calculation
is performed with the interacting orbital densities and the double
occupancy both from DMFT. The model parameters are tpp = 1,
tpd = 2.15, tpp′ = 0.2, εd = −5.92, εp = 0, Ud = 10.

previous section, the d-orbital densities are larger than 1 for all
the total densities n considered here, which means that all
the calculations with the TPSC ansatz are performed with the
particle-hole transformed ansatz.

In Fig. 3(a), we show the double occupancy obtained from
the three types of calculations listed above as a function of the
total density n. The double occupancy obtained from the non-
interacting density 〈nd〉0 and the TPSC ansatz is much higher
than those obtained from the interacting density 〈nd〉DMFT, in
line with the fact that the noninteracting d-orbital density is
larger than the one with interactions. We note that, in contrast,
the double occupancy obtained with the TPSC ansatz and
the interacting density is very close to the DMFT double
occupancy, DDMFT, the two curves basically superposing on
the plot.

Next, we consider the irreducible spin vertex U sp
d obtained

from the three types of calculations. We show our results in
Fig. 3(b). Despite the close agreement of the double occu-
pancies obtained from the input DMFT densities with either
the DMFT double occupancy or the TPSC ansatz, we observe
that the resulting values of U sp

d for both calculations are dis-
tinct. The value of U sp

d obtained with the interacting densities
and the TPSC ansatz is systematically smaller than the one
obtained with the interacting densities and the DMFT double
occupancy, although both methods yield results that follow the
same qualitative behavior. Again, the results obtained from
the noninteracting densities are quantitatively quite different
from the others, although the qualitative dependence on total
density is similar.

Hence, in the model we consider here, the impacts of using
the noninteracting densities rather than the interacting ones in
the multiorbital TPSC calculations are higher than the impacts
of using the double occupancy from DMFT or from the TPSC
ansatz.

The reader might wonder why the red and green double
occupancies in Fig. 3(a) seem superposed while the corre-
sponding values of the spin vertices in Fig. 3(b) are different.

This may be understood by taking the following derivative of
the ansatz equation (53) evaluated with the interacting orbital
densities nd = 1.747 10 = 2nd↑:

∂Usp

∂〈nd↑nd↓〉 = Ud

〈(1 − nd↑)〉〈(1 − nd↓)〉 = Ud

0.0160
= 625.

(60)

The differences of order 10−3 in Fig. 3(a) between the DMFT
and TPSC observable double occupancies is reassuring. As
an example of another observable that is similar with the two
methods, the zero-frequency spin susceptibility is increased
by 23% by the smallest Usp and by 26% by the largest Usp.

Note that our most reliable value of U sp
d decreases rapidly

with increasing filling, consistent with the idea that more
electrons leads to better screening. This decrease of U sp

d leads
to double-occupancy increasing with total density in Fig. 3(a)
and to the interacting densities becoming closer to the non-
interacting ones in Fig. 2. This decrease of U sp

d with filling
is one of the factors that might explain why electron-doped
cuprates appear less strongly correlated than their hole-doped
counterpart, even though one expects the bare interaction U
to be comparable. Other factors, such as the absence of api-
cal oxygen in electron-doped cuprates also contribute to this
difference [25]. In the one-band model, it was necessary to
postulate a renormalization of the bare interaction U to find
agreement with ARPES experiments [55,56].

C. Self-energy

In this section, we calculate the self-energy at the sec-
ond level of approximation of TPSC from equation (54). We
start by discussing the impact of the input density. Next, we
study the anisotropy of the self-energy with respect to the
momentum on the Fermi surface. Finally, we consider an
additional TPSC + DMFT step, where we substitute the local
self-energy from DMFT in the TPSC self-energy.

1. Impact of the input density

As we did for the calculation of the double occupancy
and the irreducible spin vertex, we start our discussion of the
self-energy by comparing the results obtained from the three
types of calculations described before. As a reminder, these
are (1) with the noninteracting density 〈nd〉0 and the TPSC
ansatz [Eq. (53)], (2) with the interacting density obtained
with DMFT 〈nd〉DMFT and the TPSC ansatz, and (3) with both
the interacting density and the double occupancy obtained
with DMFT, which is still noted DDMFT.

To illustrate the impact of the type of method on the self-
energy, we consider a specific case with a total density n =
5.0069. We study the self-energy calculated at the antinodal
point on the Fermi surface as a function of the Matsubara
frequencies. The antinodal point is the wave vector where
the Fermi surface crosses the Brillouin-zone boundary edge:
kAN = (kx,AN, π ) and is shown in the inset of Fig. 4(a) as a
pink star.

As was the case in the calculation of the double occupancy
and the spin vertex, the choice of the input density, whether
it is the noninteracting or the interacting one, has the most
visible effect on the self-energy.
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FIG. 4. Effect of the input density on the self-energy, here shown
at the antinodal wave vector. Panel (a) shows the Matsubara fre-
quency dependence of the self-energy, and panel (b) shows a zoom
on the low Matsubara frequencies. These results are obtained at the
total density n = 5.0069. In blue, the TPSC calculation is performed
with the noninteracting orbital densities. In red, the TPSC calculation
is performed with the interacting orbital densities from DMFT and
the ansatz. In green, the TPSC calculation is performed with the
interacting orbital densities and the double occupancy both from
DMFT. The model parameters are tpp = 1, tpd = 2.15, tpp′ = 0.2,
εd = −5.92, εp = 0, Ud = 10.

We can assess quantitatively the difference between the
three approaches through the calculation of the quasiparticle
weight defined as Zk = (1 − ∂Re	d (k, ω)/∂ω|ω=0)−1. We
approximate the quasiparticle weight through a second-order
polynomial fit of the Matsubara self-energy over the first three
Matsubara frequencies

Im	d (k, iωn) � α0(T ) + α1ωn + α2ω
2
n, (61)

Zk � 1

1 − α1
. (62)

This approximation is valid if the self-energy has a Fermi
liquid form at low frequency. From this, we obtain the quasi-
particle weights ZAN � 0.98 for the calculation with the
noninteracting density, ZAN � 0.68 for the calculation with
the interacting density and the TPSC ansatz, and ZAN � 0.66
for the calculation with the interacting density and the DMFT
double occupancy.

2. Nodal vs antinodal anisotropy

The self-energy obtained with TPSC is fully momentum-
dependent, in contrast with the DMFT self-energy, which is
purely local. The TPSC approach can hence be used to assess
the anisotropy of the self-energy at different wave vectors on
the Fermi surface. In Fig. 5, we illustrate this phenomenon
by comparing the self-energy obtained at the antinodal and
nodal points on the Fermi surface, indicated in the inset of the
Fig. 5(a) by pink and yellow stars, respectively. The results
shown in this figure are obtained from the TPSC calculation
using both the interacting density and the double occupancy
from DMFT. In Fig. 5(a), the results are shown for the total
density n = 5.0069. In Fig. 5(b), the results are shown for
the total density n = 5.1107. At high frequency, for both
densities, the antinodal and nodal self-energies coincide, as

FIG. 5. Imaginary part of the self-energy as a function of the
Matsubara frequency. The results are shown for the antinodal wave
vector (squares, solid line), and the nodal wave vector (circles,
dashed line), for the densities (a) n = 5.0069 and (b) n = 5.1107.
The results are obtained from TPSC calculations performed with
the interacting orbital densities and the double occupancy both from
DMFT. The model parameters are tpp = 1, tpd = 2.15, tpp′ = 0.2,
εd = −5.92, εp = 0, Ud = 10.

expected from previous analytical arguments [29]. However,
we note an anisotropy between the nodal and antinodal self-
energies at low frequencies (ωn < 4) for the density n =
5.0069. This anisotropy also exists for the density n = 5.1107,
but to a lesser extent.

We obtain a quantitative view of the nodal and antinodal
anisotropy by looking at the first Matsubara frequency, ω0 =
πT , where the anisotropy is the largest. In Fig. 6, we show the
relative deviation between the local self-energy and the self-
energy at the antinodal and nodal points on the Fermi surface,

FIG. 6. Relative deviation between the local part of the self-
energy and the self-energy calculated at the first Matsubara frequency
at the nodal (N, dashed lines with circles) and antinodal (AN, solid
lines with squares) wave vectors, as a function of the total density n.
The deviation is calculated using Eq. (63). The TPSC calculations are
performed (a) with the noninteracting orbital densities, (b) with the
interacting orbital densities from DMFT, and (c) with both the inter-
acting orbital densities and the double occupancy from DMFT. The
model parameters are tpp = 1, tpd = 2.15, tpp′ = 0.2, εd = −5.92,
εp = 0, Ud = 10.
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defined by

�Im	d (k, iω0) = Im	d (k, iω0) − Im	d,loc(iω0)

Im	d,loc(iω0)
. (63)

This relative deviation is shown in Figs. 6(a)–6(c) as a func-
tion of the total density n for TPSC calculations performed
with the noninteracting density and the TPSC ansatz, the
interacting density from DMFT and the TPSC ansatz, and
the interacting density and the double occupancy both from
DMFT, respectively.

In the calculations with the noninteracting density, the de-
viation is of the order of only −1% to 5% and is equal at the
node and the antinode. This is an indication of an isotropic
self-energy along the Fermi surface.

In contrast, the deviation obtained for both types of cal-
culations performed with the interacting density reach �40%
in the underdoped regime. The deviation from the local self-
energy at the antinode and at the node is different, which is
a clear indication of the anisotropy of the self-energy on the
Fermi surface.

Using the TPSC approach for the Emery model hence
leads to a visible anisotropy of the self-energy on the Fermi
surface, which cannot be obtained by DMFT alone. However,
in the model we consider, it is necessary to use the interacting
density from DMFT to capture this anisotropy correctly.

3. Additional TPSC + DMFT step: Substitution of the local
self-energy from DMFT

In Ref. [35], the TPSC + DMFT approach for the Hubbard
model was introduced with two distinct steps. The first step,
which we have considered so far, is to use the DMFT double
occupancy to obtain the spin vertex U sp

d rather than using
the TPSC ansatz. We now consider the second step, which
consists in substituting the local self-energy obtained from the
TPSC calculation with the one obtained from DMFT:

	d (k, iωn) → 	TPSC
d (k, iωn) − 	TPSC

d,loc (iωn) + 	DMFT
d,loc (iωn).

(64)

For the one-band Hubbard model, this approach was found
to yield better results for the self-energy through bench-
marks with exact diagrammatic Monte Carlo calculations
[35]. Hence we explore this approach here for the Emery
model, although we do not have exact benchmarks to compare
with. We illustrate this process for the n = 5.0069 case in
Fig. 7.

In Fig. 7(a), we compare the local self-energy obtained
with DMFT (black dashed line) to the TPSC local self-energy.
Once again, we compare results obtained from TPSC cal-
culations performed with the noninteracting density and the
TPSC ansatz, the interacting density and the TPSC ansatz, and
the interacting density and double occupancy both obtained
from DMFT. This comparison shows clearly that using the
interacting density in the TPSC calculation is necessary in
order to obtain a local self-energy that is at least qualitatively
correct when compared with DMFT.

In Fig. 7(b), we show the self-energy at the antinode and
at the node after the substitution of the local part of the
self-energy [Eq. (64)]. This substitution corrects the high-
frequency behavior of the TPSC self-energy, while preserving

FIG. 7. (a) Local part of the self-energy obtained from TPSC
calculations (full lines) and from DMFT (black dashed line). In
blue, the TPSC calculation is performed with the noninteracting
orbital densities. In red, the TPSC calculation is performed with the
interacting orbital densities from DMFT. In green, the TPSC calcu-
lation is performed with both the interacting orbital densities and the
double occupancy from DMFT. (b) Imaginary part of the self-energy
calculated at the nodal (N) and antinodal (AN) wave vectors, where
the local part from DMFT was substituted following Eq. (64). For
both subplots, the total density is n = 5.0069. The model parameters
are tpp = 1, tpd = 2.15, tpp′ = 0.2, εd = −5.92, εp = 0, Ud = 10.

the nodal-antinodal anisotropy at low frequency. As this sub-
stitution was found to yield accurate results in the one-band
Hubbard model [35], at least in the limit of validity of the
TPSC approach, this method should also be an adequate way
of including nonlocal fluctuations to DMFT for the Emery
model.

VI. CONCLUSION

In this paper, we first used the functional derivative ap-
proach to obtain two equations for the self-energy in the
Emery model. We then used this formalism to obtain the
first level of approximation for the self-energy in the TPSC
approach. This work led us to the conclusion that, in models
where the orbitals are not degenerate, using the noninteract-
ing orbital densities for the TPSC calculation might lead to
incorrect results.

We then applied the TPSC + DMFT approach to the Emery
model, with the additional input of the interacting density
from DMFT to the TPSC calculation. We considered a specific
realization of the Emery model, where we showed that the
noninteracting densities cannot be used reliably within TPSC.
This is shown in Figs. 3 and 7, where we compare the double
occupancy and the local self-energy obtained from DMFT to
our TPSC results. The TPSC calculations performed with the
interacting orbital densities yield the most accurate results. In
the spirit of previous work on the one-band Hubbard model
[35], we demonstrate that the TPSC approach can be used to
include the effect of nonlocal fluctuations to DMFT in a mul-
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tiorbital setting. In particular, we found the important result
that the vertex for spin fluctuations U sp

d decreases with filling,
with important implications for electron-doped cuprates.

Future work using this method could include the investiga-
tion of the antiferromagnetic pseudogap in the Emery model.
Notably, it would be of interest to investigate whether the Vilk
criterion formulated for the one-band Hubbard model also
applies to the Emery model [29,56] and whether it is possible
to explain ARPES experiments without the need for ad hoc
screening of the bare interaction. A host of new questions for
TPSC also arise from this model such as orbital fluctuations.
Our work also sets the stage for multiorbital calculations for
pnictides, for strontium ruthenate and a host of multiband
correlated electron systems where spin fluctuations dominate
the physics.
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APPENDIX A: CALCULATION DETAILS:
SOURCE FIELD APPROACH FOR A SIMPLE

MULTIORBITAL HAMILTONIAN

We first obtain the equations of motion for clγ σ (τ ) by
computing its imaginary-time derivative

∂clγ σ ′ (τ )

∂τ
=

[
H − μ

∑
iα

niα, clγ σ ′ (τ )

]
. (A1)

To do so, we use the identity

[AB,C] = A{B,C} − {A,C}B, (A2)

⇒ [c†
iασ c jβσ , clγ σ ′ ] = −δilδαγ δσσ ′c jβσ . (A3)

We evaluate the commutator with each term of the Hamilto-
nian and obtain∑

i j

∑
αβ

∑
σ

ti j,αβ [c†
iασ c jβσ , clγ σ ′ ] = −

∑
jβ

tl j,γ βc jβσ ′ , (A4)

−μ
∑

i

∑
α

∑
σ

[c†
iασ ciασ , clγ σ ′ ] = μclγ σ ′ , (A5)

∑
i

∑
αβ

Uαβ [niα↑niβ↓, clγ σ ′ ] = −
∑

α

Uαγ nlα−σ ′clγ σ ′ . (A6)

Hence, the final result is

∂clγ σ ′ (τ )

∂τ
= − tl j̄,β̄γ c j̄β̄σ ′ (τ ) + μclγ σ ′ (τ )

− Uβ̄γ nlβ̄−σ ′ (τ )clγ σ ′ (τ ). (A7)

To obtain the adjoint equation for the self-energy, we need

∂c†
lγ σ ′ (τ )

∂τ
=

[
H − μ

∑
iα

niα, c†
lγ σ ′ (τ )

]
. (A8)

[c†
iασ c jβσ , c†

lγ σ ′ ] = δ jlδβγ δσσ ′c†
iασ . (A9)

We evaluate the commutator with each term of the Hamilto-
nian and obtain∑

i j

∑
αβ

∑
σ

ti j,αβ [c†
iασ c jβσ , c†

lγ σ ′ ] =
∑

iα

til,αγ c†
iασ ′ (A10)

−μ
∑

i

∑
α

∑
σ

[c†
iασ ciασ , c†

lγ σ ′ ] = −μc†
lγ σ ′ , (A11)

∑
i

∑
αβ

Uαβ [niα↑niβ↓, c†
lγ σ ′ ] =

∑
α

Uαγ nlα−σ ′c†
lγ σ ′ . (A12)

Hence, the final result is

∂c†
lγ σ ′ (τ )

∂τ
= tl j̄,β̄γ c†

j̄β̄σ ′ (τ ) − μc†
lγ σ ′ (τ )

+ Uβ̄γ nlβ̄−σ ′ (τ )c†
lγ σ ′ (τ ). (A13)

Let us recall the Green’s function in the presence of a
source field φ. First, the partition function is

Z[φ] = 〈Tτ exp[−c†
ᾱσ̄ (1̄)φᾱβ̄σ̄ (1̄, 2̄)cβ̄σ̄ (2̄)]〉, (A14)

which leads to the definition

S[φ] = exp[−c†
ᾱσ̄ (1̄)φᾱβ̄σ̄ (1̄, 2̄)cβ̄σ̄ (2̄)]. (A15)

Then, the Green’s function in the presence of the source field
φ is defined as

Gαβσ (1, 2)φ = − δ ln (Z[φ])

δφβασ (2, 1)
, (A16)

= −〈Tτ cασ (1)c†
βσ (2)〉φ, (A17)

where the average of an operator O(τ1, . . . , τN ) in the pres-
ence of the source field is defined by

〈Tτ O(τ1, . . . , τN )〉φ ≡ 1

Z[φ]
〈Tτ O(τ1, . . . , τN )S[φ]〉. (A18)

We are ready to obtain the equations of motion for the
Green’s function using the results for the commutators (A4)
to (A6):

∂Gαβσ (1, 2)φ
∂τ1

=−tx1 j̄,αγ̄Gγ̄ βσ (x̄ j, τ1, 2)φ + μGαβσ (1, 2)φ

+ Uαγ̄ 〈Tτ c†
γ̄−σ (1+)cγ̄−σ (1)cασ (1)c†

βσ (2)〉φ
− δαβδ(1 − 2) − φαγ̄ σ (1, 3̄)Gγ̄ βσ (3̄, 2)φ.

(A19)

The δ function comes from differentiating the time-ordering.
The term involving φ is standard and comes from the deriva-
tive of the integral bounds when applying the time-ordering
operator. We rearrange the terms in order to define the

165111-11



C. GAUVIN-NDIAYE et al. PHYSICAL REVIEW B 109, 165111 (2024)

noninteracting Green’s function G (0):[(
∂

∂τ1
− μ

)
δ(x̄ j − x1)δαγ̄ + tx1 j̄,αγ̄

]
Gγ̄ βσ (x̄ j, τ1, 2)φ

= −δαβδ(1 − 2) − φαγ̄ σ (1, 3̄)Gγ̄ βσ (3̄, 2)φ

+Uαγ̄ 〈Tτ c†
γ̄−σ (1+)cγ̄−σ (1)cασ (1)c†

βσ (2)〉φ (A20)

≡ −G (0)
αγ̄ σ (1, 3̄)−1Gγ̄ βσ (3̄, 2)φ. (A21)

From Dyson’s equation,

Gαβσ (1, 2)−1
φ = G (0)

αβσ (1, 2)−1 − φαβσ (1, 2) − 	αβσ (1, 2)φ,

(A22)

we define the self-energy as

	αγ̄σ (1, 3̄)φGγ̄ βσ (3̄, 2)φ

= −Uαγ̄ 〈Tτ c†
γ̄−σ (1+)cγ̄−σ (1)cασ (1)c†

βσ (2)〉φ, (A23)

in agreement with Eq. (7).
The analogous approach to find the adjoint equation for the

self-energy starts from the derivative with respect to τ2 instead
of τ1. We obtain

∂Gαβσ (1, 2)φ
∂τ2

= t j̄x2γ̄ βGαγ̄ σ (1, x̄ j, τ2)φ − μGαβσ (1, 2)φ

− Uγ̄ β〈Tτ c†
γ̄−σ (2+)cγ̄−σ (2)cασ (1)c†

βσ (2)〉
+ δαβδ(1 − 2) + Gαγ̄ σ (1, 3̄)φφγ̄ βσ (3̄, 2).

(A24)

We rearrange the terms in order to define the noninteracting
Green’s function G (0):[(

∂

∂τ2
+ μ

)
δ(x̄ j − x2)δβγ̄ − t j̄x2αγ̄

]
Gαγ̄ σ (1, x̄ j, τ2)φ

= δαβδ(1 − 2) + Gαγ̄ σ (1, 3̄)φφγ̄ βσ (3̄, 2)

−Uγ̄ β〈Tτ c†
γ̄−σ (2+)cγ̄−σ (2)cασ (1)c†

βσ (2)〉, (A25)

≡ Gαγ̄ σ (1, 3̄)φG (0)
γ̄ βσ (3̄, 2)−1. (A26)

From Dyson’s equation,

Gαβσ (1, 2)−1
φ = G (0)

αβσ (1, 2)−1 − φαβσ (1, 2) − 	αβσ (1, 2)φ,

(A27)

we obtain a second definition for the self-energy

Gαγ̄ σ (1, 3̄)φ	γ̄βσ (3̄, 2)φ

= −Uγ̄ β〈Tτ c†
γ̄−σ (2+)cγ̄−σ (2)cασ (1)c†

βσ (2)〉, (A28)

in agreement with Eq. (8).

APPENDIX B: EFFECTIVE ONE-BAND PROBLEM

Since only the d orbitals are correlated in the Emery model,
it is possible to find an effective one-band model. To see this,
we first write the Dyson equation in matrix form, dropping
spin indices

G(k)−1 = G(0)(k)−1 − �(k), (B1)

where we define the matrices as

G(0)(k)−1 = (ikn + μ)1 − h(0)(k), (B2)
Using the following notation for matrix elements:

A =
⎛
⎝Add Ad px Ad py

Apxd Apx px Apx py

Apyd Apy px Apy py

⎞
⎠, (B3)

≡
(

Ad Ad p

Apd Ap

)
. (B4)

the self-energy takes the form

�(k) =
(

	d (k) �d p(k)
�pd (k) �p(k)

)
. (B5)

To rewrite this as an effective one-band problem, we use
the identity

G(k)−1G(k) = 1. (B6)

We also make use of the fact that, as seen in the previous
section, the self-energy only has one nonzero matrix element,

�(k) =
⎛
⎝	d (k) 0 0

0 0 0
0 0 0

⎞
⎠. (B7)

From the matrix multiplication, we obtain a system of linear
equations from which we can find an expression for Gd . More
specifically, we use the equations[

ikn + μ − h(0)
d (k) − 	d (k)

]
Gd (k) − h(0)

d p (k)Gpd (k) = 1,

(B8)

−h(0)
pd (k)Gd (k) + [

ikn + μ − h(0)
p (k)

]
Gpd (k) = 0. (B9)

Substituting Gpd (k) from the last equation in the previous one,
we find

Gd (k) = {
ikn + μ − h(0)

d (k) − 	d (k)

− h(0)
d p (k)

[
ikn + μ − h(0)

p (k)
]−1

h(0)
pd (k)

}−1
. (B10)

Hence, the Green’s function for the d orbitals contains the
self-energy for the d orbitals as well as a hybridization func-
tion, �d p defined as

�d p(k, ikn) ≡ h(0)
d p (k)

[
ikn + μ − h(0)

p (k)
]−1

h(0)
pd (k).

(B11)
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